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Abstract: This study investigated the permeation behaviors of n-hexane and 2-methylpentane
through two-types of silicalite-1 membranes that have different pore-connectivity. The permeation
mechanisms of these hydrocarbons were able to be explained by the adsorption–diffusion model.
In addition, the fluxes through silicalite-1 membranes could be expressed by the modified Fick’s
first law. The hydrocarbon fluxes through S-1S with better pore-connectivity were ca. 3–20 times
larger than those through S-1M with poor pore-connectivity. For these membranes with different
pore-connectivity, the activation energy of diffusion of n-hexane was 17.5 kJ mol−1 for the membrane
with better pore-connectivity and 18.0 kJ mol−1 for the membrane with poorer pore-connectivity,
whereas for 2-methylpentane it was 17.9 and 33.0 kJ mol−1, respectively. We concluded that the
pore-connectivity in silicalite-1 membrane significantly influences the molecular diffusivities.

Keywords: silicalite-1; membrane; separation; diffusion; adsorption; micropore; connectivity

1. Introduction

Zeolite is a promising membrane material for hydrocarbon separations owing to its
unique adsorption and molecular-sieving property. MFI-type zeolite membranes exhibit
superior separation performances against hydrocarbon mixtures, such as butane isomer [1],
hexane isomer [2] and xylene isomer [3–5]. Improvement of the permeation property is a
big challenge for the development of the zeolite membrane, because hydrocarbon fluxes
through zeolite membranes are too still low for practical use.

It is well-known that the permeation performance of the zeolite membrane is strongly
affected by the membrane structure, such as the thickness and orientation of crystals.
Previously, some strategies for flux improvement have been invented as introduced in part
I. Attempts to control crystal orientations by seeding conditions and secondary growth
conditions have often been made [6–10]. Further, unique methods were proposed to reduce
membrane thickness [11,12].

We have focused our attention on grain boundaries that are formed by the collision
of crystals in the course of the formation of the zeolite membrane. In part I, we prepared
two types of silicalite-1 membranes and carefully investigated the microstructures of these
membranes by using nano-permporometry, adsorption tests and permeation tests [13]. As
a result, we concluded that the micropore volumes and effective pore size were strongly
influenced by the existence of grain boundaries across the direction of molecular perme-
ation. In addition, we defined pore-connectivity based on the results of adsorption tests.
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The pore-connectivity is the percentage of the micropores that are not narrowed and/or
blocked, but that maintain their original pore size.

The study of adsorption and diffusion in a zeolite membrane is very important to
understand the permeation and separation properties. The permeation flux of a molecule
through a zeolite membrane was generally determined by the adsorption and the diffusion
properties in the membrane [14–16]. Bakker et al. reported that gas permeation through
their silicalite-1 membrane can be described with the enthalpy of adsorption and the
activation energy for diffusion [14]. Nomura et al. also explained the transport mechanism
of ethanol/water mixture through their silicalite-1 membrane with the adsorption–diffusion
model [15]. While the adsorption properties of hydrocarbons in our silicalite-1 membranes
were evaluated in part I, the effect of pore-connectivity on the diffusivity of a molecule is
still an open question.

In this study, the permeation properties of C6 hydrocarbons were evaluated circum-
stantially in wide ranges of membrane temperatures and partial pressures. The two types
of silicalite-1 membranes that have pore-connectivity of 60 and 47% were used for com-
parison [13]. The permeation properties were analyzed based on the adsorption–diffusion
model, in order to discuss the effect of pore-connectivity on the diffusivity of hydrocarbons
in the silicalite-1 membranes.

2. Materials and Methods
2.1. Membrane Preparation

Two types of silicalite-1 membranes (membrane S-1S and S-1M) were prepared on an
outer surface of a tubular α-alumina support (i.d. = 7.0 mm, o.d. = 10 mm, length = 30 mm,
average pore size = 150 nm, NORITAKE Ltd., Nagoya, Japan) by a secondary growth method.

