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ABSTRACT

In order to uncover the meanings of ‘book of life’,
155 different biological language models (BLMs) for
DNA, RNA and protein sequence analysis are dis-
cussed in this study, which are able to extract the
linguistic properties of ‘book of life’. We also ex-
tend the BLMs into a system called BioSeq-BLM
for automatically representing and analyzing the se-
quence data. Experimental results show that the pre-
dictors generated by BioSeq-BLM achieve compara-
ble or even obviously better performance than the
exiting state-of-the-art predictors published in liter-
atures, indicating that BioSeq-BLM will provide new
approaches for biological sequence analysis based
on natural language processing technologies, and
contribute to the development of this very important
field. In order to help the readers to use BioSeq-
BLM for their own experiments, the corresponding
web server and stand-alone package are established
and released, which can be freely accessed at http:
//bliulab.net/BioSeq-BLM/.

INTRODUCTION

The genome is the ‘book of life’, whose languages are
the biological sequences (1). Natural languages and bio-
logical sequences are similar. For examples, the peptide
bonds connect the amino acid residues to form a pro-
tein with certain structure and function. Similarly, words
are combined by grammar and linguistic rules into a sen-
tence with certain meanings. In this regard, the techniques
grounded in linguistics are used to uncover the meanings
of the ‘book of life’, and have greatly contributed to the
development of biological sequence analysis. Protein do-
mains can be considered as the words of proteins, and
the rules for domain associations are the grammar of pro-

teins (2). Inspired by these similarities between proteins and
languages, the linguistic technique n-gram was employed
to probe the proteome grammar, showing that a ‘quasi-
universal grammar’ underlies the evolution of domain ar-
chitectures (3). Biological sequences store all the informa-
tion determining their structures and functions, and the
sentences contain all the information defining their syn-
tactic and semantic (4). Because the relationships among
biological sequence, structure and function are similar as
the relationships among sentence, syntactic and semantic
in linguistics (see Figure 1), techniques for semantic anal-
ysis derived from natural language processing have been
applied to predict the structures and functions of proteins
(5), providing new ideas and approaches for solving these
tasks.

All these approaches based on natural language process-
ing are playing important roles in uncovering the meanings
of the ‘book of life’. Unfortunately, we still know only a
little about its semantic. The existing studies focus on ex-
ploring the lexical, syntactic, or semantic of biological se-
quences. The biological sequences with various structures
and functions share some common features with natural
languages, but they also have their own linguistic proper-
ties. For examples, there are >500 physiochemical proper-
ties for amino acids (6), and >180 physiochemical prop-
erties for nucleotides (7). Even the most complicated pol-
ysemous word in a language will never have so many prop-
erties. As a result, the rule-based approaches show limited
performance for some difficult tasks, such as protein disor-
dered region prediction, enhancer identification, etc. Fur-
thermore, these methods highly depend on the experience-
based linguistic features. Therefore, models which are able
to automatically and systematically capture the linguistic
features are highly desired. They are critical for promot-
ing the development of biological sequence analysis based
on natural language processing. Language models can sys-
tematically and comprehensively represent and analyze the
sentences, independent from the rule-based features, signif-
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Figure 1. The similarities between protein sequence and natural language sentence.

icantly contributing to the development of the natural lan-
guage processing (8). Inspired by their successes, we are to
propose the biological language models (BLMs) for DNA,
RNA and protein sequences. Because the deep learning
techniques have been demonstrated to be key methods in
bioinformatics, such as protein structure prediction (9), and
function analysis (10), BLMs mainly focuses on the biolog-
ical neural language models to represent and analyze bio-
logical sequences based on deep learning techniques. We ex-
tend the BLMs to an automatic system called BioSeq-BLM
(http://bliulab.net/BioSeq-BLM). Given the sequence data
for a specific sequence analysis task, BioSeq-BLM will au-
tomatically construct the BLM, select the predictor, evalu-
ate the performance, and analyze the results. BioSeq-BLM
is particularly useful for solving the problems of extracting
the linguistic features and designing the techniques derived
from natural language processing, providing a new view
to explore the meanings of ‘book of life’. It is anticipated
that BioSeq-BLM will be a useful tool for biological se-
quence analysis, computational proteomics and genomics.
As discussed in previous studies (11–13), a system which is
able to automatically analyze the biological sequence data
is highly desired, and several software tools have been estab-
lished, such as BioSeq-Analysis (11), BioSeq-Analysis2.0
(12), protr (14), Rcpi (15), Kipoi (16), Janggu (17), Selene
(18) and Pydna (19). However, among these existing tools,
only BioSeq-BLM and BioSeq-Analysis2.0 are able to au-
tomatically construct the predictors with the benchmark
datasets as the inputs. The other five tools focus on the in-
dividual steps, such as feature extraction, machine learn-

ing algorithm selection, or performance evaluation. The
fundamental difference between BioSeq-BLM and other
similar tools such as BioSeq-Analysis (12) is that BioSeq-
BLM is the first study to define the BLMs and introduce
155 different BLMs for biological sequence analysis. Al-
though some features or machine learning techniques also
exist in BioSeq-Analysis2.0, BioSeq-BLM is the only exist-
ing tool for biological sequence analysis based on biological
language models, providing new concepts and techniques
for this very important field. These contributions make
BioSeq-BLM unique, and more powerful than BioSeq-
Analysis2.0. The comparisons between BioSeq-BLM and
BioSeq-Analysis2.0 were listed in Table 1, from which we
can see that BioSeq-BLM is beyond the reach of BioSeq-
Analysis2.0 and any other similar tools.

Our main contributions are as follows:

(1) Based on the similarities between natural languages and
biological sequences, we introduce the biological lan-
guage models (BLMs) motivated by language models
(LMs) in the field of natural language processing.

(2) We extend the BLMs into a platform called BioSeq-
BLM, only requiring the benchmark datasets as inputs.
The predictor will be automatically constructed and eval-
uated with the help of BioSeq-BLM. BioSeq-BLM is
freely available at http://bliulab.net/BioSeq-BLM/.

