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Abstract: The growing trend of using smartphones as personal computing platforms to access and
store private information has stressed the demand for secure and usable authentication mechanisms.
This paper investigates the feasibility and applicability of using motion-sensor behavior data for
user authentication on smartphones. For each sample of the passcode, sensory data from motion
sensors are analyzed to extract descriptive and intensive features for accurate and fine-grained
characterization of users’ passcode-input actions. One-class learning methods are applied to
the feature space for performing user authentication. Analyses are conducted using data from
48 participants with 129,621 passcode samples across various operational scenarios and different types
of smartphones. Extensive experiments are included to examine the efficacy of the proposed approach,
which achieves a false-rejection rate of 6.85% and a false-acceptance rate of 5.01%. Additional
experiments on usability with respect to passcode length, sensitivity with respect to training sample
size, scalability with respect to number of users, and flexibility with respect to screen size were
provided to further explore the effectiveness and practicability. The results suggest that sensory
data could provide useful authentication information, and this level of performance approaches
sufficiency for two-factor authentication on smartphones. Our dataset is publicly available to facilitate
future research.

Keywords: smartphone security; user authentication; behavior analysis; motion sensor;
performance evaluation

1. Introduction

Smartphone have become omnipresent personal computing platforms for users to access Internet
services whenever and wherever. Recent surveys [1,2] show that as more and more private information
and security information are stored in smartphones (e.g., 92.8% of Android smartphone users store
private information in their smartphones), the risk of information leakage is becoming a major concern
for the information society [3]. The most common mechanism to address this problem is authentication.
Smartphone users mainly adopt PIN-based passcodes, pattern-based passcodes, or fingerprints as the
primary ways, which have been integrated into current smartphone systems. However, most passcodes
are simple and easily guessed due to users’ preference for convenience and memorability [4,5]. Some
recent studies also showed that users’ passcodes can be inferred through the smartphone onboard
sensors [6,7], or through the smudges left on touchscreen surface [8]. The fingerprint-based methods
usually require auxiliary hardware, and it is only applied in iOS and a few Android devices. Recently,
attackers were able to even get fingerprints from public events with help of a standard camera, and
then use these fingerprints for smartphone authentication [9].
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Of various potential solutions, a particularly promising technique is the use of sensory data from
the smartphone’s onboard sensors, which measures a user’s touch-input action characteristics when
inputting passcodes [10,11]. Compared with biometric features for smartphone authentication such as
face and touch-interaction behavior (e.g., touch-sliding behavior), onboard sensor behavior does not
need special hardware and root access privilege on smartphones to obtain biometric data, and is less
sensitive to users’ privacy. Thus it may provide a non-intrusive and implicit solution for enhancing the
passcode-based authentication mechanisms.

In this paper, we present a feasibility and applicability study of using motion-sensor behavior
for user authentication on smartphones. The rationale behind our work is that touch-input actions
from different users would generate different levels of posture and motion change of smartphones
which may exhibit the unique behavioral characteristics of individuals. When a user input his/her
passcode on smartphones, the sensory data from accelerometer and gyroscope are recorded. We extract
descriptive and intensive features for accurate characterization of motion-sensor behavior induced by
users’ passcode-input actions, and conduct an empirical feature study to measure the stability and
discriminability of these features. We employ three types of one-class classifier to conduct the task of
user authentication. We then perform extensive analyses using data from 48 participants with 129,621
passcode-input samples across various operational scenarios and different types of smartphones. We
also examine the performance on usability with respect to passcode length, sensitivity with respect
to training sample size, scalability with respect to the number of users, and flexibility with respect to
smartphone screen size, to further analyze the effectiveness of the proposed approach. It should be
noted that we do not propose our motion-sensor-behavior based authentication method as the sole
authentication mechanism but rather as a complementary mechanism that can be used to improve
security in smartphones. As an example, when a user unlocks his/her smartphone with a passcode, the
passcode as well as the sensory characteristics will be examined. The main purpose and contributions
of this paper are summarized as follows:

e  We present an empirical work analyzing motion-sensor data for smartphone authentication, and
analyze the feasibility and applicability of authenticating a user based on the characteristics of
motion-sensor data across various operational scenarios and different types of smartphones,
which can be easily integrated with existing smartphone authentication mechanisms.

¢ We model the behavior of accelerometer and gyroscope sensors by proposing descriptive and
intensive features, such as descriptive statistics and information entropy of sensor-data sequences,
to characterize a user’s passcode-input actions in a robust and accurate manner. These features
could lead to a performance boost in stability and discriminability of authentication performance.
We also employ three types of one-class classifier to build the authentication model, so that the
model can be trained solely on the samples from the legitimate user, and we could examine
whether an observed effect is specific to one type of classifier or holds for a range of classifiers.

e We examine the proposed approach in terms of usability with respect to passcode length,
sensitivity with respect to training sample size, scalability with respect to the number of users,
and flexibility to screen size, to further examine the applicability and generalization capability of
the proposed approach.

e A public sensory behavior dataset is established (see Section 4 for availability), not only for this
study, but also to foster future research. This dataset contains high-quality behavior data of
smartphone sensors from 48 subjects. To our knowledge, this study is the first to publish a shared
sensory dataset for smartphone authentication.

e  This study systematically evaluates user authentication on smartphones by analyzing behavior of
accelerometer and gyroscope sensors, and extensive analyses across various operational scenarios
and different types of smartphones show the proposed approach can perform user authentication
with a high degree of accuracy. These results suggest that sensory data could provide auxiliary
authentication information, and this level of accuracy approaches sufficiency for two-factor
authentication for passwords or PINs on smartphones.
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The structure of the paper is as follows: Section 2 introduces related work. Section 3 introduces
the model. Section 4 describes the data acquisition process. Section 5 introduces the process of data
processing and feature extraction. Section 6 details the authentication architecture. Section 7 expounds
on the classifier training and testing process, then explains the evaluation methodology. Section 8
presents the experimental results. Section 9 summaries this paper, and discusses future work.

2. Background and Related Work

2.1. Smartphone Authentication

Currently, the most widely used smartphone authentication mechanisms are PIN-based passcodes,
pattern-based passcodes, and fingerprints, which have been integrated into Android or IOS smartphone
systems. However, due to the simplicity and easy guessability of the PIN and pattern passcodes [12]
(e.g., shoulder surfing attack [13] and smudge attack [8]), and the risk of fingerprint loss from
public events (e.g., attackers can get fingerprints from public events with the help of a standard
camera [9]), a growing number of biometric features (i.e., signature or gesture based methods [14,15],
touch dynamics [16,17], and keystroke dynamics [18,19]) has been applied to strengthen smartphone
authentication [14-19].