The synthesis solution of 10SiO2:1.6TPAOH:440H2O:40EtOH:0.04Na2O was hydrother-
mally treated at 373 K for 24 h to obtain the seed crystals for S-1S. Seed crystals were
supported on a tubular support by a dip coating method. A seeded support was immersed
in synthesis solution with the molar composition of 10SiO2:1.2TPAOH:660H2O:80EtOH,
and then hydrothermal treatment was carried out at 373 K for 7 days to form a membrane,
S-1S. S-1M was prepared in essentially the same manner as S-1S. The molar composition of
the synthesis solution and the conditions of hydrothermal treatment were modified. More
detailed descriptions of synthesis procedures of S-1S and S-1M can be found in part I.

S-1S and S-1M are silicalite-1 membranes with a single-layer crystal and a multi-layer
crystal, respectively. Wedge-shaped crystals were present on the support surface with a
thickness of ca. 4.0 µm in membrane S-1S. In contrast, membrane S-1M was composed
of a number of small crystals with a thickness of ca. 2.5 µm. As described in part I, the
micropore volume and effective pore size in S-1S are greater than those in S-1M. In addition,
pore-connectivity through S-1S, 60%, is better that that through S-1M, 47%. The typical
FE-SEM images of the two types of silicalite-1 membranes were also shown in part I.

2.2. Vapor Permeation Test

To investigate the diffusivity of hydrocarbon in micropores through two types of
silicalite-1 membranes, permeation tests were carried out in wide temperature and partial
pressure ranges. We can evaluate an effect of molecular size on diffusivity by using
hexane isomers, n-hexane (ca. 0.43 nm [17]) and 2-methylpentane (ca. 0.50 nm [18]), as
feed materials.

Permeation tests took place using a home-made apparatus in a vapor permeation
mode. Figure 1 shows the photo of the membrane module for the vapor permeation test. A
silicalite-1 membrane was fixed with a graphite o-ring into the membrane module. Either
n-hexane or 2-methylpentane were pumped into a preheater to vaporize and then fed to
the outer surface of a tubular membrane. The partial pressure of hydrocarbon vapor was
adjusted by controlling the flow rate of the dilution gas, helium. The permeate side was
swept with flowing helium. Both the feed and permeate sides were kept at atmospheric
pressure, meaning that only permeation due to concentration gradient was evaluated.
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To exclude an effect of concentration polarization on the closest surface of the mem-
brane, sufficiently large amount of feed and sweep gas were flowed. Specifically, the ratio
of permeation flow rate to feed flow rate was kept less than 5% and the partial pressure of
hydrocarbon in the permeate side was diluted to less than 0.5 kPa in all conditions.

The flow rate was determined by a gas chromatograph (GC-8A, Shimadzu Corp.,
Kyoto, Japan) using the internal standard gas, methane. Permeation flux J was calculated
using the following Equation (1);

J = uA−1 (1)

where u is the permeation flow rate (mol s−1) and A is the effective membrane area (m2),
6.28 × 10−4 m2.

3. Results and Discussion
3.1. Vapor Permeation Properties of Silicalite-1 Membrane for C6 Hydrocarbons

n-Hexane and 2-methylpentane fluxes through two types of silicalite-1 membranes
in unary systems were evaluated to investigate the effect of pore-connectivity on the
permeation property. The partial pressure of hydrocarbon vapor was controlled from 10 to
50 kPa in the temperature range of 373 to 653 K.

Figure 2 shows the permeation fluxes of n-hexane through the silicalite-1 membranes.
The fluxes through two types of membranes increased with increasing partial pressure
under all conditions. The fluxes had maximum values at given a temperature. In addition,
the temperature at which the n-hexane fluxes had maxima became higher at higher partial
pressure conditions. These permeation behaviors were very similar between S-1S and S-1M,
although the permeation fluxes through S-1S were 3–20 times larger than those through
S-1M. For instance, the n-hexane fluxes at 50 kPa through membranes S-1S and S-1M at
573 K were 8.83 × 10−3 and 1.81 × 10−3 mol m−2 s−1, respectively.