(3) Experimental results showed that the predictors con-
structed by BioSeq-BLM are able to improve the predic-
tive performance for some biological sequence analysis
tasks.

http://bliulab.net/BioSeq-BLM
http://bliulab.net/BioSeq-BLM/
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Table 1. The differences between BioSeq-BLM and BioSeq-Analysis2.0

Modules Descriptions BioSeq-BLM BioSeq-Analysis2.0

BLMs Number of BGLMs 58 51
Number of BSLMs 48 0
Number of BNLMs 41 0
Number of BSSLMs 8 0

Predictor construction Number of machine learning algorithms 9 3
Number of deep learning algorithms 6 0

Performance evaluation Number of evaluation metrics 10 6
Result analysis Number of methods for normalization 4 0

Number of methods for clustering 5 0
Number of algorithms for feature selection 5 0
Number of models for dimension reduction 3 0

Other Support GPU-accelerate or not Yes No

MATERIALS AND METHODS

Biological sequence analysis tasks

The aim of biological sequence analysis is to computation-
ally analyze the sequences of DNA, RNA and proteins so as
to identify their structures, functions and their associations
with diseases. Given a benchmark dataset S for a specific
biological sequence analysis task with N sequences:

S = {B1, B2, B3, B4, . . . , Bi , . . . , BN} (1)

where Bi is the i-th biological sequence in S represented as:

Bi = Ri
1Ri

2Ri
3Ri

4 . . . Ri
j . . . Ri

M (2)

where Ri
j represents the j-th word (the words of biological

sequences will be introduced in the following sections) in Bi .
Biological sequence analysis tasks can be mainly divided

into residue-level analysis and sequence-level analysis (12),
aiming to identify the properties of each residue (Ri

j ) and
the whole sequence (Bi ), respectively. Their main difference
is that the residue-level analysis treats each residue as a sam-
ple, while sequence-level analysis treats each biological se-
quence as a sample. For more information, please refer to
(12). The BLMs will play key roles in these tasks, which will
be introduced in the following sections.

Biological language models

The language model (LM) creates a statistical model for En-
glish sentences based on the Markov processes (20), which
is a milestone in the field of natural language processing.
LM determines the joint probability of a word sequence (21)
so as to accurately represent and analyze the sentences. In
this study, we are to propose the biological language models
(BLMs) to represent and analyze the biological sequences
following the ideas of LM. A BLM can be constructed for a
specific task based on the corresponding benchmark dataset
S (cf. Equation 1), represented as:

BLM (Bi ) = BLM
(
Vi

1Vi
2Vi

3Vi
4 . . . Vi

j . . . Vi
M

)

= BLM
(
Vi

1|Vi
0

) × BLM
(
Vi

2|Vi
0Vi

1

)

× . . . × BLM
(
Vi

M|Vi
0Vi

1 Vi
2 . . . Vi

M−1

)

=
M∏

j=1

BLM
(
Vi

j |Vi
0Vi

1Vi
2 . . . Vi

j−1

)
(3)

where Vi
j is feature vector of the word Ri

j in the sequence
Bi (cf. Equation 2), represented as:

Vi
j = �

(
Ri

j

) + �
(
Ri

j

)
(4)

where �(Ri
j ) and �(Ri

j ) are the linguistics attributes and bi-
ological attributes (such as physiochemical properties, etc)
for Ri

j , respectively.
Inspired by the success of language models (LMs) in the

field of natural language processing, we introduce the bi-
ological language models (BLMs) for biological sequence
analysis. The main differences between LM and BLM are
as follows:

(1) Different inputs and methods. The inputs of LMs are sen-
tences, while the inputs of BLMs are biological sequences.
Furthermore, the words and word segmentation methods
of BLMs are more diverse than those of LMs.

(2) More information in BLMs. BLMs not only consider the
linguistic attributes of biological sequences, but also in-
clude the biological attributes, such as physical and chem-
ical properties, evolutionary information, motifs, etc.

The proposed BLMs are able to capture both the linguis-
tic features and biological properties, which can be further
divided into four categories according to different compu-
tational techniques and theories, including biological gram-
mar language models (BGLMs), biological statistical lan-
guage models (BSLMs), biological neural language mod-
els (BNLMs), and biological semantic similarity language
models (BSSLMs). These BLMs represent the biological se-
quences based on different techniques and theories, and are
playing complementary roles in biological sequence analy-
sis. These BLMs will be introduced in the following sections.

Biological grammar language models (BGLMs). Natural
languages present the meanings of their utterances struc-
tured according to their syntax, knowing as compositional
semantics (22). In natural language processing, the gram-
mar language models formally implement natural language
understanding and generation based on grammar rules and
linguistic knowledge. The biological sequences also have
their own grammar rules, such as the motif associations
(23), word relationships (24), word properties (6), etc. These
grammar rules of biological sequences are important for in-
sightfully representing the sequence characteristics. In this
regard, 58 biological grammar language models (BGLMs)
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Table 2. 29 BGLMs based on syntax rules

Category Model Description

DNA DAC Dinucleotide-based auto covariance (24)
DCC Dinucleotide-based cross covariance (24)
DACC Dinucleotide-based auto-cross

covariance (24)
TAC Trinucleotide-based auto covariance (24)
TCC Trinucleotide-based cross covariance (24)
TACC Trinucleotide-based auto-cross

covariance (24)
MAC Moran autocorrelation (104,105)
GAC Geary autocorrelation (104,106)
NMBAC Normalized Moreau-Broto

autocorrelation (104,107)
ZCPseKNC Z curve pseudo k tuple nucleotide

composition (108)
ND Nucleotide Density (26)

RNA DAC Dinucleotide-based auto covariance
(24,47)

DCC Dinucleotide-based cross covariance
(24,47)

DACC Dinucleotide-based auto-cross
covariance (24,47)

MAC Moran autocorrelation (104,105)
GAC Geary autocorrelation (104,106)
NMBAC Normalized Moreau-Broto

autocorrelation (104,107)
ND Nucleotide Density (26)

Protein AC Auto covariance (24,47)
CC Cross covariance (24,47)
ACC Auto-cross covariance (24,47)
PDT Physicochemical distance transformation

