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The paper addresses the mathematical study of a nonstationary continuum model describing oxygen propagation in cerebral
substance. The model allows to estimate the rate of oxygen saturation and stabilization of oxygen concentration in relatively
large parts of cerebral tissue. A theoretical and numerical analysis of the model is performed. The unique solvability of the
underlying initial-boundary value problem for a system of coupled nonlinear parabolic equations is proved. In the numerical
experiment, the tissue oxygen saturation after hypoxia is analyzed for the case when a sufficient amount of oxygen begins to
flow into the capillary network. A fast stabilization of the tissue oxygen concentration is demonstrated. The reliability of the
results of the numerical simulation is discussed.

1. Introduction

The main requirement of proper functioning of the brain is
its sufficient supply with oxygen. Scarcity of oxygen caused,
for example, by the decrease of blood circulation can provoke
injuring and death of brain cells. Therefore, it is necessary to
better recognize all factors affecting oxygen transport in the
brain. In this connection, mathematical modeling can be very
helpful to understand the cause of impaired oxygen delivery.

There are a great number of mathematical models of oxy-
gen transport in the brain. Among them, the method, where
the cerebral substance is regarded as a bifractional (blood and
tissue) homogenized material, becomes more and more pop-
ular. Mathematically speaking, such models are represented
by coupled partial differential equations describing convec-
tion, diffusion, and consumption of oxygen in blood and tis-
sue fractions (see, e.g., [1–9]).

As a rule, the concentrations of oxygen in the blood and
tissue fractions are distributed state variables of the homoge-
nized models. However, such models should reflect the pro-
cesses occurring in the prehomogenization phase such as

oxygen penetration from blood plasma to tissue through cap-
illary walls, which requires taking into account the plasma
oxygen concentration. The nonlinear Hill equation describes
a dependence between the oxygen concentrations in plasma
and blood, so that the new state variable does not appear in
the coupling between the blood and tissue compartments of
the resulting homogenized model. It should also be men-
tioned the presence of a sink term in the tissue-fraction
model equation, which describes oxygen consumption in tis-
sue. This term is derived using the Michaelis-Menten equa-
tion. Therefore, the above outlined two-compartment
models consisting of two coupled quasilinear parabolic equa-
tions are difficult for mathematical analysis and numerical
implementation. This is the reason why many researchers
have tried to simplify the models. Below, an outline of some
investigations addressing various models of oxygen transport
in the brain is presented.

Mathematical steady-state models of oxygen propagation
in a tissue comprising a capillary network are presented in
papers [1–4]. The method used there is based on Green’s
function techniques. In [1], some assumptions such as the
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neglect of blood plasma oxygen and the independence of
metabolic rate on tissue oxygen concentration are imposed.
This allows for reducing the degree of nonlinearity in the
model. In [2–4], using modifications of the method proposed
in [1], the authors consider the case of nonuniform con-
sumption. Moreover, in [4], free oxygen dissolved in blood
plasma is taken into account.

Nonstationary models of oxygen transport are the subject
of research in many works (see, e.g., [5–11]). Using time-
dependent models, it is possible to simulate transition
regimes of oxygen transfer such as the saturation of tissues
with oxygen.

Paper [5] presents a one-dimensional oxygen transport
model containing both nonlinear differential and algebraic
equations describing the oxygen concentrations in blood,
plasma, and tissue. It should be stressed that the model spa-
tially averages the concentration of oxygen in the tissue
fraction.

In [6], a hybrid oxygen transport model is considered. It
comprises a one-dimensional equation describing the oxygen
transfer in the vessel, a one-dimensional conservation equa-
tion for oxygen flux through blood-tissue interface, and a
three-dimensional diffusion equation, with a consumption
term, governing oxygen propagation in tissue. Thus, there
are three computational domains, each for its corresponding
equation. The method proposed yields consistent results.

Paper [7] proposes a model of oxygen transportation to
living cells. The consideration is done at the scale that allows
for taking individual red blood cell into account. The model
predicts partial oxygen pressure in capillaries and neighbor-
ing tissue areas.

In [8], oxygen transfer from blood to tissue is modeled
using a two-compartment model operating with blood and
tissue fractions. Numerical tests were conducted for relatively
large vessel networks. The tissue oxygenation accounting for
hematocrit distribution is computed.