The behaviors of n-hexane permeation can be explained by the typical surface diffu-
sion model and quantitatively analyzed by the adsorption–diffusion model described in the
introduction [14]. At a lower temperature, an adsorbed phase is present in the zeolite pore.
In this adsorbed phase the mass transport takes place by molecules moving between ad-
sorption sites. In such a surface diffusion model, the n-hexane fluxes are determined almost
entirely as a product of the adsorption amount on and the diffusion rate in the membrane.

The partial pressure affects the adsorption amount; the adsorption amount was in-
creased naturally by increasing partial pressure. In contrast, the membrane temperature
had both negative and positive effects on the adsorption amount and the diffusivity, re-
spectively. Therefore, the flux had maxima at the appropriate temperature, at which the
adsorption amount and the diffusivity balanced. At higher partial pressures, the tempera-
ture showing maximum flux rose higher because the adsorption amount remained relative
at a higher temperature. These permeation behaviors are the rule rather than the exception,
as mentioned in the introduction [14–16].
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Figure 2. Membrane temperature dependency of n-hexane fluxes through (a) S-1S and (b) S-1M.
Partial pressures of n-hexane are at #, 10; �, 25;4, 35 and ♦, 51 kPa.

Figure 3 shows the permeation properties of these membranes for 2-methylpentane.
2-Methylpentane fluxes were a magnitude lower than those of n-hexane owing to the large
molecular size of ca. 0.50 nm [18] compared with n-hexane, ca. 0.43 nm [17]. The fluxes
through S-1S and S-1M at 573 K at 50 kPa were 4.63 × 10−4 and 8.63 × 10−5 mol m−2 s−1,
respectively. The temperature and partial pressure dependency of 2-methylpentane fluxes
were similar to those of n-hexane.
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The difference in pore-connectivity between S-1S and S-1M was already discussed in
part I. From the results of the nano-permporometry test and the adsorption test in part
I, we concluded that the narrowing and obstruction of micropores occurred along grain
boundaries. The poor pore-connectivity of S-1M compared with S-1S would lead to the
small permeation fluxes of n-hexane and 2-methylpentane.

3.2. Modeling of Hydrocarbon Permeation through Silicalite-1 Membrane

The results of the permeation tests suggested that hydrocarbon fluxes were determined
by the adsorption amount and the diffusion rate. Next, we represented the fluxes using an
equation that includes the terms of adsorption and diffusion, for quantitative evaluation of
the effects of these factors on permeation flux.

It was defined that both silicalite-1 membranes, S-1S and S-1M, have few defects, as
described in part I. Hence, we assume that all molecules permeate only through micropores.
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Fick’s first law, the following equation, is used as a basic idea in this study.

J = −D·dC/dx (2)

Additionally, we assume that the two factors that are the driving force of permeation
are the difference in the adsorption amount between the feed and permeation side, and
the concentration gradient in the membrane being linear. Then, Fick’s first law forms the
following Equation (3):

J = −D (VF − VP)/dx (3)

VP, the adsorption amount on the permeation side, is approximated by zero because the
permeate side was swept with the amount of inert gas in the permeation test.

The adsorption of hydrocarbons on zeolite follows the Langmuir model, as described
in part I. Therefore, Equation (4) represents VF, adsorption amount on the feed side:

VF = abP·(1 + bP)−1 (4)

where a and b are the saturated adsorption amount (mol m−3) and the adsorption equilib-
rium constant (-), respectively. Then Equation (5) was derived from Equations (3) and (4)
by using D′ (= aDL−1).

PJ−1 = D′−1P + b−1D′−1 (5)

D′ is the term including the diffusion coefficient. If fluxes are able to be represented
by Equation (3), plots as P J−1 against P should be linear. In addition, D, which means the
diffusion coefficient in the membrane, can be determined from the inverse of the slope of
the line, saturated adsorption amount and membrane thickness.