(27)
PDT-Profile Profile-based physicochemical distance

transformation (27)
AC-PSSM Profile-based Auto covariance (24)
CC-PSSM Profile-based Cross covariance (24)
ACC-PSSM Profile-based Auto-cross covariance (24)
PSSM-DT PSSM distance transformation (27)
PSSM-RT PSSM relation transformation (109)
Motif-PSSM Use PSSM as input and extract features

by motifs-based CNN (23)

are used to represent and analyze the biological sequences.
Among these 58 BGLMs, there are 29 models based on the
syntax rules (see Table 2). Because the syntax rules reflect
the relationships among residues along the biological se-
quences, these models are particularly useful for analyzing
the structures and functions of biological sequences, such
as protein disordered region prediction (25), splice site pre-
diction (26), etc. Similar as sentences, biological sequences
have their own words with more diverse properties reflecting
evolutionary information, physicochemical values, struc-
ture information, etc. In order to incorporate the word
properties into BGLMs, the other 29 BGLMs are based on
word properties (12) (see Supplementary Table S9). Because
these BGLMs based on word properties are able to capture
the physicochemical properties of residues and the evolu-
tionary information of biological sequences, they are suit-
able for analyzing the residue properties, sequence proper-
ties, and the evolutionary relationships, such as protein re-
mote homology detection (27), N6-Methyladenosine Sites
(28), etc.

Biological statistical language models (BSLMs). In lin-
guistics, the statistical language models (SLMs) reflect sta-

tistical rules of languages by using the distribution func-
tions based on the statistical principles (29). As a result,
the underlying intentions and topics of languages can be
discovered. Inspired by SLMs, the biological statistical lan-
guage models (BSLMs) are introduced to recognize the
statistical rules of biological sequences based on bag-of-
words (BOW) (see Table 3), term frequency–inverse docu-
ment frequency (TF-IDF) (30) (see Table 4), TextRank (31)
(see Table 5), and topic models (32) (see Table 6). In this
study, Kmer (33), RevKmer (33–35), Mismatch (36–38) and
Subsequence (36,38,39) are treated as the words of DNA.
Particularly, RevKmer is able to capture the characteris-
tics of two strands of the double helix of DNA sequences.
Kmer (40), Mismatch (36–38) and Subsequence (36,38,39)
are considered as the words of RNA; Kmer (41), Mismatch
(36–38), Top-n-gram (42), Distance Residue (DR) (43) and
Distance Top-n-gram (DT) (43) are considered as the words
of proteins. Please note that Top-n-gram and DT are the
words with the evolutionary information. BOW model rep-
resents sentences as the ‘bag’ of words by word occur-
rence frequencies, ignoring grammar and word orders (44).
Therefore, these BSLMs based on BOW are suitable for an-
alyzing simple functions of biological sequences, such as
human nucleosome occupancy prediction (34), gene regu-
latory sequence prediction (35), etc. TF-IDF model (45) re-
flects the importance of words to the biological sequences.
TextRank (31), a graph-based ranking model, recognizes
key sentences by ranking the criticality of sentences in the
text, and assigns higher weights indicating the influence of
a word. Because both the TF-IDF model and TextRank
model are able to detect the key features of the biological
sequences and reduce the dimensions of the feature vec-
tors, they are suitable for constructing efficient predictors
for sequence-level analysis tasks, such as RNA-binding pro-
tein prediction (46), protein–protein interaction prediction
(47), etc. These three models are performed on the words
of biological sequences, and generate 12 BSLMs based on
BOW (see Table 3), 12 BSLMs based on TF-IDF (see Table
4) and 12 BSLMs based on TextRank (see Table 5). Further-
more, the topic model discovers the abstract ‘topics’ and the
latent semantic structures of a ‘sequence document’ by us-
ing Latent Semantic Analysis (LSA) (48), Probabilistic La-
tent Semantic Analysis (PLSA) (32), Latent Dirichlet Allo-
cation (LDA) (49) and Labeled-Latent Dirichlet Allocation
(Labeled-LDA) (50), leading to 12 BSLMs based on topic
models (see Table 6).

Biological neural language models (BNLMs). In linguis-
tics, the neural language models (NLMs) (51) employ deep
neural networks to generate the distributed representa-
tions of words. Compared with other language models, the
NLMs have the following advantages: (i) deep neural net-
works capture the local and global distance dependencies
in a language; (ii) the distributed representation of words
effectively avoids the problems of data sparse and dimen-
sional disasters; (iii) the distributed representation of words
captures the dependencies in a high-dimensional continu-
ous space, leading to a better generalization ability. In or-
der to incorporate these advantages into the biological lan-
guage models, we introduce the biological neural language
models (BNLMs) based on word embedding (Table 7) and
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Table 3. Twelve BSLMs based on BOW

Category Model Description

DNA Kmer-BOW Kmer-based BOW (33)
RevKmer-BOW Reverse-complementary-

Kmer-based BOW (33–35)
Mismatch-BOW Mismatch-based BOW (36–38)
Subsequence-
BOW

Subsequence-based BOW (36,38,39)

RNA Kmer-BOW Kmer-based BOW (40)
Mismatch-BOW Mismatch-based BOW (36–38)
Subsequence-
BOW

Subsequence-based BOW (36,38,39)

Protein Kmer-BOW Kmer-based BOW (41)
Mismatch-BOW Mismatch-based BOW (37)
DR-BOW Distance-Residue-based BOW (43)
Top-n-gram-BOW Top-n-gram-based BOW (42)
DT-BOW Distance-Top-n-gram-based BOW

(43)

Table 4. Twelve BSLMs based on TF-IDF

Category Model Description

DNA Kmer-TF-IDF Kmer-based TF-IDF (30,33)
RevKmer-TF-IDF Reverse-complementary-Kmer-

based TF-IDF (30,33–35)
Mismatch-TF-IDF Mismatch-based TF-IDF

(30,36–38)
Subsequence-TF-IDF Subsequence-based TF-IDF

(30,36,38,39)
RNA Kmer- TF-IDF Kmer-based TF-IDF (30,40)

Mismatch-TF-IDF Mismatch-based TF-IDF
(30,36–38)

Subsequence-TF-IDF Subsequence-based TF-IDF
(30,36,38,39)

Protein Kmer-TF-IDF Kmer-based TF-IDF (30,41)
Mismatch-TF-IDF Mismatch-based TF-IDF