Sun et al. [14] developed a two-factor authentication system for multi-touch mobile devices, by
asking a user to draw a signature on the touchscreen with multiple fingers to unlock his/her mobile
device. The user is then authenticated based on the geometric properties of the drawn curves. A similar
idea is presented in [15] to define a set of five-finger gestures for multi-touch device authentication, in
which the geometric shape of a given gesture is used and analyzed as the password. They characterized
the gesture by classifying movement characteristics of the center of palm and fingertips, and then
used classification techniques to recognize unique biometric characteristics of an individual. However,
as mentioned in [14,15], these techniques may only be used as weak authentication techniques and
are vulnerable to the attackers seeing the users perform their signatures or gestures. In addition,
performing multi-finger signatures or gestures on mobile devices with a small display may not be
user-friendly.

Bo et al. [16] proposed a framework for smartphone authentication based on the dynamics of
touch and movement. They extracted features from touch and movement behavior (i.e., pressure,
area, duration, position, velocity, and acceleration), and employed a support vector machine (SVM) to
perform user authentication task in a lab scenario. Shen et al. [17] developed a continuous smartphone
authentication system based on users’ touch-sliding operations. The system analyzed four types of
touch behavior (i.e., sliding up, down, left, and right), and employed a SVM to learn owner’s touch
behavior profile, which was later used for authentication decisions. Although promising results have
been shown from these studies in controlled or lab-based scenarios, the reliability and applicability
of touch dynamics in real-world scenarios need to be addressed for putting it into more practical
settings, and these evaluations pointed out the research of touch behavior analysis are subject to
behavioral variability.

Kambourakis et al. [18] explored the usage of users’ touch keystrokes for smartphone
authentication. They depicted the touch keystroke with the touch speed and distance, and employed
the random forest classifier to perform authentication tasks. A subsequent work is presented in [19]
to improve the applicability and usability of keystroke biometrics for touch-device authentication.
They compared touch-specific features between three different hand postures and evaluation schemes,
and showed that the spatial touch features can reduce authentication equal error rates significantly.
However, as stated in [18,19], keystroke-based techniques may be vulnerable to attackers familiar with
the victim’s typing patterns. In addition, most extant work used data from both legitimate user and
impostors for training the classifiers, which may be not suitable for user verification in practice.
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2.2. Smartphone Authentication through Sensory Data

As sensing and computing capabilities become standard on current smartphones, researchers
have begun to collect more types of sensory data on smartphones to build user behavior models and
use the model to infer certain contexts, including user authentication [10,11,20]. Table 1 lists some
common sensors found in popular smartphones. Smartphone sensors usually include motion sensors,
environmental sensors, and position sensors, in which environmental sensors mainly consist of light,
temperature, barometer and proximity; position sensors usually include GPS and compass; motion
sensors commonly include gravity, accelerometer, gyroscope, and magnetometer. In this evaluation,
we focus on motion sensors, which can measure the posture and motion change of smartphones. Some
recent studies have shown that the accelerometer can be used to detect coarse-grained motion of a user
like how he/she walks for identity authentication [21] and the orientation sensor can be utilized to
detect fine-grained motion of a user like how he/she holds a smartphone [22].

Table 1. Sensors enabled in some popular smartphones.

Sensor Samsung S6 iPhone 6 Nexus 7 Huawei P8
Gravity 4 v/ Vi v/
Accelerometer i i i i
Gyroscope v v/ i i
Magnetometer v v/ v v/
Light v v J v
Proximity v v/ X v/
Fingerprint v v X X
Heart-Rate i X X X
Barometer X v/ X X
Compass X v/ i X
GPS v v v v

In the investigation of smartphone authentication based on the analysis of motion-sensor behavior,
there are really two tasks of interest. One task is static authentication, which checks the user only
once, typically at unlock or login time. Another is continuous authentication, which checks the user
continuously throughout the usage session. The primary focus of previous research has been on
the use of motion sensor for identity monitoring [22-24], but it is difficult to transfer the work from
identity monitoring directly to static authentication, because a rather long observation period is usually
required to collect enough sensor data for accurate authentication. To our knowledge, few papers have
targeted the analysis of onboard sensor data for static authentication, which will be the central concern
of this paper.

Closely related to our purpose are two recent papers by Conti et al. [25] and Giuffida et al. [26].
Conti ef al. [25] were the first researchers to use smartphone accelerometer and orientation sensors
to authenticate a user when answering or placing a phone call. They characterized smartphone
movements, and employed dynamic time warping methods to depict the sensor data. The experiments
on 10 subjects showed an impostor-pass rate of 4.5% and a false-acceptance rate of 9.5%. Later on,
Giuffida et al. [26] presented a framework of combining the traditional keystroke characterization with
motion sensors (i.e., accelerometer and gyroscope) to reflect users’ typing behavior, and extracted
timing features for authentication. They applied standard classification techniques to perform the
authentication task and the experiments on 20 subjects showed that the combination of keystroke
characteristics and sensor feature can achieve higher accuracy.

These efforts showed the motion sensor behavior has a rich potential for user authentication on
smartphones. In comparison with other biometric features such as face and fingerprint, motion-sensor
behavior is less diagnostic. This study, differing from existing work: (1) Aims to provide in-depth
analysis of motion-sensor behavior for smartphone authentication in terms of discriminability, stability,
and applicability; (2) Examines the authentication performance across various operational scenarios
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and different types of smartphones; (3) Explores the effectiveness of this technique on usability with
respect to passcode length, sensitivity with respect to training sample size, scalability with respect
to the number of users, and flexibility with respect to smartphone screen size; (4) Employs one-class
classifiers to build the authentication model for making the model be trained solely on the samples from
legitimate user; (5) Examines a set of classifiers to compare smartphone authentication performance to
explore whether an observed effect is specific to one type of classifier or holds for a range of classifiers;
(6) Publishes a shared sensory dataset for smartphone authentication.

3. Threat Model

We consider a scenario in which an attacker has physical access to the smartphone, and is
already in possession of the passcodes to unlock the device, which means traditional defense has been
breached. Thus the smartphone resources (e.g., the applications and private data) are made available
to the attacker. For instances, an attacker may steal the application account information and the
personal pictures stored in the smartphone. The aim of our work is to develop a sensor-behavior-based
smartphone authentication approach by analyzing motion-sensor data in a user’s passcode typing
process, without extra involvement and interruption for users. Thus the attacker will be enslaved to a
two-factor authentication mechanism when she/he authenticates with traditional passcodes. It should
be noted that we mainly consider verifying a user against the smartphone owner, since a smartphone
is usually privately owned and may be not shared by others.