Figure 4 shows P J−1 against P by using the values in Figures 2 and 3. The plots under
the same temperature lie on a straight line, indicating that hydrocarbon fluxes through the
silicalite-1 membrane in unary systems can be represented by Equation (3). As a result, the
permeation behaviors of hydrocarbons through two types of silicalite-1 membranes can be
exhibited quantitatively by the adsorption–diffusion model. In addition, the driving force
of permeation could be explained by the difference of the adsorption amount between feed
and permeate sides, as shown in the modified Fick’s first law, Equation (3).

Membranes 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 4. The plots of PJ−1 against P. (a) and (b) n-hexane through S-1S and S-1M. (c) and (d) 2-
methylpentane through S-1S and S-1M. ○, 373; □, 473; ▵, 573 and ◊, 653 K. 

3.3. Diffusivities in Two Types of Silicalite-1 Membranes 
D′, the term including diffusion coefficient, was defined as the inverse of the slope of 

lines in Figure 4, mentioned above. Here, we calculated the diffusion coefficient, D, by 
multiplying D′ by membrane thickness, L, and dividing by the saturated adsorption 
amount, a. The thicknesses of the membranes S-1S and S-1M were estimated by observation 
of FE-SEM as 4.0 and 2.5 m, respectively. The values of the saturated adsorption amounts 
shown in part I were used for the calculation. The amounts of n-hexane adsorbed in S-1S 
and S-1M were 1.73 and 1.35 kmol m−3 (=21.1 and 16.5 cm3 (STP) g−1), respectively. The ad-
sorbed amounts of 2-methylpentane in S-1S and S-1M were 0.984 and 0.780 kmol m−3 (= 12.0 
and 9.52 cm3 (STP) g−1), respectively. 

Figure 5 shows the calculated diffusion coefficients of n-hexane and 2-methylpentane 
through S-1S and S-1M. The diffusion coefficient of n-hexane through S-1S was two orders of 
magnitude larger than that through S-1M. For example, the diffusion coefficients through S-1S 
and S-1M at 373 K were 2.3 and 0.048 × 10−11 m2 s−1. The diffusion coefficients of n-hexane 
through both membranes were strongly affected by the membrane temperature. The diffusion 
rates at 473 K and 653 K were ca. 7-times and ca. 12-times larger than that at 373 K. In addition, 
the diffusion coefficient of n-hexane was an order of magnitude larger than that of 2-
methylpentane. The difference in diffusivity between n-hexane and 2-methylpentane could be 
caused by the difference in molecular size. 

Figure 4. The plots of PJ−1 against P. (a,b) n-hexane through S-1S and S-1M. (c,d) 2-methylpentane
through S-1S and S-1M. #, 373; �, 473;4, 573 and ♦, 653 K.



Membranes 2021, 11, 399 6 of 9

3.3. Diffusivities in Two Types of Silicalite-1 Membranes

D′, the term including diffusion coefficient, was defined as the inverse of the slope
of lines in Figure 4, mentioned above. Here, we calculated the diffusion coefficient, D,
by multiplying D′ by membrane thickness, L, and dividing by the saturated adsorption
amount, a. The thicknesses of the membranes S-1S and S-1M were estimated by observation
of FE-SEM as 4.0 and 2.5 µm, respectively. The values of the saturated adsorption amounts
shown in part I were used for the calculation. The amounts of n-hexane adsorbed in S-1S
and S-1M were 1.73 and 1.35 kmol m−3 (=21.1 and 16.5 cm3 (STP) g−1), respectively. The
adsorbed amounts of 2-methylpentane in S-1S and S-1M were 0.984 and 0.780 kmol m−3