In [9], on the base of a new model of the cerebral micro-
vasculature, a nonstationary model of oxygen transport is
considered. The vascular and tissue responses to changes in
flow and metabolism are studied. Concerning the main
assumptions of this approach, the spatial structure of the net-
work is not taken into account, the diffusion within the tissue
is neglected, and the metabolic rate is supposed to be inde-
pendent on tissue oxygen concentration. The advantage of
the proposed approach is its ability to be applied to a large
enough volume of tissue.

A perspective trend in modeling oxygen transport is
related to the so-called continuum models obtained through
spatial homogenization of state variables. In [12], such a
method is used to simulate heat processes in a tissue compris-
ing a network of blood vessels. In the resulting model, the
same spatial domain stands for blood and tissue fractions.
A similar ansatz is used in [10, 11, 13, 14], where continuum
models governed by coupled partial differential equations are
studied. In [10, 11], numerical simulations of a nonstationary
continuummodel were performed in case of simple domains,
and the comparison of results with those obtained for the
original (nonhomogenized) model is done. In [13], a theoret-
ical analysis of steady-state oxygen transport model is ful-

filled. A priori estimates of solutions, implying the unique
solvability of the problem under some conditions, are
obtained. An iterative numerical procedure for finding solu-
tions is proposed, along with the proof of its convergence. In
[14], the investigation of steady-state continuum models is
continued, the existence and uniqueness of solutions for the
boundary-value problem are established, and numerical
examples that illustrate the theoretical analysis are computed.

Despite the intensive numerical simulations of contin-
uum models of oxygen transport, mathematical analysis of
underlying partial differential equations is seldom addressed.
The exception is a theoretical analysis of steady-state models
considered in [13, 14]. As for nonstationary models, theoret-
ical issues related to the existence and uniqueness of solu-
tions for underlying initial-boundary value problems are
still open. The aim of the present paper is to perform accurate
mathematical analysis of the underlying nonstationary non-
linear initial-boundary value problem, establish its unique
solvability, and implement an iterative solution algorithm
based on Finite Element Method. It should be noted that
the results of numerical experiments demonstrate a fast sta-
bilization of the oxygen concentration due to diffusion and
consumption effects.

Notice that homogenization leads to averaging of oxygen
concentrations and smoothing the gradients. In particular, in
contrast to the approaches considered in [1–4, 6–8], homog-
enization of vascular networks does not allow for observing
gradients around single capillaries. Nevertheless, this
approach allows to simulate other important processes such
as diffusion, convection, and consumption of oxygen in rela-
tively large parts of cerebral tissue. Moreover, as demon-
strated in numerical experiments, it is possible to estimate
the rate of tissue oxygen saturation and the corresponding
stabilization of oxygen propagation on the base of the contin-
uum model studied. Additionally, the approach proposed
makes it possible to carry out a theoretical analysis of under-
lying initial-boundary value problems using their weak for-
mulations. The use of continuum models enables to take
into account most of the important effects of oxygen trans-
port, for example, the dependence of the metabolic rate on
the tissue oxygen concentration, amount of free oxygen dis-
solved in blood plasma, and diffusion rate of oxygen, which,
however, was not always considered in the above cited works.

2. Problem Formulation

We consider the vessel-tissue system as a two-phase flow sys-
tem, including the blood phase with the volume fraction σ
and the tissue phase with volume fraction 1 − σ.

Similar to other two-phase flow models, the oxygen con-
centrations in the blood and tissue phases are governed by
the following coupled parabolic equations (cf. [5, 10, 11]):

∂φ
∂t

− αΔφ + v · ∇φ =G,

∂θ
∂t

− βΔθ = −κG − μ, x ∈Ω, t ∈ 0, Tð Þ:
ð1Þ
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Here, φ and θ are the blood and tissue oxygen concentrations,
respectively, μ describes the tissue oxygen consumption, G is
the intensity of oxygen exchange between the blood and tis-
sue fractions, κ = σð1 − σÞ−1, σ is the volumetric fraction of
vessels, v is a prescribed continuous velocity vector field in
the entire domain G (the averaging of the velocity field of
the capillary network), and α and β are diffusivity parameters
of the corresponding phases. Notice that, as a result of
homogenization, the blood and tissue oxygen concentrations
are defined in the same continuum domain Ω.

The Michaelis-Menten equation describes the tissue oxy-
gen consumption rate, μ, as function of θ, the oxygen concen-
tration in tissue, as follows:

μ = μ θð Þ≔ μ0θ

θ + θ50
, ð2Þ

where μ0 is the maximum value of μ and θ50 is the value of θ
at μ = 0:5μ0.