(30,37)
DR-TF-IDF Distance-Residue-based

TF-IDF (30,43)
Top-n-gram-TF-IDF Top-n-gram-based

TF-IDF(30,42)
DT-TF-IDF Distance-Top-n-gram-based

TF-IDF (30,43)

Table 5. Twelve BSLMs based on TextRank

Category Model Description

DNA Kmer-TextRank Kmer-based TextRank (31,33)
RevKmer-TextRank Reverse-complementary-Kmer-

based TextRank (31,33–35)
Mismatch-TextRank Mismatch-based TextRank

(31,36–38)
Subsequence-TextRank Subsequence-based TextRank

(31,36,38,39)
RNA Kmer-TextRank Kmer-based TextRank (31,40)

Mismatch-TextRank Mismatch-based TextRank
(31,36–38)

Subsequence-TextRank Subsequence-based TextRank
(31,36,38,39)

Protein Kmer-TextRank Kmer-based TextRank (31,41)
Mismatch-TextRank Mismatch-based TextRank

(31,37)
DR-TextRank Distance-Residue-based

TextRank (31,43)
Top-n-gram-TextRank Top-n-gram-based TextRank

(31,42)
DT-TextRank Distance-Top-n-gram-based

TextRank (31,43)

Table 6. Twelve BSLMs based on topic models

Algorithm Model Description

LSA BOW-LSA Latent Semantic Analysis
(48)

TF-IDF-LSA
TextRank-LSA

LDA BOW-LDA Latent Dirichlet Allocation
(49)

TF-IDF-LDA
TextRank-LDA

Labeled-LDA BOW-Labeled-LDA Labeled Latent Dirichlet
Allocation Model (50)

TF-IDF-Labeled-LDA
TextRank-Labeled-
LDA

PLSA BOW-PLSA Probabilistic Latent
Semantic Analysis (32)

TF-IDF-PLSA
TextRank-PLSA

automatic features (Table 8). Because linguistic objects with
similar distributions have similar meanings (52), word em-
bedding embeds each word into a continuous real-valued
vector to represent the words. In this study, word2vec (53),
GloVe (54) and fastText (55) are combined with the afore-
mentioned words of biological sequences, and the corre-
sponding 36 BNLMs based on word embedding are listed in
Table 7. Deep learning techniques are able to automatically
extract the linguistic features independent from grammar
rules and other experience knowledge. Because deep learn-
ing techniques require sufficient samples to train the pre-
dictive models with high performance, BNLMs are suitable
for analyzing both the residue-level and sequence-level tasks
with enough training samples, such as protein structure pre-
diction (9), protein fold recognition (56), disordered region
prediction (57), etc. In this study, autoencoder (58), CNN-
BiLSTM (56) and DCNN-BiLSTM (56) are used to model
the dependencies among residues/words in biological se-
quences. MotifCNN (59) and MotifDCNN (59) are used
to capture the motif-based features. Finally, five BNLMs
based on automatic features are shown in Table 8.

Biological semantic similarity language models (BSSLMs).
Calculation of the sequence similarities of biological se-
quences is one of the keys in biological sequence analy-
sis, which can be considered as the semantic similarities
among sentences. The biological semantic similarity lan-
guage models (BSSLMs) are able to represent the biological
sequences based on the semantic similarities. The semantic
similarities can be calculated by the feature vectors gener-
ated by the aforementioned three kinds of BLMs via Eu-
clidean Distance (60–62), Manhattan Distance (63), Cheby-
shev Distance (64), Hamming Distance (65), Cosine Simi-
larity (60–62), Pearson Correlation Coefficient (60–62), KL
Divergence (Relative Entropy) (60–62), or Jaccard Similar-
ity Coefficient (60–62). The resulting 8 BSSLMs are listed
in Table 9. Because the BSSLMs are able to accurately cal-
culate the similarities among biological sequences, they are
suitable for analyzing the relationships among biological se-
quences and the associations between diseases and biologi-
cal sequences, such as homology detection (60), non-coding
RNA-disease association identification (66), etc.
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Table 7. Thirty-six BNLMs based on word embedding

Category Algorithm Model Description

DNA word2vec Kmer2vec Learn word representations via word2vec model (53)
RevKmer2vec
Mismatch2vec
Subsequence2vec

GloVe Kmer-GloVe Learn word representations via Glove model (54)
RevKmer-GloVe
Mismatch-GloVe
Subsequence-GloVe

fastText Kmer-fastText Learn word representations via fastText model (55)
RevKmer-fastText
Mismatch-fastText
Subsequence-fastText

RNA word2vec Kmer2vec Learn word representations via word2vec model (53)
Mismatch2vec
Subsequence2vec

GloVe Kmer-GloVe Learn word representations via Glove model (54)
Mismatch-GloVe
Subsequence-GloVe

fastText Kmer-fastText Learn word representations via fastText model (55)
Mismatch-fastText
Subsequence-fastText

Protein word2vec Kmer2vec Learn word representations via word2vec model (53)
Mismatch2vec
DR2vec
Top-n-gram2vec
DT2vec

GloVe Kmer-Glove Learn word representations via glove model (54)
Mismatch-Glove
DR-Glove
Top-n-gram-Glove
DT-Glove

fastText Kmer-fastText Learn word representations via fastText model (55)
Mismatch-fastText
DR-fastText
Top-n-gram-fastText
DT-fastText

Table 8. Five BNLMs based on automatic features

Model Description

MotifCNN CNN construction with motifs initializing
convolution kernel (59)

MotifDCNN DCNN construction with motifs initializing
convolution kernel (59)

CNN-BiLSTM Combine CNN and BiLSTM (56)
DCNN-BiLSTM Combine DCNN and BiLSTM (56)
Autoencoder Learning Sequence Representations based

on Autoencoders (58)

Table 9. Eight BSSLMs

Model Description

ED Euclidean Distance (60–62)
MD Manhattan Distance (63)
CD Chebyshev Distance (64)
HD Hamming Distance (65)
CS Cosine Similarity (60–62)
PCC Pearson Correlation Coefficient (60–62)
KLD KL Divergence (Relative Entropy) (60–62)
JSC Jaccard Similarity Coefficient (60–62)

Extension of BLMs to BioSeq-BLM system

As introduced above, the BLMs represent the biological
sequences in different aspects. We extend the BLMs to
BioSeq-BLM system, making BLMs not only represent

the biological sequences but also analyze the biological se-
quences, which is even out of the reach of any existing
language model in linguistics. To achieve this goal, three
other functions are added into BLMs, including predictor
construction, performance evaluation, and result analysis,
which will be introduced in the following sections. The over-
all flowchart of BioSeq-BLM is shown in Figure 2.