4. Sensor-Data Acquisition

This section explains how we design passcode-input tasks, set up a data-collection platform,
and recruit subjects to perform the tasks. Here we offer details regarding process of data acquisition,
because these particulars can best reveal potential biases and confounds to experimental validity [27].
Our dataset is available [28].

4.1. Operational Scenarios

To systematically investigate the feasibility of using motion-sensor behavior for smartphone
authentication, we design three types of operational scenarios for collecting motion-sensor data, which
would roughly cover user’s routine passcode-input actions:

Hand-hold-input scenario: Users are asked to operate smartphone for authentication when sitting or
standing steadily.

Table-hold-input scenario: Smartphones are placed on the desktop, and users were asked to perform
authentication actions using a single hand.

Hand-hold-walk scenario: Users operate smartphones and perform passcode-input action for
authentication when walking.

4.2. Apparatus

We establish a free experimental environment on Android smartphones and develop an App as
uniform hardware and software platform for the collection of motion-sensor data. We set up three
different types of smartphones, each operating on Android 4.4.x. The smartphones are a Huawei Mate7
with a 6.1-inch screen, 1.5 GHz processor, and 2 GB RAM; a Samsung N7100 with a 5.5-inch screen,
1.6 GHz processor, and 2 GB of RAM; and a HongMi 1s with a 4.7-inch screen, 1.6 GHz processor, and
1 GB of RAM.

The smartphone App, written in Java, prompts a user to conduct an authentication
(i.e., smartphone unlocking) task. During data collection, the application displays the task in a
full-screen window on the smartphone, and records (1) the touch-input actions; (2) the motion-sensor
data (i.e., accelerometer and gyroscope) during touch-input actions; and (3) the timestamps of the
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operations. The default timing clock is used to timestamp touch-input actions [29], which has a
resolution of 10 ms, corresponding to 100 updates per second.

4.3. Stimulus Materials

Designing passcode-input tasks for such an evaluation is subtle. It is often more realistic to let
subjects choose their own passcode inputs. Yet data collection becomes harder since different impostor
samples would be needed for every task. Some studies suggest that letting subjects choose their own
tasks makes it easier to distinguish them [30,31]. If this is true, then letting subjects choose their own
tasks can bias the results of an experiment designed to assess performance on an arbitrary task. Thus
we decide the same tasks would be undertaken by all subjects.

To make passcode-input tasks representative of typical and diverse combination of input actions,
our stimulus materials consist of three passcodes with different lengths, 0-4-3-9, 0-1-4-7-8, and
0-1-4-3-6-7, and require subjects to type without hyphens to unlock the smartphone. The same
passcodes are assigned to all subjects, as opposed to having each subject select passcodes of their own.
The reasons for this choice are that: (1) Self-chosen passcodes may be of different lengths, which make
users’ typing hard to compare; (2) Self-chosen passcodes may be easy to type (or particularly hard to
type), which may introduce biases that are difficult to control; (3) Same passcode can make each subject
be treated as impostor for other subjects, putting the authentication test on an equal basis; (4) Same
passcode can reduce the effect of experimental control over unanticipated biases.

It is worthy of note that our passcodes are not unique. However, the passcode sequences span
the keypad, and a finger typing this sequence travels both of the diagonals, and a vertical. Besides,
since we had only one chance to accomplish every passcode, we chose a passcode from which we can
learn most. The passcodes are chosen to cause smartphone users to perform a wide variety of finger
movements on touchscreen.

4.4. Subjects

We recruited 48 volunteers (29 males and 19 females) from among students and faculty from our
university. All subjects were skilled smartphone users with at least one year’s experience, and five of
them were left-handed. The age ranged from 18 to 50 years (mean = 25.6, s.d. = 4.2).

4.5. Data Collection Process

Subjects are required to conduct fifty-four rounds of data collection (three operational scenarios x
three smartphones x two rounds for each subject x three types of passcodes), and to wait at least one
day between two rounds (ensuring that some day-to-day variation existed within our data). In each
round of data collection, subjects are asked to type the passcode about 50 times on the number pad
(under the application of smartphone unlocking). All 48 subjects remained in the study, and each
subject contributed around 2,700 passcode-input samples (mean = 2721, median = 2758, min = 2601,
max = 2822, and s.d. = 33.7). Subjects took between 90 and 120 days to complete the data collection,
and the final dataset contains 129,621 authentication samples from 48 subjects. During data collection,
when subjects input a passcode on the touchscreen, for each number of the passcode, the application
records the tapped number, the timestamps of action starting (ACTION-DOWN) and action ending
(ACTION-UP) (i.e., the down and up of a passcode-input action), and the data sequences of motion
sensors during the period of ACTION-DOWN and ACTION-UP for the passcode-input action. For each
motion sensor, three data sequences are collected to represent the data from three axes of the sensor.

Subjects are told that if they needed a break or needed to stretch their fingers, they were to do so
after they have completed a task. This is intended to prevent artificially inconsistent passcode-input
actions in the middle of a task. Subjects are admonished to focus on the task, as if they are unlocking
their own smartphones, and to avoid distractions while the task is in progress. Besides, in the
table-hold-input scenario, we observe that all subjects tap with her/his dominant hand. While in other
two scenarios, we find that all the subjects hold the devices with one hand and type with the other
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hand, and the smartphone is in the portrait mode. In addition, to trigger the interaction in a natural
way, the subjects are explained the purpose of the study after finishing all data collection.

5. Motion-Sensor Behavior Analysis
5.1. Preprocessing

5.1.1. Gravity Filtering

Generally, raw motion-sensor data include the gravity component, which may make the obtained
sensor data hard to accurately reflect the posture and motion change of smartphones. Since researchers
usually consider gravity component as a constant component and take motion data as alternating
components [32], the filtering technique is employed to remove the gravity components. Here we
employ the Kalman filter method, which is a recursive way of estimating optimal value of state
variables, to obtain an unbiased estimated value of motion-sensor data. Specifically, the gravitational
component embedded in raw sensor data can be reduced in each of three axes (X, Y, Z) of the sensors
(i.e., accelerometer and gyroscope sensors) by following steps:

Step 1: We compute predicted value of sensor data P at time ¢ by using estimated value at time ¢—1:
P(tt—1)=A-Pt—1/t—1)+B-U(t) 1)

where P(t1t—1)=(X(t1t-1), Y(¢t1t—1), Z(t|1t—-1)} is the predicted value of sensor data at three

smartphone axes, U(t) is the control value at time ¢, and A, B are the coefficient matrices.

