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Abstract

We aimed to evaluate macrophages heterogeneity and structural, functional and inflamma-
tory alterations in rat kidney by aldosterone + salt administration. The effects of treatment
with spironolactone on above parameters were also analyzed. Male Wistar rats received
aldosterone (1 mgkg™'d™") + 1% NaCl for 3 weeks. Half of the animals were treated with spir-
onolactone (200 mg kg™'d™"). Systolic and diastolic blood pressures were elevated (p<0.05)
in aldosterone + salt-treated rats. Relative kidney weight, collagen content, fibronectin,
macrophage infiltrate, CTGF, Col I, MMP2, TNF-a, CD68, Arg2, and SGK-1 were increased
(p<0.05) in aldosterone + salt—treated rats, being reduced by spironolactone (p<0.05).
Increased iINOS and IFN-y mRNA gene expression (M1 macrophage markers) was
observed in aldosterone + salt rats, whereas no significant differences were observed in IL-
10 and gene Argl mMRNA expression or ED2 protein content (M2 macrophage markers). All
the observed changes were blocked with spironolactone treatment. Macrophage depletion
with liposomal clodronate reduced macrophage influx and inflammatory M1 markers (INF-y
or iNOS), whereas interstitial fibrosis was only partially reduced after this intervention, in
aldosterone plus salt-treated rats. In conclusion, aldosterone + salt administration mediates
inflammatory M1 macrophage phenotype and increased fibrosis throughout mineralocorti-
coid receptors activation.

Introduction

Previous studies have demonstrated the importance of aldosterone in inflammatory and
fibrotic processes development when related to kidney diseases [1]. The effect of aldosterone
on salt and water homeostasis and potassium excretion has been considered as its main renal
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effect. However, it has been shown that aldosterone plays an important role in the progression
of renal disease not only because of hemodynamic effects [2]. Aldosterone stimulates sodium
reabsorption in the kidney leading to elevation of blood pressure and hypertension. In addition
to hypertension, a number of studies have reported that chronic administration of aldosterone
in the setting of salt intake causes glomerulosclerosis and interstitial renal fibrosis [3] via its
mineralocorticoid receptors (MR) promoting renovascular hypertrophy [4-6]. The aldoste-
rone-effects are mediated by the MRs and clinical studies have confirmed the beneficial effect
of MR antagonism on renal disease [7]. Data from experimental models have confirmed that
the beneficial effects of MR antagonism are related to inhibition of aldosterone-mediated pro-
inflammatory and pro-fibrotic effects [8,9].

Recently, it has been recognized the importance of heterogeneity of macrophage polariza-
tion in the feature of renal disease [10]. Classically activated macrophages, also called M1 mac-
rophages, are activated by pro-inflammatory cytokines, resulting in their potent microbicide
functions that also contribute to tissue inflammation, fibrosis and damage. Macrophages can
be alternatively activated to the M2 phenotype which are involved in tissue remodeling [11].
The macrophage plays a key role in renal inflammation, fibrosis and remodeling induced by
aldosterone and high salt intake. It has been shown, that aldosterone-mediated fibrosis is pre-
ceded by macrophage infiltration and increased expression of inflammatory markers in the
kidney [9]. In cultured macrophages, aldosterone induces classical macrophage activation to
the M1 pro-inflammatory phenotype, increasing production of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-a), chemokine (C-C motif) ligand 2 (CCL2) and
CCL5 promoting the release of pro-fibrotic proteins; transforming growth factor beta (TGF-B)
and plasminogen activator inhibitor-1 (PAI-1). The pro-inflammatory and pro-fibrotic effects
of aldosterone are prevented by MR antagonism or MR deletion in macrophages [12,13]. How-
ever, the specific role of aldosterone on macrophage differentiation in vivo has not been fully
addressed.

We aimed to evaluate whether aldosterone+salt administration induces M1 polarization in
rat kidney and whether MR blockade prevent this pro-inflammatory macrophage subtype.
Structural, functional and inflammatory renal alterations produced by aldosterone-+salt admin-
istration were also studied. Treatment with spironolactone, a MR antagonist [14], was evalu-
ated to prove mineralocorticoid receptors mediation.

Material and Methods
Experimental model

The protocol of the study was approved by The Universidad Complutense Ethics Review
Board and followed the current guidelines of the European Union and granted and approved
by the Universidad Complutense Ethics Review Board following the National Guideline 53/
2013. Rats were kept in a quiet room at constant temperature (20-22°C) and humidity (50%—
60%) and fed standard rat chow and tap water ad libitum. Male Wistar rats 254+2 g; Harlam
Iberica, Barcelona, Spain) were used in the study. Forty rats were divided in four groups