Predictor construction. We extend the BLMs to analyze
the biological sequences by combining machine learning
classifiers, which can be divided into three categories: classi-
fication algorithms, sequence labelling algorithm and deep
learning algorithms.

For classification algorithms, the Support Vector Ma-
chine (SVM) (67) and Random Forest (RF) (68) are em-
ployed. They are widely used in classification tasks and re-
gression tasks because of their good generalization abil-
ity (69). For the sequence labelling algorithm, the Condi-
tional Random Field (CRF) (70) is used for the residue-
level analysis tasks. Compared with the classification algo-
rithms, CRF is able to model the biological sequences in a
global fashion by considering the dependency information
of all the residues along the sequences. For deep learning
algorithms, the convolutional neural network (CNN) (57)
captures the localized semantic association features. Long
short-term memory (LSTM) (71) and Gated recurrent units
(GRU) (72) capture the long-term dependence features of
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Figure 2. The main components and their relationships of BioSeq-BLM. Inspired by the similarities between the natural languages and biological se-
quences, the BioSeq-BLM is constructed. There are four main components in BioSeq-BLM, including Biological Language Models (BLMs), predictor
construction, performance evaluation and result analysis.
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sequences. Transformer (73), weighted transformer (74) and
reformer (75) capture the dependencies at any distances in
sequences. Compared with the classification algorithms and
sequence labelling algorithms, deep learning algorithms can
learn the deeper representation of the sequences and model
more complex interactions, leading to better performance
for the sequence analysis task.

Performance evaluation. Here two methods are employed
to evaluate the performance of BioSeq-BLM, including N-
fold cross-validation and independent test. 9 metrics are
used to measure the performance of BioSeq-BLM for bi-
nary classification tasks, calculated by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Acc = T P + TN
T P + F N +TN + F P 0 ≤ Acc ≤ 1

MCC = T P ∗ TN − F P ∗ F N√
(T P+F N)(TN+F N)(T P+F P)(TN+F P)

−1 ≤ MCC ≤ 1

AUC : Area Under ROC Curve 0 ≤ AUC ≤ 1
Sn = T P

T P +F N 0 ≤ Sn ≤ 1
Sp = TN

TN + F P 0 ≤ Sp ≤ 1
Balanced Accuracy = (Sn + Sp) /2 0 ≤ Balanced Accuracy ≤ 1

Precision = T P
T P+F P 0 ≤ Precision ≤ 1

AUPR : Area Under PR Curve 0 ≤ AUPR ≤ 1
F1 = 2∗Precision∗Recall

Precision+Recall 0 ≤ F1 ≤ 1

(5)

where T P represents the number of true positive samples;
TN represents the number of true negative samples; F P
represents the number of false positive samples; F N rep-
resents the number of false negative samples. For multi-
class classification tasks, multi-classification accuracy (12)
is used, calculated by:

Acc (i ) = 1 − N+
− (i ) + N−

+ (i )
N+ (i ) + N− (i )

0 ≤ Acc (i ) ≤ 1 (6)

where N+(i ) represents the total number of the samples in
the i-th class, N+

− (i ) is the number of the samples in the i-th
class wrongly predicted as the other classes, N−(i ) repre-
sents the total number of the samples not in the i-th class
and N−

+ (i ) is the number of the samples not in the i-th class
wrongly predicted to be the i-th class.

The selection of performance measures is generally based
on the characteristics of datasets. For most biological se-
quence analysis tasks, Acc, MCC, AUC and Balanced Ac-
curacy are the most commonly used metrics for perfor-
mance evaluation. For a balanced dataset with approxi-
mately equal number of samples for each label, Acc met-
ric can accurately evaluate the performance of a predictor.
For an unbalanced dataset, MCC, AUC and Balanced Ac-
curacy can better evaluate the performance of the predic-
tors. For example, MCC and AUC are used to evaluate the
performance of different predictors for identification of in-
trinsically disordered regions in proteins (76) because of the
imbalance of samples.

BioSeq-BLM trained with imbalanced benchmark
datasets will bias the class with fewer samples. In this
regard, the sampling techniques are provided to solve
this problem, including over-sampling method Synthetic
Minority Oversampling Technique (SMOTE) (77), under-
sampling method Tomek links (78) and the combination of
over-sampling and under-sampling (79).

Result analysis. We provide a result analysis framework to
interpret the predictive results with four modules: normal-
ization, clustering, feature selection and dimension reduc-

tion. L1 regularization (80), L2 regularization (81), Min-
MaxScaler (82) and StandardScaler (82) in the normaliza-
tion module can be used to normalize the features. Cluster-
ing module provides 5 cluster algorithms to visualize and
validate if the corresponding BLM is able to accurately rep-
resent the data, including K-means (83), affinity propaga-
tion algorithms (84), Density-Based Spatial Clustering of
Applications with Noise algorithm (DBSCAN) (85), Gaus-
sian mixture model (86) and Agglomerative Nesting (87).
Feature selection module provides 5 methods to analyze
the importance of the features generated by BLMs, includ-
ing chi-square (88,89), F-value (88,89), mutual information
(88,89), recursive feature elimination (90) and tree mode
(91). Three dimension reduction methods are incorporated
into the dimension reduction module to remove the noise
and reduce the dimensions of the feature vectors, including
principal component analysis (PCA) (92), kernel principal
component analysis (93) and truncated singular value de-
composition (TSVD) (94).

BioSeq-BLM web server and stand-alone package

In order to help the researchers to use the biological lan-
guage models for biological sequence analysis, we estab-
lish the web server and stand-alone tool of BioSeq-BLM,
which can be freely accessed from http://bliulab.net/BioSeq-
BLM/.