Step 2: We calculate deviation D of the predicted value at time :
D(tt—1)=A-D(t—-1/t-1)- A7+ Q )
where A’ is the transposed matrix of A, Q is the process deviation.

Step 3: We obtain unbiased estimated value of sensor data P(t | t) at time t based on the measured
value Z(t) and the predicted value P(t | t—1), and also update the deviation of P(t|t):

P(t|t) = P(t|t — 1) + Kg(t) - (Z(t) — H - P(t]t — 1))

D(t|t—1)-Hr
KW = D —1) A+ R ©)

D(t|t) = (I — Kg(t) - H) - D(t|t — 1)

where Kg is the Kalman Gain coefficient, R is the deviation of the measurement, and H is the
system matrix.

5.1.2. Wavelet Denoising

In addition, sensor signals usually inevitably contain non-stationary noise which makes the
signals exhibit multiple peaks. This would directly lower the accuracy of feature modeling and user
authentication. Thus we apply a wavelet-based denoising method to mitigate the signal mutation
instead of traditional Fourier analysis method, since the later one converts a signal in the frequency
domain at a certain time point, but the mutation and noise usually affect the entire spectrum of
the signal. Consider how the wavelet-based denoising method is applied to mitigate the effect of
non-stationary noise in sensor signals:

Step 1: We select suitable wavelet functions to decompose the signals into N levels and extract
low-frequency coefficients of every level and high-frequency coefficient of the Nth level.

Step 2: We employ the threshold analysis to filter decomposed signals.

Step 3: We use an inverse wavelet transform on the filtered-decomposed signals to reconstruct the
original signal.
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5.2. Sensor-Behavior Features

The sensor data cannot be used directly by a classifier for user authentication. Instead, behavior
features are extracted from these data. For each passcode-input action, we extract motion-sensor
behavior data and depict them by two feature sets: descriptive features and intensive features.
Descriptive features characterize the motion patterns of passcode-input actions with meaningful
statistics. For instance, the range of a y-axis gravity series indicates the angle of smartphone rotation
around y-axis, which can differentiate users with different rotation angles around that axis. Intensive
features depict the intensity and complexity of passcode-input actions. For example, the energy of
a sensor-data sequence is calculated by summing up the squared magnitudes of FFT (Fast Fourier
Transform) components, which is a metric of action intensity; the entropy of a sensor-data sequence is
calculated with Shannon entropy, which measures the complexity of a passcode-input action. Some of
these features are different from the conventional features, such as energy and entropy of a sensor-data
sequence, which can characterize different passcode-input actions in an accurate and robust manner.
For each input action of a passcode, there are a total of 96 features (6 data sequences x 16 features for
each data sequence), and these features are taken together to form a feature vector to characterize the
input action. Table 2 summarizes the extracted features from each data sequence in this study (with
feature dimensionality in parentheses).

Table 2. Motion-sensor behavior features for each input action (with feature dimension in parentheses).

Category Feature Description
Mean Mean value of overall time for a sensor-data sequence (1).
Minimum Minimum value of overall time for a sensor-data sequence (1).
Maximum Maximum value of overall time for a sensor-data sequence (1).
o Range Range of overall time for a sensor-data sequence (1).
Descriptive Variance Variance of overall time for a sensor-data sequence (1).
quence
Features Kurtosis Width of peak for a sensor-data sequence (1).
Skewness Orientation of peak for a sensor-data sequence (1).
Quantiles Quantiles of a sensor-data sequence from 30% to 80% by step 10% (6).
Cross-mean Rate ~ Degree of fluctuation for a sensor-data sequence (1).
Intensive Energy Intensity of a sensor-data sequence (1).
Features Entropy Dispersion of spectral distribution for a sensor-data sequence (1).

5.3. Empirical Feature Study

The underlying assumption that motion-sensor behavior can be used as a source for authentication
is that the change of motion-sensor data by users’ passcode-input actions should have strong
dependency on their identities, which also means sensor features can be used to discriminate among
different users. Thus we compute a metric of informativeness [33] for each of sensor-behavior features
to examine how users’ identities differ with respect to t features. We define this metric as the relative
mutual information between the feature f; and a user’s identity D;:

_L(sDy) _H(D) -HDjlf) _,  H(Djlf)

(4)

UPTTHD) T HD) H(D)
where [ (f;; D;) refers to the mutual information between feature f; and the identity D;, H (f;) and
H (Dj) are the entropies of the feature and the identity, respectively. For each feature, this metric is
calculated as a value between 0 and 1, where 0 means that the feature carries no identity information,
and increases as the correlation between the feature and the identity becomes stronger, in which 1
means the feature determines the identity.

To calculate I (f;; Dj), we first convert the feature to discrete variables. Specifically, we use 100
equally spaced bins to span the feature with the range from the 10% quantiles to 90% quantiles.
Then we compute the mutual information between the feature and the identity using the Equation
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(4). The above process is then repeated for all pairs of the features and users’ identities. Here the
mutual information are computed over 43,200 passcode-input samples from 48 subjects, and we set a
threshold as 0.5, in which case the features with I ( fis D]-) > 0.5 were selected.

The analysis results of sensor-behavior features with respect to users’ identities are presented
in Table 3. Due to space limitations, here we present the 20 top-performing features, which are
rank-ordered from best to worst. We can observe that the sensor-behavior features appear to be good
metrics since their relative mutual information is much larger than 0.5. This means that these features
are good in distinguishing data samples from different users. In addition, the most informative features
are energy and entropy of acceleration data in y and z coordinates. The energy features provide more
informativeness than the entropy features, which is probably due to the fact that the energy features
measure the intensity of a passcode-input action. We also find that some descriptive statistics of
sensor-data sequences, like mean, minimum, maximum, variance, and range, exhibit a certain degree
of discriminability, but kurtosis, skewness and cross-mean rate are not as qualified. This may be
due to the reason that these features are sensitive to the position of passcode-input actions, and the
sensor-data sequence of different passcode-input actions may have differentiable mean values, but
generate similar variances (e.g., button ‘4" and ‘6’), thus may make it hard to distinguish among users.

Table 3. Relative mutual information for sensor-behavior features.