(N =10 per group): Aldosterone group (Aldo) which received an injection of aldosterone
(1mg 'kg 'day; Sigma Aldrich) dissolved in corn oil and NaCl 1% in drinking water, spirono-
lactone group (Spiro) which received an injection of spironolactone (200 mg 'kg ™' day; Sigma
Aldrich), aldosterone+spironolactone group (Aldo+Spiro) which received an injection of aldo-
sterone (1mg 'kg ' day; Sigma Aldrich) dissolved in corn oil and NaCl 1% in drinking water
together with injection of spironolactone (200 mg 'kg™" day; Sigma Aldrich) and, control group
(Control) which received an injection of vehicle. The period of the study was 3 weeks. To mea-
sure systolic blood pressure (SBP) and diastolic blood pressure (DBP) blood pressure, at the
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end of the treatment period, the tail-cuff method was used [15]. After measuring hemodynamic
parameters, the animals were killed, the kidney removed, weighed, and rapidly frozen in liquid
nitrogen for molecular studies. Kidney weight to body weight ratio was used as the index of
renal hypertrophy.

Blood urine nitrogen (BUN) and creatinine levels

Serum BUN concentration was determined using a commercial kit (Pars Azmoon Co., Tehran,
Iran), according to manufacturer’s instructions. Serum creatinine was measured by Jaffe’s
method, using a Commercial Kit (Pars Azmoon Co., Tehran, Iran).

RNA extraction and real-time PCR

Total RNA from renal tissues was isolated by Trizol (Invitrogen). cDNA was obtained by
reverse transcription with the High Capacity cDNA Archive Kit (Applied Biosystems). Real-
time PCR was performed on an ABI Prism 7500 PCR system (Applied Biosystems) using the
DeltaDelta Ct method. Expression of genes of interest was reflected as ratios to Glyceraldehyde
3-phosphate dehydrogenase (GADPH). Pre-developed primers and probes assays: GADPH,
arginase I (Argl), interleukin 10 (IL-10), interferon gamma (IFN-y), and inducible nitric oxide
synthase (iNOS, Applied Biosystems).

Western blot

The preparation of protein samples from renal tissues was performed as previously [16]. Anti-
bodies to rabbit polyclonal anti-Collagen I (1:1000, AbDSerotec, Oxford, UK), anti- connective
tissue growth factor (CTGF, 1:1000, Abcam, Cambridge, UK), anti-Fibronectin (FN 1:1000
Millipore, Germany), anti-TNF-o. (1:1000, Abcam, Cambridge, UK), anti-matrix metallopro-
teinase 2 (MMP?2, 1:1000, Abcam, Cambridge, UK), anti- cluster of differentiation 68 (CD68,
1:200, Abcam, Cambridge, UK), anti-arginase I (Arg-I, 1:1000 Santa Cruz, anti-serum and glu-
cocorticoid kinase 1 (SGK-1, 1:1000, AbcamCambridge, UK) and monoclonal anti-a-tubulin
antibody (1:10000, Sigma-Aldrich, Spain), were used.

Renal collagen content

To asses renal collagen content, paraffin-embedded kidneys were cut into 4-mm slices and
stained with Sirius Red F3BA (0.5% in saturated aqueous picric acid; Aldrich Chemical Com-
pany, Madrid, Spain). Four different sections of each slide of the kidney and ten photographs
from each section were taken using an image analysis system (Leica Microsystems, Barcelona,
Spain). A single investigator, blinded to the nature of the samples, performed the analyses.

Flow cytometry and cell purification

Kidneys were decapsulated, minced and incubated with collagenase (0.5 mg/mL, Sigma-
Aldrich) for 30 min at 37°C. After erythrocyte lysis, single-cell suspensions were prepared in
staining buffer (2% FCS in Dulbecco’s PBS). Cells were stained with CD45-PE-Cy7 (BioLe-
gend), CD86-PE (BioLegend) and CD163-APC (Bio-Rad). Then cells were washed, fixed, and
permeabilized using the BD Cytofix/-Cytoperm kit (BD Bioscences) and subsequently incu-
bated with CD68-FITC (Bio-Rad). Finally, the cells were stained using the Live/Dead Exclusion
Fixable Violet Dead Cell Stain kit (Invitrogen, Carlsbad, CA). Cell suspensions were analysed
in a FACSAria I (BD Biosciences) apparatus with the Flow]Jo (Tree Star) software packages. Rat
peritoneal macrophages were isolated from the peritoneal cavity as previously described [17],
and used as positive control for macrophage markers detection by flow cytometry.
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Clodronate administration

To study the effect of clodronate, an inhibitor of monocyte/macrophage influx, liposomal clo-
dronate or control (PBS) liposomes (Clodronateliposomes, Amsterdam, The Nederlands),
were administered intraperitoneally to the rats (20 mg/kg) on five separate days: day 0, 4, 9, 14,
18 of aldosterone (1mg 'kg ' day) + 1% NaCl treatment, according to previous publications
[18,19]. Thus, the rats were randomly assigned to 4 different groups (n = 5/group): Control +
PBS liposome, aldosterone+PBS liposome, control+clodronate liposome, or aldosterone+-
clodronate liposome.