Web server. After clicking the ‘Server’ tab, three kinds
of BLMs (DNA-BLM, RNA-BLM and protein-BLM for
DNA, RNA and protein sequence analysis, respectively)
will be shown on the screen, and then the level of analy-
sis (residue-level analysis and sequence-level analysis) and
BLM should be selected. Next, choose to calculate seman-
tic similarity based on BSSLMs or not for sequence-level
analysis. After selecting the machine learning algorithm, the
submit page will be shown on the screen (see Figure 3A–D),
where the users should set the parameters of the predictors,
type the datasets in FASTA format into the input box or
upload FASTA files (see Figure 3E and F). Finally click the
‘Submit’ for calculation. The results will be shortly shown
on the screen (see Figure 4).

In this example, the BLM is set as Kmer-BOW (see Ta-
ble 3) combined with the SVM for DNA sequence analy-
sis at sequence level. The results page contains six parts as
shown in Figure 4, from which the users can easily see the
performance of the BLM and the importance of different
features. This information is a key for selecting the BLM
for biological sequence analysis. Please note that for BLMs
based on deep learning techniques with high computational
costs, the command lines of the stand-alone package will be
given, based on which the users can easily obtain the corre-
sponding results with the help of the stand-alone package
installed in their own computers.

Stand-alone package. The web server of BioSeq-BLM
is easy to use. However, for high-throughput analysis,
its computational cost is high, especially for the BLMs
based on deep learning techniques. In this regard, the
stand-alone package of BioSeq-BLM is provided, which
can be downloaded from http://bliulab.net/BioSeq-BLM/

http://bliulab.net/BioSeq-BLM/
http://bliulab.net/BioSeq-BLM/download/
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Figure 3. Screenshot of the input page of BioSeq-BLM web server. (A) A summary of the main parameters; (B) the parameters for BLM; (C) the parameters
of result analysis; (D) the parameters for predictor construction and performance evaluation; (E) the input box of the datasets; (F) the functional buttons.

Figure 4. Screenshot of the result page of BioSeq-BLM web server. It contains six sections: (A) the summary of main parameters; (B) and (C) the evaluation
results; (D) the flowchart; (E) the output figures; (F) the output files.
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Figure 5. (A) The Receiver Operating Characteristic (ROC) curves of top 10 predictors constructed by SVMs and different BLMs for identification DNase
I hypersensitive sites; (B) the corresponding Precision-Recall (PR) curves of these 10 predictors; (C) the clustering results by K-means algorithm; (D) the
10 most important features and their corresponding feature importance values evaluated in terms of F-value.

download/. Different from web server, the stand-alone
package based on multithreading and GPU acceleration
can make full use of local computing resources to imple-
ment computing. The trained models generated by BioSeq-
BLM can be loaded to predict the unknown samples by us-
ing the stand-alone package of BioSeq-BLM. Furthermore,
the bash scripts for automatically selecting the best mod-
els for specific biological sequence analysis tasks are incor-
porated into the stand-alone package, which will be partic-
ularly useful for biologists to choose the suitable models.
For more information, please refer to the manual, which
can be accessed at http://bliulab.net/BioSeq-BLM/static/
download/BioSeq-BLM manual.pdf.

How to choose web server or stand-alone package. The
Stand-alone package and web server are complementary.
The choice of web server and stand-alone package is related
to the number of input sequences and the selected model.
For a small number of sequences, web server is generally
recommended. When there are many input sequences, it is
recommended to use stand-alone package for calculation.
If we need to use the model based on deep learning for bi-

ological sequence analysis, we suggest the users to use the
web server to generate the command lines, and then use the
corresponding command lines to run the stand-alone pack-
age. If users want to batch select the best BLM and machine
learning algorithm for a specific task, the stand-alone pack-
age provides relevant scripts to facilitate the relevant func-
tions.

RESULTS AND DISCUSSION

The BioSeq-BLM incorporates 155 different BLMs for bio-
logical sequence analysis. In this section, we will show how
to use BioSeq-BLM to solve some specific biological se-
quence analysis tasks, which will be particularly helpful for
researchers to select the BLMs.

Identification DNase I hypersensitive sites

Identification of DNase I hypersensitive sites (DHSs) is
important for understanding the functions of noncoding
genomic regions (95), which is a DNA sequence analysis
task at sequence level. Here, we will show how to construct

http://bliulab.net/BioSeq-BLM/download/
http://bliulab.net/BioSeq-BLM/static/download/BioSeq-BLM_manual.pdf
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Figure 6. (A) The ROC curves of top 10 predictors constructed by SVMs and different BLMs for identification of real microRNA precursors; (B) the
corresponding PR curves of these 10 predictors; (C) the clustering result for K-means algorithm; (D) the 3D-figure for dimension reduction when applying
TSVD method.

computational predictors for this task based on different
BLMs and SVMs with the help of the stand-alone package
of BioSeq-BLM. The benchmark dataset (95) downloaded
from http://bliulab.net/iDHS-EL/data is used as the inputs
of BioSeq-BLM. For example, a predictor Subsequence-
BOW combines the BSLM of Subsequence-BOW (see Table
3) and SVM can be easily constructed with the help of the
stand-alone package with the following command line:

python BioSeq-BLM Seq.py -category DNA -mode BOW -words
Subsequence -word size 3 -cl Kmeans -nc 5 -fs F-value -nf 128 -rdb fs -ml
SVM -sp combine -seq file pos file neg file -label + 1 -1

The performance of the top 10 best predictors generated
by BioSeq-BLM is shown in Figure 5 and Supplementary
Table S1, from which we can see that Subsequence-BOW
predictor is highly comparable with the state-of-the-art pre-
dictor iDHS-EL reported in (95). The BOW model based on
Subsequence words (36,38,39) is able to extract the discrim-
inative features leading to better performance. All the com-
plicated processes for constructing a computational predic-
tor can be easily implemented by BioSeq-BLM with only
one command line. Furthermore, the different BLMs incor-

porated in BioSeq-BLM would be potential candidates for
constructing more efficient predictors for this task.