The transfer rate of oxygen from blood to tissue through
vessel walls is given by the formula

G = a θ − ψð Þ,

φ = f ψð Þ≔ ψ + bψr

ψr + c
,

ð3Þ

where ψ is the oxygen concentration in plasma (concentra-
tion at vessel walls). Note that ψ is expressed through φ so
that ψ is not a state variable of the resulting model. Addition-
ally, positive constants a, b, c, and r have the following sense:
a defines the oxygen permeability, b characterizes the con-
centration of tetramer hemoglobin, and c is given by the for-
mula c = ψr

H , where ψH is the concentration of oxygen in
plasma at the hemoglobin level of 50%, and r is the Hill expo-
nent (or coefficient).

We assume that the oxygen concentrations φ and θ sat-
isfy the following conditions on the boundary Γ = ∂Ω:

α∂nφ + γ φ − φbð ÞjΓ = 0,
β∂nθ + δ θ − g φbð Þð Þ Γ = 0,j

ð4Þ

and the following initial conditions:

φ t=0 = φ0j ,
θ t=0 = θ0j :

ð5Þ

Here, ∂n is the outward normal derivative at points of the
domain boundary. Nonnegative functions φb = φbðxÞ, γ =
γðxÞ, δ = δðxÞ, x ∈ Γ, and the initial functions φ0 = φ0ðxÞ
and θ0 = θ0ðxÞ, x ∈Ω, are given. The function g is defined
as the inverse of f .

3. Problem Formalization and a
Priori Estimates

Let Ω be a bounded Lipschitz domain with the boundary
Γ = ∂Ω consisting of finite number of smooth parts. Set
Q =Ω × ð0, TÞ and Σ = Γ × ð0, TÞ. Denote by Lp, 1 ≤ p ≤
∞, the space of p-integrable (essentially bounded if p =
∞) functions. Let Hs be the Sobolev space Ws

2. The space
Lsð0, T ; XÞ (respectively, Cð½0, T� ; XÞ) consists of s-inte-
grable on ð0, TÞ (respectively, continuous on ½0, T�) func-
tions assuming values in a Banach space X.

Suppose that the following conditions hold for the
model data:

γ, δ ∈ L∞ Γð Þ, γ ≥ γ0 > 0, δ ≥ δ0 > 0,
φb ∈ L

2 Σð Þ,
θ0, φ0 ∈ L

2 Ωð Þ,
v ∈ L∞ Qð Þ,

ð6Þ

where γ0 and δ0 are constants.
Denote H = L2ðΩÞ, V =H1ðΩÞ, and V ′ the dual of V .

Identify H with its dual H ′ to get the Gelfand triple V ⊂
H =H ′ ⊂ V ′. Let k⋅k, k⋅kV , and k·k∗ denote the norms in H,
V , andV ′, respectively. Notice that ð f , vÞ is the value of func-
tional f ∈ V ′ on an element v ∈ V . If f ∈H, then ð f , vÞ is the
inner product in H.

Introduce the inner product in V by the relation

f , gð Þð Þ = f , gð Þ + ∇f ,∇gð Þ: ð7Þ

Define the following space:

W = y ∈ L2 0, T ;Vð Þ: y′ ∈ L2ð0, T ; V ′Þ
n o

, ð8Þ

where y′ = dy/dt. It is well known that W ⊂ Cð½0, T� ;HÞ is
the continuous embedding.

Remembering the problem formulation, introduce strictly
increasing odd functions μ : ℝ⟶ℝ and f : ℝ⟶ℝ
defined by the formulas

μ λð Þ≔ μ0λ

λ + θ50
,

f λð Þ≔ λ + bλr

λr + c
, λ ≥ 0:

ð9Þ

Let g : ℝ⟶ℝ denote the inverse of f . Note that

μ λð Þj j ≤ μ0,
g λð Þj j ≤ λj j,

0 ≤ μ′ λð Þ ≤ μ0
θ50

,

0 ≤ g′ λð Þ ≤ 1, λ ∈ℝ:

ð10Þ
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Define operators A1,2 : V ⟶V ′ and functionals
f 1,2 ∈ L

2ð0, T ; V ′Þ using the following relations:

A1u, vð Þ = α ∇u, ∇vð Þ +
ð
Γ

γuvdΓ,

A2w, vð Þ = β ∇w, ∇vð Þ +
ð
Γ

δwvdΓ,

f 1, vð Þ =
ð
Γ

γφbvdΓ,

f 2, vð Þ =
ð
Γ

δg φbð ÞvdΓ a:e: on  0, Tð Þ,

ð11Þ

where u,w, v ∈ V are arbitrary functions. Notice that the
bilinear forms ðA1y, zÞ and ðA2y, zÞ define inner products
in V , and the following inequalities hold:

A1y, yð Þ ≥ k1 yk k2V ,
A2y, yð Þ ≥ k2 yk k2V ,

ð12Þ

where positive constants k1, k2 do not depend on y ∈ V .
Therefore, the problem (1)–(5) can be rewritten as a

Cauchy problem in an operator form.