No. Sensor-Behavior Mutua.l No. Sensor-Behavior Features Mutua.l
Features Information Information

1 Energy of ‘ticceler.ometer 0.8550 1 Max of accelerometer data in 0.8178
data in y-axis x-axis

2 Entropy of .acceler.ometer 0.8516 12 Variance of.accelerometer 0.8119
data in y-axis data in y-axis

3 Energy of écceler.ometer 0.8423 13 Range of ercceler(.)meter data 0.8032
data in z-axis in x-axis

4 Entropy of .acceleltometer 0.8415 14 Range of ;%cceler(.)meter data 0.8023
data in z-axis in y-axis

5 Energy qf gyroscope 0.8403 15 Mean of gyroscope data in 0.7973
data in y-axis x-axis

6 Energy o.f gyroscope 0.8337 16 Mean of gyroscope data in 0.7955
data in z-axis y-axis

7 Entropy Qf gyroscope 0.8289 17 Min of gyroscope data in 0.7911
data in y-axis x-axis

8 Entropy c.)f gyroscope 0.8277 18 Max of gyroscope data in 0.7889
data in z-axis x-axis

9 Mean of a.ccelero.meter 0.819% 19 Range of gyroscope data in 07888
data in x-axis y-axis

10 Min of ac.celeror.neter 0.8187 20 Variance Qf gyroscope data 0.7756
data in z-axis in z-axis

It should be noted that these rankings do not mean that few top-ranked sensor-behavior features
constitute the most informative collection of the features. It is mostly considered that one can gain
more information by combining the features that complement each other. Here we select the features
with the relative mutual information larger than 0.5 for our authentication task.

6. Authentication Architecture

As shown in Figure 1, our sensor-based smartphone authentication approach mainly consists
of five modules-data recorder, data preprocessor, user authentication model, and decision maker.
The design of the first three components is straightforward. The main task of the recorder is to record
users’ raw motion-sensor data when inputting passcodes on smartphones, while the preprocessor
module obtains the stable and clean sensor information and feature-construction module extracts
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behavioral features. The focus of this section is on the design of the classifier, user authentication
model, and that of the decision maker.

Training User Authentication Model

feature set

Recorder Preprocessor Feature Classifier Authentication
Construction Implementation Model

Gravity
Filtering

Descriptive

Training Data
Features

Decision Maker

O-D

Classification User Authentication

Wavelet
Denoising

Intensive
Features

v
|

Authenticating Datal
Feature vector

Figure 1. System architecture of our sensor-based smartphone authentication approach.

6.1. Classifier Implementation

Consider the scenario in Section 3, the proposed authentication approach refer to a two-class
classification problem (legitimate subject vs. impostors), but usually only data from the legitimate subject
(i.e., owner of a smartphone) are available for training the authentication model, and the data from
impostors is very limited. Therefore, a more appropriate solution in practice is to train the authentication
model on the data only from the legitimate user, and then use this model to detect impostors. Thus here
we considered the authentication task as a one-class classification or novelty detection problem [34].

6.1.1. Classifier 1: One-Class Support Vector Machine

A one-class Support Vector Machine (SVM) classifier uses a kernel function to map data into a
high dimensional space, and considers the origin as only sample from other classes. In the training
stage, the classifier is established by using the training vectors with the RBF kernel function, and the
SVM parameter and kernel parameter are set to 0.06 and 0.02, respectively. In the testing stage, the
classifier projects the test vector onto the same high-dimensional space, and computes the distance
between the test vector and the linear separator as the classification score.

6.1.2. Classifier 2: Neural Network

A single hidden layer neural network is used in this evaluation. In the training phase, a network
is built with p input nodes, one output node, and (2p + 1) hidden nodes. The network weights are
randomly initialized between 0 and 1. The classifier is trained to produce +1.0 on the output node for
training feature samples. We train the classifier for 1000 epochs using a learning rate of 0.001. In the
testing phase, the test sample is run through the network, and the output of the network is recorded as
the classification score.

6.1.3. Classifier 3: Nearest Neighbor

A nearest-neighbor classifier models a user’s motion-sensor behavior based on the assumption
that the new feature samples from the user will resemble one or more of those in the training data.
In the training phase, the classifier estimates the covariance matrix of training feature samples, and the
nearest-neighbor parameter k is set as 3 after comparative studies. In the testing phase, the classifier
calculates Mahalanobis distances, and the average distance from the new sample to the nearest samples
is used as the classification score.

6.2. Authentication Model

The motion-sensor data is collected for the legitimate user whose behavior we are trying to model.
Here we build the authentication model for each type of passcode as follows:
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Step 1: For a certain type of passcode, we extract sensor-behavior features of every tapped action in
that passcode from the training data.

Step 2: We combine the sensor-behavior features together to form a feature vector to represent each
passcode sample.

Step 3: We take these vectors as the training set to train our classifier, to obtain the authentication
model for this type of passcode.

6.3. Decision Maker

After building the authentication model, we apply this model to detect whether the current
user’s sensor behavior is normal or anomalous. During the authentication process, a legitimate user’s
behavior profile, generated from the sensor data in the training phase, is compared against current
user’s behavior. If there is a significant difference between these two profiles, the current behavior
is considered as an anomalous one. Specifically, we first take the feature vector of a testing passcode
sample to the authentication model for acquiring the classification score. Then a threshold is set to
determine the authentication decision: the classification score over the threshold indicates an impostor,
while the classification score under the threshold indicates a true user.

7. Evaluation Methodology

7.1. Training and Testing Procedure

Considering the scenario as mentioned in Section 6.1, we started by designating one of our
48 subjects as the legitimate user, and the rest as impostors. We train and test each classifier as follows:

Step 1: We train the classifier on a randomly-selected half of the feature samples from the legitimate
user, to build a profile of the legitimate user.

Step 2: We test the ability of the classifier to recognize the legitimate user by calculating classification
scores on the remaining half of feature samples from the user. We record these scores assigned
to each sample as user scores.

Step 3: We test the ability of the classifier to recognize the impostors by calculating classification scores
on the feature samples from all impostors. We record these scores assigned to each sample as
impostor scores.

This process is then repeated, designating each of other subjects as the legitimate user in turn.
Since we use a random sampling to divide the data into training and testing sets, we repeat the above
procedure twenty times to account for the effect of this randomness, each time with an independent
draw from the entire dataset.

7.2. Calculating Classifier Performance

To convert these classification scores into aggregate measures of classifier performance, we
calculate the false-acceptance rate (FAR) and false-rejection rate (FRR). In our evaluation, the FAR is
computed as the ratio between the number of false acceptances and the number of test samples from
impostors; the FRR is computed as the ratio between the number of false rejections and the number of
test samples from legitimate users. We also brought FAR and FRR together to generate a graphical
summary of performance known as ROC curve [35].

Whether or not a feature sample produces an alarm depends on how the threshold on classification
score is chosen. A classification score over the threshold indicates a legitimate user, while a score
under the threshold indicates an impostor. In our evaluation, threshold is set to be a variable ranging
from [—1, 1] to obtain the ROC curve. We choose the threshold to be the default value of 0.0 to calculate
the FAR and FRR, and we also compute equal-error rate (EER) at the sensitivity of the classifier where
FAR equals FRR.