(=12.0 and 9.52 cm3 (STP) g−1), respectively.
Figure 5 shows the calculated diffusion coefficients of n-hexane and 2-methylpentane

through S-1S and S-1M. The diffusion coefficient of n-hexane through S-1S was two orders
of magnitude larger than that through S-1M. For example, the diffusion coefficients through
S-1S and S-1M at 373 K were 2.3 and 0.048 × 10−11 m2 s−1. The diffusion coefficients of
n-hexane through both membranes were strongly affected by the membrane temperature.
The diffusion rates at 473 K and 653 K were ca. 7-times and ca. 12-times larger than that
at 373 K. In addition, the diffusion coefficient of n-hexane was an order of magnitude
larger than that of 2-methylpentane. The difference in diffusivity between n-hexane and
2-methylpentane could be caused by the difference in molecular size.
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Table 1 lists the self-diffusivities of n-alkanes in powdery crystals of MFI-type zeolite
to compare with the values determined in this study [19–24]. The self-diffusivities in
previous reports were from 0.31 to 45 × 10−11 m2 s−1 ca. 300 K. Values of diffusivities have
large differences among measurement methods. The diffusivity through S-1S defined from
the permeation test in this study was relatively close to literature values.

Table 1. Self-diffusivities of n-alkanes in MFI-type zeolite.

Methods Temperature/K Species Self-Diffusivity/10−10 m2 s−1 References

MD
300 n-hexane 30

[18]300 n-butane 45

MD
300 n-hexane 22

[19]300 n-butane 32

Wicke–Kallenbach 303 n-butane 0.31 [20]

Pulse–response - n-butane 45.6 [21]

PFG NMR
-
-

n-hexane
n-pentane

2.9
[22]10

Frequency–response 303
303

n-butane
n-hexane

5.2
4.1 [23]

Unary permeation test 373
373

n-hexane 0.23 S-1S (This work)
S-1M (This work)n-hexane 0.0048
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Finally, the activation energy for diffusion penetrated through silicalite-1 membranes
was evaluated. Figure 6 shows the Arrhenius plots for calculated D values. The activation
energy of the diffusion of n-hexane was 17.5 kJ mol−1 for the membrane with better pore-
connectivity and 18.0 kJ mol−1 for the membrane with poorer pore-connectivity, whereas
for 2-methylpentane it was 17.9 and 33.0 kJ mol−1, respectively.
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The diffusion coefficients and the activation energy of diffusion elucidated that S-1M
had greater diffusion resistance. It is strongly suggested that the narrowing and obstruction
of micropores became a barrier of diffusion possibly because the micropore mismatch
occurs at the crystal interfaces formed by the collision of growing crystals during the
membrane formation process, as described in part I. Large molecules, whose size is close to
the pore size, tended to be strongly affected by such pore-connectivity. Here we proposed
that the preparing of membranes with good pore-connectivity, by the reducing of grain
boundary, is an effective strategy to obtain high-permeable zeolite membranes.

4. Conclusions

Two types of silicalite-1 membrane with pore-connectivity values of 60 and 47% were
prepared and their permeation performances for hydrocarbon were carefully evaluated.
The permeation behaviors of n-hexane and 2-methylpentane could be simply explained
by the adsorption–diffusion model. The diffusion coefficient through a membrane with
better pore-connectivity was ca. 50-times larger than that through a membrane with poor
pore-connectivity. The activation energy of diffusion in micropores was also significantly
different between these two membranes; the activation energies of 2-methylpentane were
17.9 and 33.0 kJ mol−1 through the membranes. We suggest that preparing membranes
with good pore-connectivity by reducing the grain boundary is an effective strategy to
obtain highly permeable zeolite membranes.
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Nomenclature

a Saturated adsorption amount (mol m−3)
A Effective membrane area (m2)
b Adsorption equilibrium constant (-)
C Concentration (mol m−3)
D Diffusion coefficient (m2 s−1)
D′ Term including diffusion coefficient (=aDL−1)
J Permeation flux (mol m−2 s−1)
L Membrane thickness (m)
P Partial pressure of hydrocarbon in feed side (Pa)
R Gas constant (J mol−1 K−1)
u Flow rate (mol s−1)
VF Adsorption amount on the membrane in feed side (mol m−3)
VP Adsorption amount on the membrane in permeate side (mol m−3)
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