Definition 1. A pair fφ, θg ∈W ×W is a weak solution of the
problem (1)–(5) if

φ′ + A1φ + v∇φ + a g φð Þ − θð Þ = f 1 a:e: on  0, Tð Þ, ð13Þ

θ′ + A2θ + μ θð Þ + κa θ − g φð Þð Þ = f 2 a:e: on  0, Tð Þ, ð14Þ

φ t=0 = φ0j , ð15Þ

θ t=0 = θ0j : ð16Þ
Remark 1. The above definition can be rewritten in an oper-
ator form as follows. A pair u = fφ, θg is a weak solution iff
it solves the equation u′ + Lu = f , where f = f f 1, f 2g, and
L is the operator defined by the left-hand sides of (13)
and (14). Unfortunately, as it is shown in [14], the operator
L is not monotone for typical values of problem parameters,
which prevents from applying standard methods of analysis
(cf. [15]).

4. The Existence and Uniqueness of Solution

Theorem 1. Let conditions (6) hold. Then, the problem (1)–(5)
is unique solvable on any finite time interval ½0, T�, 0 < T <∞:

Proof. Define Galerkin approximations φm and θm of solu-
tions of the problem (1)–(5) and derive a priori estimates
which are necessary to prove the solvability. To do that,
introduce a basis w1,w2,⋯ of V such that these functions
are orthonormal in H. Let

φm tð Þ, θm tð Þ ∈ Vm = span w1,⋯,wmf g, t ∈ 0, Tð Þ, ð17Þ

satisfy the relations

�
φm
′ + A1φm + v∇φm + a g φmð Þ − θmð Þ − f 1, v

�
= 0,

∀v ∈ Vm ;  φm 0ð Þ = φ0m,
ð18Þ

�
θm′ + A2θm + μ θmð Þ + κa θm − g φmð Þð Þ − f 2,w

�
= 0,

∀w ∈ Vm ;  θm 0ð Þ = θ0m,
ð19Þ

where φ0m and θ0m are H-orthonormal projections of the
functions φ0 and θ0 on the subspace Vm.

Assuming v = φm and w = θm in (18) and (19), adding these
equations, taking into account properties (10) and (12) as
well as the nonnegativity of the products gðφÞφ and μðθÞθ,
yield the following inequality:

1
2
d
dt

φmk k2 + θmk k2� �
+ k1 φmk k2V + k2 θmk k2V ≤

≤ f 1k kV ′ φmk kV + f 2k kV ′ θmk kV
+ vk kL∞ Qð Þ ∇φmk k φmk k + a κ + 1ð Þ θmk k φmk k:

ð20Þ

The terms of the last inequality are being estimated using
the relation uv ≤ εu2/2 + v2/2ε holding for all ε > 0. Taking
ε = k1/2, ε = k2, and ε = 1 yields

f 1k kV ′ φmk kV ≤
k1
4 φmk k2V + 1

k1
f 1k k2V′,

f 2k kV ′ θmk kV ≤
k2
2 θmk k2V + 1

2k2
f 2k k2V′,

vk kL∞ Qð Þ ∇φmk k φmk k ≤ k1
4 φmk k2V + 1

k1
vk k2L∞ Qð Þ φmk k2,

a κ + 1ð Þ θmk k φmk k ≤ a κ + 1ð Þ θmk k2 + φmk k2� �
2 :

ð21Þ

Along with the integration over t, this yields the following
estimate:

φm tð Þk k2 + θm tð Þk k2 +
ðt
0
k1 φm sð Þk k2V + k2 θm sð Þk k2V
� �

ds ≤

≤C1 + C2

ðt
0

φm sð Þk k2 + θm sð Þk k2� �
ds:

ð22Þ
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Here,

C1 = φ0k k2 + θ0k k2 +
ðT
0

2
k1

ƒ1 sð Þk k2V′ +
1
k2

ƒ2 sð Þk k2V′

� �
ds,

C2 =
2
k1

vk k2L∞ Qð Þ + a 1 + κð Þ:

ð23Þ

Applying the Gronwall inequality implies the claim

φm, θm are bounded in L∞ 0, T ;Hð Þ and L2 0, T ; Vð Þ:
ð24Þ

Obtain now an estimate guaranteeing the compact-
ness of the sequences φm, θm in L2ð0, T ;HÞ. For this
end, set v = φmðtÞ − φmðsÞ in (18), integrate the result over
t ∈ ðs, s + hÞ, and integrate that over s ∈ ð0, T − hÞ, where
h > 0 is sufficiently small. Finally,

1
2

ðT−h
0

φm s + hð Þ − φm sð Þk k2ds =
ðT−h
0

ðs+h
s

cm t, sð Þdtds, ð25Þ

where

cm t, sð Þ = A1φm tð Þ + v tð Þ∇φm tð Þ + a g φm tð Þð Þ − θm tð Þð Þð
− f 1 tð Þ, φm sð Þ − φm tð ÞÞ:

ð26Þ

Notice that, accounting for the continuity of embed-
ding V ⊂H, the following estimate holds:

cm t, sð Þ ≤ C φm tð Þk k2V + θm tð Þk k2V + φm sð Þk k2V + ƒ1 tð Þk k2V ′
� �

:

ð27Þ

Here and below, C is a positive, independent on m constant.
The terms in (27), that depend on t, can be estimated by
changing the integration order in (25). Along with the
boundedness of φm and θm in L2ð0, T ; VÞ, this yields the fol-
lowing equicontinuity estimate:

ðT−h
0

φm s + hð Þ − φm sð Þk k2ds ≤ Ch: ð28Þ

Similarly, the equicontinuity of the sequence θm can be
shown:

ðT−h
0

θm s + hð Þ − θm sð Þk k2ds ≤ Ch: ð29Þ

The estimates (24)–(29) allow us to pass, up to subse-
quences, to the limit. There are functions φ and θ such that

φm ⟶ φ, θm ⟶ θ weakly in L2 0, T ; Vð Þ,
∗−weakly in L∞ 0, T ;Hð Þ, and strongly in L2 Qð Þ:

ð30Þ

Convergences listed in (30) allow us to pass to the limit in
(18) and (19), asm⟶∞, to prove that the limiting functions
φ and θ satisfy equations (13) and (14) in the sense of distribu-
tions on (0, T) and the initial conditions hold. Note that the
passage to the limit in terms containing µðθmÞ and gðφmÞ
can be easily done due to the following inequalities:

g φmð Þ − g φð Þj j ≤ φm − φj j,
μ θmð Þ − μ θð Þj j ≤ μ0

θ50
θm − θj j, ð31Þ

which follows from the estimates of the derivatives of the
functions g and μ. Note also that estimate (24) implies
the inclusions

A1φ + v∇φ + a g φð Þ − θð Þ − f 1 ∈ L
2ð0, T ; V ′Þ,

A2θ + μ θð Þ + κa θ − g φð Þð Þ − f 2 ∈ L
2ð0, T ; V ′Þ,

ð32Þ

which means that the time derivatives φ′ and θ′ belong to
the space L2ð0, T ; V ′Þ and satisfy equations (13) and (14)
almost everywhere on ð0, TÞ. Thus, the pair fφ, θg ∈W ×W
is a solution of (1)–(5) in the weak sense.

Show now the uniqueness of weak solutions. Let fφ1, θ1g
and fφ2, θ2g be two solutions of the problem (1)–(5), and
φ = φ1 − φ2, θ = θ1 − θ2. Then, the following equalities hold:

�
φ′ + A1φ + v∇φ + a g φ1ð Þ − g φ2ð Þ − θð Þ, v� = 0,

 ∀v ∈ V ;  φ 0ð Þ = 0,

�
θ′ + A2θ + µ θ1ð Þ − µ θ2ð Þ + κa θ − g φ1ð Þ − g φ2ð Þð Þ,w� = 0,

 ∀w ∈ V ;  θ 0ð Þ = 0:
ð33Þ

Setting v = φ and w = θ, omitting the nonnegative
terms, and taking into account the properties (10) and
(12) yield

d
2dt φk k2 + k1 φk k2V ≤ − v∇φ, φð Þ + a θ, φð Þ

≤ k1 φk k2V + C3 φk k2 + θk k2� �
,

ð34Þ

where C3 = ðð1/4k1Þkvk2L∞ðQÞ + a/2Þ;

d
2dt θk k2 ≤ κa g φ1ð Þ − g φ2ð Þ, θð Þ

≤ κa φk k θk k ≤ κa
2 φk k2 + θk k2� �

:

ð35Þ

Adding the last inequalities yields the estimate

d
2dt φk k2 + θk k2� �

≤ C3 +
κa
2

� �
φk k2 + θk k2� �

: ð36Þ
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This estimate, along with the Gronwall inequality, implies
that φ = θ = 0, which means the uniqueness of solutions.