Sensors 2016, 16, 345 12 of 21

8. Experiments and Analysis

This section presents an objective evaluation on the effectiveness of the proposed approach, in
terms of accuracy with various classifiers and across various operational scenarios, usability with
respect to passcode length, sensitivity with respect to training sample size, scalability with respect to
the number of users, and flexibility with respect to smartphone screen size.

8.1. Smartphone Authentication across Various Operational Scenarios

8.1.1. Method

In this evaluation, we conduct a user authentication experiment to evaluate our proposed
approach across three different operational scenarios (as discussed in Section 4.1). In each scenario, we
have about 43,200 passcode samples from 48 subjects, and use a 5-digit passcode and Samsung N7100
as the test bed. Besides, we use the evaluation methodology in Section 7 to perform the authentication
experiment, and apply each of three classifiers in three evaluations, with the inputs respectively set to
be the feature spaces obtained from three operational scenarios.

8.1.2. Results and Analysis

Figure 2 and Table 4 show the ROC curves and average FARs and FRRs of the authentication task
across different operational scenarios, with standard deviations in parentheses. Each panel displays
the authentication results by using each of three classifiers. The best authentication error rates (in
terms of both FARs and FRRs) in every operational scenario are less than 12%, which indicate that
there do exists informative information in motion-sensor behavior for smartphone authentication. The
hand-hold-input scenario has the best performance among the three scenarios, and the performance
in table-hold-input scenario is relatively better than that in hand-hold-walk scenarios. Specifically,
the best performance in hand-hold-input scenario has a FAR of 5.01% and a FRR of 6.85%, obtained
by the one-class SVM classifier. This result is very promising, and also is competitive with the best
results previously reported [25,26]. With incremental improvements and investigation on its security
and usability (e.g., outlier handling), it seems possible that motion-sensor behavior could be used as,
at least, a source for an auxiliary authentication technique, such as an enhancement for conventional
pin-based or pattern-based authentication mechanisms. Besides, in table-hold-input scenario, since
the smartphone is placed horizontally on the desktop and the support force of desktop is uniformly
distributed over the back of the screen, the smartphone would generate a smaller posture change
than that in hand-hold-input scenario when inputting the passcode, which may lead to a decline of
authentication accuracy. While in hand-hold-walk scenario, the sensor data may get affected by people
moving, which would introduce additional noise into sensor data. This may be the reason why the
authentication error rates in this scenario are worse than those in other two scenarios.
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Figure 2. ROC curves for three different operational scenarios by using three types of classifiers:
(a) support vector machine, (b) neural network, and (c) k-nearest neighbor.
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Table 4. FARs and FRRs in three different operational scenarios using three different classifiers (with
standard deviation in parentheses).

Hand-Hold-Input Scenario  Table-Hold-Input Scenario  Hand-Hold-Walk Scenario
FAR (%) FRR (%) FAR (%) FRR (%) FAR (%) FRR (%)

One-Class SVM 501(377)  685(423)  7.85(601)  927(682)  1095(8.67)  13.12(9.87)
Neural Network 779 (554)  9.15(658)  10.83(7.78)  11.87(8.97)  13.42(10.11) 15.13(10.02)
k-Nearest Neighbor ~ 10.13 (7.45)  12.25(9.12)  13.11(9.91) 1643 (10.15) 1823 (1251) 21.32(13.97)

Classifier

The one-class SVM classifier has a better performance (on both FAR, FRR and standard deviation)
than all other classifiers. One-class SVM can well capture the density and modality of a hypersphere of
normal behavior, and its kernel functions and support vectors enable it to detect outliers in the case
where the data is not linearly separable and to find informative features with a small training set [36].
While the worst is by nearest neighbor classifier, this could be due to the lack of self-learning ability
compared with other methods in this study.

8.1.3. System Implementation and Overhead Analysis

We successfully implement an application based on our approach into a smartphone operating
system. The smartphone (testbed) is a Samsung N7100 with 5.5-inch screen, 1.6-GHz quad-core
processor, and 2 GB of RAM, which runs an Android 5.0 operating system. The application replaces
the PIN-based unlocking application, and runs as a two-factor authentication mechanism. Whenever
the user types a passcode for unlocking the smartphone, the application monitors and records (1) the
passcode-input operations; (2) the motion-sensor data (i.e., accelerometer and gyroscope) during the
passcode-input actions; and (3) the timestamps of the actions. Then the application first checks the
typed passcode-string, and if it matches, the application computes the authentication score based on
the sensor-behavior features. Kernel APIs’ calls are then utilized to authorize or reject the smartphone
unlocking accordingly.

Besides, we analyze the system performance and overhead of our implementation in terms of CPU
cost, memory cost, and battery usage. We first record the computational cost of CPU in the modules of
data preprocessor, feature construction, authentication model, and decision maker. For each legitimate
user in the training stage, the data preprocessor and feature construction modules on 50 passcode
samples (with six digits) take about 3.82 s, and the authentication model takes only 5.12 s to build the
model. Then in the testing stage, the first two modules on a passcode (with 6 digits) take about 301 ms,
and the decision maker module takes about 112 ms to make the authentication decision. We then
calculate the memory cost by using an Android debugging tool Adb [37]. We find the application
consumes about 2 MB of memory resource, and an average of about 0.07 KB is consumed for every
testing sample. Besides, another issue to concern is the space for storing user profiles. In our system,
sensor feature template of a user consumes 0.19 KB, which is relatively light on a smartphone. We also
monitor the battery usage by using the embedded Android APIs (i.e., PowerManagerService) on 20
users for 7 days each. The average per-day battery consumption of the application is less than 1.7%
which is relatively negligible as compared to other everyday-used applications (e.g., the web browser
which consumes about 30% of battery in our observation). Thus we can observe that the system
overheads of our approach are minor.

8.2. Usability to Passcode Length

8.2.1. Method

Passcode length in smartphone authentication corresponds to the number of input actions required
to form a data sample. The length plays an important role in smartphone authentication since it
represents the tradeoff between security (authentication accuracy) and usability (authentication time).
The shorter passcode length indicates better user acceptability; however, short passcode length usually
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means small amounts of sensor data for authentication, which may lead to low authentication accuracy.
To examine the effect of passcode length on authentication performance and to analyze the usability,
we used three datasets with different passcode lengths (which are set to be 4, 5, and 6 as discussed
in Section 4.3), and trained and tested the authentication model in hand-hold-input scenario using
one-class SVM classifier. Besides, we used the Samsung N7100 as the test bed, and the evaluation
methodology is same as the one discussed in Section 7. In this way, we considered the authentication
performance as a function of passcode length, so that authentication performance at different passcode
length can be evaluated and compared.