Identification of real microRNA precursors

As miRNAs are deeply implicated with many cancers and
other diseases, it is important for both basic research
and miRNA-based therapy to discriminate the real pre-
miRNAs from the false ones (96), which is a RNA se-
quence analysis task at sequence level. Given the bench-
mark dataset (96), the RSS predictor for miRNA prediction
based on the BGLM of RSS (RNA Secondary Structure)
(97) and SVM can be easily constructed with the help of
BioSeq-BLM by using the following command line:

python BioSeq-BLM Seq.py -category RNA -mode OHE -method RSS
-cl Kmeans -nc 5 -dr TSVD -np 128 -rdb dr -ml SVM -seq file pos file
neg file -label + 1 -1

The performance of the top 10 best predictors gener-
ated by BioSeq-BLM is shown in Figure 6 and Supple-
mentary Table S2. Because the BGLM of RSS can capture
the ‘hairpin’ characteristics of miRNAs in their secondary

http://bliulab.net/iDHS-EL/data
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Figure 7. (A) The ROC curves of top 10 predictors constructed by RFs and different BLMs for identification of DNA binding proteins; (B) the corre-
sponding PR curves of these 10 predictors; (C) the clustering result for K-means algorithm; (D) the 14 most important features and their corresponding
feature importance evaluated by tree-based feature selection.

structures, the computational predictor RSS generated by
BioSeq-BLM achieves comparable performance with the
iMcRNA predictor reported in (96), further confirming the
usefulness of BioSeq-BLM for RNA sequence analysis.

Identification of DNA-binding proteins and RNA-binding
proteins

Identification of DNA-binding proteins (DBPs) and RNA-
binding proteins (RBPs) are important protein sequence
analysis tasks at the sequence level. Identification of DBPs
and RBPs play important roles in biological processes, such
as replication, translation and transcription of genetic ma-
terial.

A predictor BOW-LSA for DBP prediction can be gen-
erated by BioSeq-BLM by combining the BSLM of BOW-
LSA (see Table 6) and RF with the following command line:

python BioSeq-BLM Seq.py -category Protein -mode TM -method LSA
-in tm BOW -words Top-N-Gram -top n 2 -com prop 0.7 -cl Kmeans -nc
5 -fs Tree -nf 128 -ml RF -seq file pos file neg file -label + 1 -1

A predictor PDT-Profile for RBP prediction can be gen-
erated by BioSeq-BLM by combining the BGLM of PDT-

Profile (see Table 2) and SVM with the following command
line:

python BioSeq-BLM Seq.py -category Protein -mode SR -method
PDT-Profile -ml SVM -seq file pos file neg file -label + 1 -1

Evaluated on the benchmark dataset (98) for DBP identi-
fication, the performance of the top 10 best predictors gen-
erated by BioSeq-BLM is shown in Figure 7 and Supple-
mentary Table S3. Because the BSLM of BOW-LSA is able
to capture the global information, BOW-LSA shows the
best performance and achieves an ACC of 81.58%, outper-
forming the predictor PseDNA-Pro reported in (98). Eval-
uated on the Salmonella benchmark dataset (46) for RBP
identification, the performance of the top 10 best predictors
generated by BioSeq-BLM is shown in Figure 8 and Sup-
plementary Table S4. Because the BGLM of PDT-Profile
(27) is able to efficiently extract the evolutionary informa-
tion from the profiles, the PDT-Profile predictor combin-
ing PDT-Profile and SVM achieves the best performance
with an AUC of 0.915, outperforming other three exist-
ing state-of-the-art predictors (TriPepSVM (46), RNAPred
(99) and RBPPred (100)) by 6–13% in terms of AUC (see
Supplementary Table S5). These results indicate that the
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Figure 8. (A) The ROC curves of top 10 predictors constructed by SVMs and different BLMs for identification of RNA binding proteins; (B) the corre-
sponding PR curves of these 10 predictors; (C) the clustering result for K-means algorithm; (D) the 10 most important features and their corresponding
feature importance evaluated by tree-based feature selection.

Figure 9. (A) The ROC curves of top 10 predictors constructed by LSTMs and different BLMs for identification of intrinsically disordered regions in
proteins; (B) the corresponding PR curves of these 10 predictors.



e129 Nucleic Acids Research, 2021, Vol. 49, No. 22 PAGE 14 OF 17

Figure 10. (A) The ROC curves of top 10 predictors constructed by RFs and different BLMs for RNA secondary structure prediction; (B) the corresponding
PR curves of these 10 predictors.

predictors automatically generated by BioSeq-BLM can
even achieve obviously better results than other existing ap-
proaches, which is another big step for the applications of
the artificial intelligence to protein sequence analysis fol-
lowing the contributions of Alphfold2 (101) to the protein
structure prediction.

Identification of intrinsically disordered regions in proteins

Intrinsically disordered regions (IDRs) in proteins are im-
portant for protein structure and function analysis, which
is a protein sequence analysis task at residue level. BioSeq-
Analysis2.0 (12) is another software tool based on machine
learning techniques to automatically analyze biological se-
quences. In this regard, we compare the predictors con-
structed by BioSeq-BLM for IDR prediction with the pre-
dictors generated by BioSeq-Analysis2.0 on the benchmark
dataset (76). A predictor PSSM for IDR prediction can
be generated by BioSeq-BLM via combining the BLM of
PSSM (102) and LSTM with the following command line:

python BioSeq-BLM Res.py -category Protein -method PSSM -ml
LSTM -epoch 10 -batch size 20 -n layer 2 -hidden dim 64 -seq file
protein seq file -label file protein label file

The performance of the top 10 predictors built by
BioSeq-BLM is shown in Figure 9 and Supplementary Ta-
ble S6. Because the LSTM captures the deep-level depen-
dencies of residues in biological sequences in a global fash-
ion, the PSSM predictor based on LSTM achieves the best
performance among the 10 predictors. It also outperforms
all the five top performing predictors generated by BioSeq-
Analysis2.0 (12) by 8.7–12.6% in terms of AUC (see Sup-
plementary Table S7). These results are not surprising be-
cause the BioSeq-BLM is based on the biological language
models and deep learning methods, which are able to more
accurately represent and analyze the biological sequences,
and therefore, it achieves better performance than BioSeq-
Analysis2.0.