5. Numerical Simulation

Numerical example involves a 2D square domain with the
area of 3.24mm2. It contains 64 holes corresponding to 32
inlets and 32 outlets that are interpreted as arteriolar and
venular ends of the capillary network. The density of inlets
and outlets is chosen in accordance with cerebral physiolog-
ical characteristics reported in [16].

The following parameter values were used: σ = 0:03 (see
[10]), α = 2:2 · 10−3mm2/s, β = 2:4 · 10−3mm2/s (see [7]),
a = 39 s−1 (see [5, 17]), b = 9:2mM (see [5]), ψH = 3:6 ·
10−2 mM (see [5]), µ0 = 0:08mM/s (see [18]), θ50 =5·10−5 mM
(see [18]), and r = 2:73 (see [5]).

To specify the boundary conditions, we set φb = 9:2mM,
θb = 0:16mM at the inlets and φb = 8:2mM, θb = 0:076mM
at the outlets and at the edges of square. Moreover, we set
γ = 1000α, δ = 1000β. The initial distributions of the con-
centrations are the following: φ0 = 4mM and θ0 = 0:01mM,
which simulate the effect of tissue hypoxia.

The velocity field v is computed in advance using the
Stokes equation. To solve the Stokes equation, we set the
following boundary conditions at the edges of the square:
v = ð0,0:6Þmm/s. Moreover, following [19], velocities of
3.4mm/s and 1.7mm/s are set at the ends of arterioles and
venules (boundaries of holes shown in Figure 1), respec-
tively. Note that we use the Stokes equation to obtain an
example of velocity field satisfying the specified boundary
conditions in the considered perforated domain. Neverthe-
less (see Figure 1), in most of the domain, the velocity norm
computed lies in the range of acceptable values (from 0.3 to
1.7mm/s), which is necessary for normal functioning of
brain cells (see [20]).

To approximate the initial-boundary value problem
(1)–(5), the difference approximation of the time derivative
and the first-order Finite Element spatial approximation
were used. To resolve the nonlinearities at each time instant,
the simple iterative procedure was applied. The function g
(the inverse of f ) was interpolated using cubic splines. It
was observed that 20 steps of a simple iterative procedure
provide a good accuracy in each time step. The Finite Ele-
ment package FreeFEM++ (see [21]) was used to implement
the solution method. To build a computational mesh, the
following partition of the domain boundaries was specified:
60 segments for each edge of the square and 8 segments for
each inlet and outlet. The time step length was taken to be
equal to 0.25 s because of a good stability of the numerical
scheme. Note that the Finite Element Method is suitable
for solving the PDE models in complex geometries, for
example, in the perforated domain considered here. Also,
this approach is popular and developed enough for solving
the diffusion-convection models. For example, for natural
convection models in [22, 23], the stability and convergence
analysis of the Finite Element Method is performed and its
efficiency is demonstrated.

The oxygen concentration in tissue at different time
instants is shown in Figures 2–5. The dynamics of oxygen
distribution is basically defined by the convection of oxygen
in the blood fraction and its diffusion and consumption in
tissue. Notice that a rapid stabilization (within 6-7 seconds)
of oxygen distribution in tissue is observed. Nevertheless,
more fast stabilization (within 3-4 seconds) occurs in the
blood fraction.

6. Discussion

In the numerical example considered, the initial oxygen con-
centration in tissue corresponds to the effect of hypoxia,
which is damaging for brain cells. Nevertheless, a quick
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Figure 1: The absolute velocity (mm/s).
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supply of a sufficient amount of oxygen from the ends of
arterioles into the homogenized capillary domain rapidly
improves the situation so that the oxygen concentration is
being stabilized at a safe level. This is in agreement with the
estimation of time needed for oxygen to propagate in the
capillary network and surrounding tissue. Indeed, assuming
the number of inlets (ends of a1-arterioles) and outlets (ends
of v1-venules) in an adult brain equals N = 76:8 · 106, and
the weight of the brain equals m = 1200 g (see [16]), and set-
ting the density of the brain equals ρ = 1:04 g/cm3, we obtain
a mean distance between inlets and outlets estimated by the
value of