8.2.2. Results and Analysis

Figure 3 and Table 5 show the ROC curves and average FARs and FRRs at different passcode
lengths. The table also includes average authentication time which corresponds to the passcode length.
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Figure 3. ROC curves at different passcode lengths.

Table 5. FARs and FRRs for Different Passcode Lengths (with standard deviation in parentheses).

e 4-Digit Passcode 5-Digit Passcode 6-Digit Passcode
Classifier
FAR (%) FRR (%) FAR (%) FRR (%) FAR (%) FRR (%)
One-Class SVM 8.69 (6.21) 9.47(6.92) 5.01(3.77) 6.85(4.23) 3.92(2.03) 4.97 (2.87)
Authentication Time 1.52s 2.89s 33ls

The results show a trend that the authentication accuracies become better as passcode length
increases. The FAR and FRR obtained at the passcode length of 4 is 8.69% and 9.47%, with an average
authentication time around 1.52 s. As the passcode length increases to 6, the FAR and FRR reduce
to 3.92% and 4.97%. Although long passcode length could result in high authentication accuracy,
correspondingky requires a long authentication time, which may affect the usability. Thus a tradeoff
should be made between the accuracy and the time required to make the authentication decision,
especially in actual deployment scenarios. Besides, login times of typical passwords for authentication
on computers are usually well below 10 s [38]. We note that, in our study, the authentication time
of 2.89 s (corresponding to a passcode length of five digits) may be acceptable for smartphone
authentication, and the FAR of 5.01% and FRR of 6.85% appears to be sufficient for practical application,
especially considering sensor behavior as a second factor for smartphone authentication. In addition,
the difference between the standard deviations of FRRs and FARs for two passcode lengths becomes
smaller when passcode length increases, which indicates that with an increase in passcode length,
authentication accuracy becomes more robust and stable.
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8.3. Sensitivity to Training Sample Size

8.3.1. Method

Training sample size refers to the number of data samples in the training set for building the
authentication model. If training sample size is too large, the training process will be unrealistically
long and computationally expensive. For another, if training samples are not sufficient, there will
have a significant difference between training error and generalization error. To investigate the effect
of training sample size on authentication performance, we set the training sample size to 10, 20, 30,
50, and 70, and employ one-class SVM classifier to conduct authentication tasks in hand-hold-input
scenario. We use the Samsung N7100 and a 5-digit passcode as the test bed, and the evaluation
methodology is same to the one in Section 7.

8.3.2. Results and Analysis

Figure 4 and Table 6 show ROC curves and average FARs and FRRs against variable training
sample size, to illustrate the sensitivity of the proposed approach to training sample size.
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Figure 4. ROC curves against different training data sizes.

Table 6. FARs and FRRs at Different Training Data Size (with standard deviation in parentheses).

Training Data Size FAR (%) FRR (%)
10 13.78 (8.67) 16.13 (11.34)
20 9.02 (5.83) 10.33 (6.75)
30 6.97 (4.67) 8.79 (5.53)
50 5.01 (3.77) 6.85 (4.23)
70 4.13 (2.83) 5.27 (3.81)

It is as expected that the authentication accuracy for small training sample size is poor, but
improves as training sample size increases. Specifically, with 20 samples in the training set, the FAR
and FRR are high, up to 9.02% and 10.33%; while with 50 samples in the training set, the FAR and FRR
are reduced by about 50%, down to 5.01% and 6.85%. Two conclusions may be drawn from the above
observations: (1) Training sample size is important and does have an effect on authentication accuracy;
(2) There is a steady increase of authentication performance as training sample size increases.

It can also be seen that if more than 50 samples are used for training, little performance improvement
is gained by increasing training sample size, and the accuracy gradually becomes saturated. This result
shows that authentication accuracy may be close to optimum if about 50 training samples are used.
However, other related work showed that this may be not the case if domain-specific information is
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exploited in the learning and feature extraction process [39]. It should be noted that a large training dataset
usually means a long training process, which may limit its applicability in practice. Thus a balance should
be struck between authentication performance and applicability for this technique.

8.4. Scalability to User Space

8.4.1. Method

Scalability of user space in sensor-based smartphone authentication refers to the ability of
sensor-behavior features being enlarged to accommodate a growth of user space. It is usually true that
with an increase in size of user space, there is a higher chance that two users will have similar profiles.
Thus one may wonder how the space of profiles fills in as the number of users increases, and further
investigate the scalability of our approach to the size of user space. To achieve this goal, we set the size
of user space to be a variable ranging from 2 to 48, and employ one-class SVM classifier to conduct
the authentication experiment using the evaluation methodology in Section 7. Specifically, we use the
Samsung N7100 and 5-digit passcode in the hand-hold-input scenario as the test bed, and for each
such number, we repeat the evaluation twenty times with a randomly selected collection of users.

8.4.2. Results and Analysis

The EERs with different sizes of user space, together with their 95% confidence intervals, are
presented in Figure 5. The results show the authentication error rates increase as the size of the user
space becomes larger, especially for small user space sizes.

Specifically, there is a significant increase in the authentication error rate in the interval between
two users and 25 users. This is as expected, since the larger the number of legitimate users usually
means the higher the probability that two legitimate users have similar profiles. Also, we observe that
when the user size is larger than about 31 users, the authentication error rates become relatively stable,
and only small fluctuations with the error range are apparent. These results indicate that the user size
in our analysis should be (at least) larger than 31, in which case the influence of user space may be
minimal. These results also indicate that our subject size is located in a range where the influence
could be negligible. The confidence interval is computed as the mean plus-or-minus 1.96 standard
errors. The standard error of the mean is estimated as (¢/+/n), where o is the standard deviation of
the EERs of 48 subjects, and n is 48. The 1.96 multiplier is the quantile of the normal distribution
corresponding to a 95% interval [40]. Since the confidence interval becomes gradually stable as the
user space exceeds 31, this further demonstrates the authentication performance become relatively
stable, and our approach is robust to the increasing user space.
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Figure 5. ROC curves against different training data sizes.
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8.5. Flexibility to Smartphone Screen Size

8.5.1. Method

Authentication accuracy may be influenced by different sizes of smartphone screen. Intuitively,
the area of an input action with a smaller screen size is expected to decreasing the uniqueness of
the input action, which may affect authentication accuracy. Here we use three smartphones with
different screen sizes: a Huawei Mate7 with a 6.1-inch screen, a Samsung N7100 with a 5.5-inch screen,
and a HongMi 1s with a 4.7-inch screen. We then employed one-class SVM classifier to conduct the
user authentication task across these smartphones in a hand-hold-input scenario. We use the 5-digit
passcode for training and testing the authentication model, and the evaluation methodology is similar
to the one in Section 7.