RNA secondary structure prediction

Identification of RNA secondary structure is an important
step to understand RNA functions, which is a residue level
analysis task. For example, we can use BioSeq-BLM to gen-
erate the One-hot predictor based on BGLM of One-hot
and Random Forest by using the following command line:

python BioSeq-BLM Seq.py -category RNA -mode OHE -method
One-hot -ml RF -seq file pos file neg file -label + 1 -1 -fixed len 37

Given the benchmark dataset (PARS-Yeast dataset
(103)), the performance of the top 10 predictors built by
BioSeq-BLM is shown in Figure 10 and Supplementary Ta-
ble S8. Because the combination of biological word prop-
erties and machine learning algorithms can improve the
generalization ability of a predictor, the One-hot predictor
achieves the best performance among the 10 predictors with
an AUC of 0.960, which is highly comparable with the state-
of-the-art predictor GRASP achieving an AUC of 0.967
(103).

CONCLUSION

As discussed above, the techniques derived from natural
language processing (NLP) are the keys to uncover the
meanings of the ‘book of life’. As a result, with the rapid
growth of the biological sequence data, the NLP techniques
are playing more and more important roles in prediction of
the structures and functions of these sequence data. Unfor-
tunately, it is never an easy task to find the suitable NLP
techniques to solve a specific task. In order to solve this
challenging problem, in this study, we introduce 155 differ-
ent BLMs for DNA, RNA and protein sequence analysis,
and extend these BLMs into a system called BioSeq-BLM,
which is able to automatically represent and analyze the se-
quence data only requiring the sequence data in FASTA for-
mat as inputs. With its help, the predictors can be easily
constructed. Experimental results show that the predictor
even outperforms the existing state-of-the-art approaches
for specific tasks. BioSeq-BLM provides new approaches
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for biological sequence analysis based on the techniques
from NLP, which is particularly useful for constructing the
computational predictors, or at the very least, it will play a
commentary role with the existing methods to contribute to
the development of this very important field.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are also very much indebted to the three anonymous
reviewers, whose constructive comments are very helpful for
strengthening the presentation of this paper.

FUNDING

National Key R&D Program of China [2018AAA0100100];
National Natural Science Foundation of China [61822306,
61861146002, 61732012]; Beijing Natural Science Founda-
tion [JQ19019]. Funding for open access charge: National
Key R&D Program of China [2018AAA0100100].
Conflict of Interest statement. None declared.

REFERENCES
1. Searls,D.B. (2002) The language of genes. Nature, 420, 211–217.
2. Scaiewicz,A. and Levitt,M. (2015) The language of the protein

universe. Curr. Opin. Genet. Dev., 35, 50–56.
3. Yu,L.J., Tanwar,D.K., Penha,E.D.S., Wolf,Y.I., Koonin,E.V. and

Basu,M.K. (2019) Grammar of protein domain architectures. In:
Proc. Natl. Acad. Sci. U.S.A. Vol. 116, pp. 3636–3645.

4. Searls,D.B. (2001) Reading the book of life. Bioinformatics, 17,
579–580.

5. Gimona,M. (2006) Protein linguistics - a grammar for modular
protein assembly? Nat. Rev. Mol. Cell Biol., 7, 68–73.

6. Kawashima,S., Pokarowski,P., Pokarowska,M., Kolinski,A.,
Katayama,T. and Kanehisa,M. (2008) AAindex: amino acid index
database, progress report 2008. Nucleic Acids Res., 36, D202–D205.

7. Friedel,M., Nikolajewa,S., Suhnel,J. and Wilhelm,T. (2009)
DiProDB: a database for dinucleotide properties. Nucleic Acids Res.,
37, D37–D40.

8. Chen,Z., Eavani,H., Chen,W., Liu,Y. and Wang,W.Y. (2020)
Few-Shot NLG with Pre-Trained Language Model. In: Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics (ACL). pp. 183–190.

9. Senior,A.W., Evans,R., Jumper,J., Kirkpatrick,J., Sifre,L., Green,T.,
Qin,C., Zidek,A., Nelson,A.W.R., Bridgland,A. et al. (2020)
Improved protein structure prediction using potentials from deep
learning. Nature, 577, 706–710.

10. Alipanahi,B., Delong,A., Weirauch,M.T. and Frey,B.J. (2015)
Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning. Nat. Biotechnol., 33, 831–838.

11. Liu,B. (2019) BioSeq-Analysis: a platform for DNA, RNA and
protein sequence analysis based on machine learning approaches.
Brief. Bioinform., 20, 1280–1294.

12. Liu,B., Gao,X. and Zhang,H.Y. (2019) BioSeq-Analysis2.0: an
updated platform for analyzing DNA, RNA and protein sequences
at sequence level and residue level based on machine learning
approaches. Nucleic Acids Res., 47, e127.

13. Chen,Z., Zhao,P., Li,F., Marquez-Lago,T.T., Leier,A., Revote,J.,
Zhu,Y., Powell,D.R., Akutsu,T., Webb,G.I. et al. (2019) iLearn: an
integrated platform and meta-learner for feature engineering,
machine-learning analysis and modeling of DNA, RNA and protein
sequence data. Brief. Bioinform., 21, 1047–1057.

14. Xiao,N., Cao,D.S., Zhu,M.F. and Xu,Q.S. (2015) protr/ProtrWeb:
R package and web server for generating various numerical
representation schemes of protein sequences. Bioinformatics, 31,
1857–1859.

15. Cao,D.S., Xiao,N., Xu,Q.S. and Chen,A.F. (2015) Rcpi:
R/Bioconductor package to generate various descriptors of proteins,
compounds and their interactions. Bioinformatics, 31, 279–281.

16. Avsec,Z., Kreuzhuber,R., Israeli,J., Xu,N., Cheng,J., Shrikumar,A.,
Banerjee,A., Kim,D.S., Beier,T., Urban,L. et al. (2019) The Kipoi
repository accelerates community exchange and reuse of predictive
models for genomics. Nat. Biotechnol., 37, 592–600.

17. Kopp,W., Monti,R., Tamburrini,A., Ohler,U. and Akalin,A. (2020)
Deep learning for genomics using Janggu. Nat. Commun., 11, 3488.

18. Chen,K.M., Cofer,E.M., Zhou,J. and Troyanskaya,O.G. (2019)
Selene: a PyTorch-based deep learning library for sequence data.
Nat. Methods, 16, 315–318.

19. Pereira,F., Azevedo,F., Carvalho,Â., Ribeiro,G.F., Budde,M.W. and
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