ffiffiffiffiffiffiffiffiffiffiffiffi
m/ρN3

p = 0:25mm. Moreover, accounting for the

speed of blood flow in the capillary network (see [20]),
the time for which the blood flow passes from inlets to
outlets is estimated by 2 seconds. Also, note that the max-
imal distance between brain cells and capillaries is in aver-
age of 0.02mm (see [24]). With the diffusion coefficient of
0.0024mm2/s (see [7]), oxygen molecules travel this dis-
tance in 0.1 second. Thus, in about 2.1 seconds after enter-
ing the capillary network, oxygen molecules begin to arrive
the furthest parts of the brain. This estimation is in agree-
ment with the results of our numerical experiment, which
points out to the consistency of the continuum oxygen
transport model considered.
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Figure 3: Brain tissue oxygen saturation after hypoxia: 2 seconds after oxygen begins to flow into the capillary network (mM).
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A faster stabilization of oxygen concentration in the
blood fraction compared with that in tissue is explained by
the Hill equation (see [25]) determining the level of oxygen
in plasma. The plasma oxygen level specifies the amount
of oxygen penetrating from capillaries into tissue. Accord-
ing to the Hill equation, a small change in plasma oxygen
level may lead to a relatively large change in tissue oxygen
concentration if the oxygen concentration in blood is suf-
ficiently large.

Thus, the considered continuum model of oxygen trans-
port can be used to study the rate of oxygenation of brain tis-
sue in dependence on the initial level of hypoxia as well as on
blood oxygen concentrations at the inlets of capillary net-
work (the ends of arterioles).
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The data used can be found in the references cited in this
paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported by the Klaus Tschira Foundation,
Buhl-Strohmaier Foundation, and Würth Foundation.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 0.5 1 1.5
0

0.5

1

1.5

Figure 5: Brain tissue oxygen saturation after hypoxia: 7 seconds after oxygen begins to flow into the capillary network (mM).

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 0.5 1 1.5
0

0.5

1

1.5

Figure 4: Brain tissue oxygen saturation after hypoxia: 3 seconds after oxygen begins to flow into the capillary network (mM).

8 Computational and Mathematical Methods in Medicine



References

[1] R. Hsu and T. W. Secomb, “A Green’s function method for
analysis of oxygen delivery to tissue by microvascular net-
works,” Mathematical Biosciences, vol. 96, no. 1, pp. 61–78,
1989.

[2] T. W. Secomb, R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F.
Gross, “Analysis of oxygen transport to tumor tissue by micro-
vascular networks,” International Journal of Radiation Oncol-
ogy • Biology • Physics, vol. 25, no. 3, pp. 481–489, 1993.

[3] T. W. Secomb and R. Hsu, “Simulation of O2 transport in
skeletal muscle: diffusive exchange between arterioles and cap-
illaries,”American Journal of Physiology-Heart and Circulatory
Physiology, vol. 267, no. 3, pp. H1214–H1221, 1994.

[4] T. W. Secomb, R. Hsu, N. B. Beamer, and B. M. Coull, “The-
oretical simulation of oxygen transport to brain by networks
of microvessels: effects of oxygen supply and demand on tis-
sue hypoxia,” Microcirculation, vol. 7, no. 4, pp. 237–247,
2000.

[5] R. Valabrègue, A. Aubert, J. Burger, J. Bittoun, and R. Costalat,
“Relation between cerebral blood flow and metabolism
explained by a model of oxygen exchange,” Journal of Cerebral
Blood Flow & Metabolism, vol. 23, no. 5, pp. 536–545, 2016.

[6] Q. Fang, S. Sakadžić, L. Ruvinskaya, A. Devor, A. M. Dale, and
D. A. Boas, “Oxygen advection and diffusion in a three-
dimensional vascular anatomical network,” Optics Express,
vol. 16, no. 22, pp. 17530–17541, 2008.

[7] A. Lücker, B. Weber, and P. Jenny, “A dynamic model of oxy-
gen transport from capillaries to tissue with moving red blood
cells,” American Journal of Physiology. Heart and Circulatory
Physiology, vol. 308, no. 3, pp. H206–H216, 2015.

[8] I. G. Gould and A. A. Linninger, “Hematocrit distribution and
tissue oxygenation in large microcirculatory networks,”Micro-
circulation, vol. 22, no. 1, pp. 1–18, 2015.