8.5.2. Results and Analysis

Figure 6 and Table 7 show ROC curves and average FARs and FRRs against three different
smartphone screen sizes.
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Figure 6. ROC curves at different smartphone screen sizes.

Table 7. FARs and FRRs for Different Smartphone Screen Sizes (with standard deviation in parentheses).

HongMi 1S (4.1 inches) Samsung N7100 (5.5 inches) = Huawei Mate7 (6.1 inches)
FAR (%) FRR (%) FAR (%) FRR (%) FAR (%) FRR (%)
One-Class SVM 9.74 (6.13) 11.09 (7.92) 5.01 (3.77) 6.85 (4.23) 4.53 (2.91) 5.89 (3.97)

Classifier

The smartphones with larger screen sizes (Samsung N7100 and Huawei Mate 7) have much better
performance than the smartphone with a smaller screen size (HongMi 1S). This is probably due to the
reason that input actions on a larger area have better uniqueness and appear more robust than the ones
with smaller areas. Specifically, the FAR and FRR with the screen size of 4.7 inches (i.e., HongMi 15)
are 9.74% and 11.09%; while the screen size enlarges to 6.1 inches (i.e., Huawei Mate?7), the FAR and
FRR reduce to 4.53% and 5.89%, and the corresponding ROC curve is obviously lower.

The figure also reveals that at some points, the performance of Samsung N7100 is a little superior
to that of the Huawei Mate7 (e.g., the red-circle line is lower than the green-star line at some points in
the subfigure). The cause of this issue is not obvious; it could be an artifact of our smartphones” motion
characteristics and would disappear with different or more smartphone screen sizes. Besides, we try
to take smartphone screen size as the variable of interest in this evaluation, but we note that other
factors (e.g., sensor types and qualities across different smartphones) might obscure or distort our
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results. It is notable that the results here only provide preliminary comparative results and should not
be concluded that the performance of our proposed approach on larger screen sizes is always better
than that on smaller ones. Further comparisons and analyses on both controlled and realistic datasets
would be necessary to determine whether such factors actually do confound the experiments, but the
existence of these factors does suggest that the effects of the factors like screen size are not always easy
to predict.

9. Discussion and Conclusions

This work is the first study of evaluating and investigating motion-sensor data for smartphone
authentication across various operational scenarios and different types of smartphones. Extensive
experiments examine the reliability and practicability of the proposed approach, and show that the
approach can achieve a FAR of 3.92% and FRR of 4.97% in some cases. However, this result is still less
than the European standard for commercial biometric technology (which requiring a FAR of 0.001%
and a FRR of 1% [41]). Thus, further progress is needed before we can depend solely on motion-sensor
behavior as a standalone authentication mechanism on smartphones. But these findings do suggest that
sensory data could provide useful authentication information, and this level of accuracy approaches
sufficiency for two-factor authentication for passwords or PIN numbers on smartphones.

We analyze the effect of passcode length on authentication performance. The authentication
accuracies become better as passcode length increases, and the reduced standard deviations indicate
better robustness. However, we note that the time needed for completing an authentication increase
with the increase of passcode length, which means a balance need to be made between authentication
accuracy and authentication time. One possible way of improving this problem is to employ some
newly developed tactics from “streaming classification” algorithms [42,43], by which we may be able
to use less data to make authentication decisions with acceptable levels of accuracy.

We examine the effect of training data size on smartphone authentication performance.
The authentication accuracies improve as the training data size increases. However, a large training
sample size will usually result in long training process for users and relatively-high computational
complexity. In our evaluation, the FAR and FRR are less than about 9% when using 30 samples for
model training, which indicates this technique supports the usage of a relatively small set of training
data to authenticate users. One possible way to further decrease training data size while keeping
accuracy may be to reduce the noise in raw data for obtaining higher quality data, which might build
an accurate authentication model over smaller amounts of training data.

Another important issue about our approach concerns its scalability. We explore the authentication
accuracy against different sizes of user space. The EER increases as the user space becomes larger,
especially for the small sizes. There also observes the EER become relatively stable when the user size
is larger than a certain number of users, and only small fluctuations with the error range are apparent.
These results present that how the space of user profiles fills in as the number of users increases,
and also demonstrate the influence of user space on sensor-based smartphone authentication may be
minimal when the user space exceeds a certain size.

We explored the proposed approach across different types of smartphone screen sizes.
The authentication with a larger screen size exhibits better accuracy than those with smaller screen
sizes. This may be due to the fact that input actions on a larger area have better uniqueness and
robustness than the ones on smaller areas. Currently, the mainstream smartphones have screen size
around 5 inches; while in our evaluation, the authentication on the smartphones with screen sizes
around 5 inches have a FAR of 5.01% and a FRR of 6.85%, which further presents a proof-of-concept
analysis to demonstrate the effectiveness of this technique.

For authenticating a user’s identity through the motion-sensor behavior, one important thing is
that the registration and authentication process should take place in a secure environment, to avoid
impostors maliciously manipulating users’ profile data. In our system implementation, we consider a
simple way to secure the profile data by storing it in an encrypted domain (using standard encryption
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techniques of AES), but this may lead to the risk of leaving the profile data exposed during each
authentication. A securer way is to employ a transformation function to the profile data [44], and only
store the transformed profile data. Besides, during the profile generating phase, users’ identity should
be checked in some alternative way, and the production of sensor-behavior samples should be limited
to a few days, not to weeks or months.

When behavior-based techniques are utilized for user authentication, it may raise concerns about
user’s privacy. At least users should be aware that they are under observation, and should also
understand that every security policy must imply a limitation of their privacy in some way [45].
Compared with other behavior-based authentication methods (e.g., keystroke dynamics may record
users’ passwords and some sensitive textual information), the motion-sensor behavior analysis records
the information of a smartphone’s posture and gesture change when the user inputs passcode on
smartphone, and will have to be blurred for the privacy concern. The recorded sensor data would be
stored in terms of sensor features and the corresponding timing information, and are made available
exclusively to authentication process, which giving away little information about users” smartphone
activities and credentials.

There is still much space to improve the performance of sensor-based smartphone authentication.
One way may be to analyze variability and noise in motion-sensor behavior, and then to develop
effective methods to mitigate the impact of these factors, which are also critical to extract stable and
discriminative behavior features. Other ways may be to clean the raw senor data of extraneous noise
for obtaining high quality data, or to establish sophisticated pattern classifiers (e.g., the ensemble
approach) that are robust to variable behavior data.
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