[9] C. S. Park and S. J. Payne, “Modelling the effects of cerebral
microvasculature morphology on oxygen transport,” Medical
Engineering & Physics, vol. 38, no. 1, pp. 41–47, 2016.

[10] S.-W. Su and S. J. Payne, “A two phase model of oxygen trans-
port in cerebral tissue,” in 2009 Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society,
pp. 4921–4924, Minneapolis, MN, USA, September 2009.

[11] S.-W. Su, Modelling blood flow and oxygen transport in the
human cerebral cortex. PhD Thesis, University of Oxford,
Oxford, 2011.

[12] A.-R. A. Khaled and K. Vafai, “The role of porous media in
modeling flow and heat transfer in biological tissues,” Interna-
tional Journal of Heat and Mass Transfer, vol. 46, no. 26,
pp. 4989–5003, 2003.

[13] A. E. Kovtanyuk, A. Y. Chebotarev, A. A. Dekalchuk, N. D.
Botkin, and R. Lampe, “Analysis of a mathematical model of
oxygen transport in brain,” 2018 Days on Diffraction (DD),
vol. 2018, pp. 187–191, 2018.

[14] A. E. Kovtanyuk, A. Y. Chebotarev, N. D. Botkin, V. L. Turova,
I. N. Sidorenko, and R. Lampe, “Continuum model of oxygen
transport in brain,” Journal of Mathematical Analysis and
Applications, vol. 474, no. 2, pp. 1352–1363, 2019.

[15] J. L. Lions, Quelques M’ethodes de R’esolution des Probl’emes
aux Limites Non Lin’eaires, Dunod Gauthier-Villard, Paris,
1969.

[16] S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vas-
cular reactivity to investigate the basis of the relationship

between cerebral blood volume and flow under CO2 manipu-
lation,” NeuroImage, vol. 39, no. 1, pp. 107–118, 2008.

[17] I. G. Kassissia, C. A. Goresky, C. P. Rose et al., “Tracer oxygen
distribution is barrier-limited in the cerebral microcircula-
tion,” Circulation Research, vol. 77, no. 6, pp. 1201–1211, 1995.

[18] A. J. McGoron, P. Nair, and R. W. Schubert, “Michaelis-Men-
ten kinetics model of oxygen consumption by rat brain slices
following hypoxia,” Annals of Biomedical Engineering,
vol. 25, no. 3, pp. 565–572, 1997.

[19] W. I. Rosenblum, “Erythrocyte velocity and a velocity pulse in
minute blood vessels on the surface of the mouse brain,” Circu-
lation Research, vol. 24, no. 6, pp. 887–892, 1969.

[20] K. P. Ivanov, M. K. Kalinina, and Y. I. Levkovich, “Blood flow
velocity in capillaries of brain and muscles and its physiologi-
cal significance,” Microvascular Research, vol. 22, no. 2,
pp. 143–155, 1981.

[21] F. Hecht, “New development in FreeFem++,” Journal of
Numerical Mathematics, vol. 20, no. 3-4, pp. 251–265, 2012.

[22] Y.-B. Yang and Y.-L. Jiang, “Numerical analysis and computa-
tion of a type of IMEX method for the time-dependent natural
convection problem,” Computational Methods in Applied
Mathematics, vol. 16, no. 2, pp. 321–344, 2016.

[23] Y.-B. Yang, Y.-L. Jiang, and Q.-X. Kong, “Two-grid stabilized
FEMs based on Newton type linearization for the steady-
state natural convection problem,” Advances in Applied Math-
ematics and Mechanics, vol. 12, no. 2, pp. 407–435, 2019.

[24] B. V. Zlokovic, “Blood-brain barrier and neurovascular mech-
anisms of neurodegeneration and injury,” in Encyclopedia of
Neuroscience, L. R. Squire, Ed., pp. 265–271, Academic Press,
2009.

[25] A. V. Hill, “The possible effects of the aggregation of the mol-
ecules of haemoglobin on its dissociation curves,” Journal of
Physiology, vol. 40, pp. iv–vii, 1910.

9Computational and Mathematical Methods in Medicine


	Nonstationary Model of Oxygen Transport in Brain Tissue
	1. Introduction
	2. Problem Formulation
	3. Problem Formalization and a Priori Estimates
	4. The Existence and Uniqueness of Solution
	5. Numerical Simulation
	6. Discussion
	Data Availability
	Conflicts of Interest
	Acknowledgments