Statistical analysis

The data was analysed using a one-way analysis of variance, followed by a Newman-Keuls test
if differences were noted (GraphPad Software Inc., USA). A p-value of 0.05 or less was consid-
ered significant.

Results
Blood pressure and renal function

Aldosterone-+salt treated rats presented higher SBP and DBP levels than control rats (p<0.05).
Treatment with the mineralocorticoid receptor antagonist spironolactone significantly reduced
SBP and DBP (p<0.05). Finally, we observed elevated H,0 consumption and consequent
higher urine excretion after the treatment of aldosterone. Spironolactone treatment in normal
rats did not affect any of these parameters. Creatinine clearance and BUN were comparable in
all groups (Table 1).

Renal morphological alterations

Masson trichrome, Sirius red and Hematoxilin/Eosin staining were used to examine the mor-
phological changes in the kidneys (Fig 1A and 1B). The kidneys from control animals showed
normal structure. However, Aldosterone treatment increased extracellular matrix deposition,
as determined by Sirius red (p<0.05). Fibrosis was mainly interstitial and perivascular. Treat-
ment with spironolactone decreased extracellular matrix deposition (p<0.05).

Table 1. Biological parameters in the different experimental groups.

Control Spiro Aldo+Salt Aldo+Salt+Spiro

SBP (mm Hg) 120+2.3 11846.2 143+4.1* 115+2.1#
DBP (mm Hg) 8513.2 80+1.1 10516.4* 915.1#
Body weight (g) 304.3+18.2 298.2+15.4 311.5+6.8 294.5+10.2
KW/BW (mg/g) 0.3210.03 0.32+0.05 0.37+0.03* 0.3440.03
H,O Consumption (mL) 24.37+2.61 31.0+4.12 60.00+18.89*% 39.29+8.86#
Urine (mL) 13.00+2.72 13.29+5.96 44.25+17.21* 26.25+12.66#
Creatinine (mg/dL) 30.69+1.5 28.5+2.8 31.3+2.6 30.4+3.6
BUN (mg/dL) 0.36+0.02 0.360.06 0.34+0.02 0.32+0.05

KW/BW, kidney weight/100 g body weight.
*p<0.05 versus Control
# p<0.05 versus Aldo+ Salt.

doi:10.1371/journal.pone.0145946.1001
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Fig 1. Kidney collagen content by Sirius red (A) and Masson trichrome and representative images of collagen content by Hematoxilin/Eosin (B) in
control (CONTROL), spironolactone treated animals (SPIRO), aldosterone+salt-treated animals (ALDO) and aldosterone+salt plus spironolactone
treated animals (ALDO+SPIRO). Data are expressed as mean + SEM. *p<0.05 vs. CONTROL; #p<0.05 vs. ALDO

doi:10.1371/journal.pone.0145946.g001

Renal hypertrophy and fibrosis

At the end of the study, all groups presented comparable body weight, however the relative kid-
ney weight (KW/BW) was higher (p<0.05) in aldosterone + salt-treated rats than in controls
(Table 1). In order to determine the molecular mechanism involved in aldosterone-mediated
fibrosis we performed western blot in kidney homogenates. Western-blot analysis revealed that
Col I and FN were the main component of the fibrotic extracellular matrix in aldosterone +
salt treated-animals (Fig 2A and 2B). Increased fibrotic mediators, such as connective tissue
growth factor (CTGF), was observed in aldosterone + salt treated-animals (Fig 2C). MMP2
protein levels were higher (p<0.05) in aldosterone + salt-treated rats compared with controls.
All these parameters were reduced (p<0.05) by spironolactone treatment. Spironolactone did
not affect any of these parameters in aldosterone + salt-untreated rats (Fig 2D).

Inflammation and macrophage phenotypes

An increased inflammation, characterized by increased CD68 and TNF-o. expression was
observed in aldosterone + salt treated rats, as compared with control group(p<0.05) (Fig 3A
and 3B). These inflammatory parameters were reduced (p<0.05) by spironolactone treatment.
SGK-1 is one of the main mediator of aldosterone actions and it was highly increased in aldo-
sterone+salt treated rats (p<0.05). However, this expression was markedly reduced by treat-
ment with spironolactone (Fig 4A). We then determined macrophage phenotype markers to
characterize renal M1/M2 macrophage distribution. Increased Arg2 protein expression, a M1
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Fig 2. Quantitative analyses of protein levels measured by Western blot for Coll (A), FN (B), CTGF (C) and MMP-2(D) in control (CONTROL),
spironolactone treated animals (SPIRO), aldosterone+salt-treated animals (ALDO) and aldosterone+salt plus spironolactone treated animals
(ALDO+SPIRO). Data are expressed as mean + SEM. *p<0.05 vs. CONTROL; *p<0.05 vs. ALDO

doi:10.1371/journal.pone.0145946.9002

macrophage marker, was observed in kidney from aldosterone treated rats, whereas no signifi-
cant differences were observed in ED2 protein content (Fig 4B and 4C). To confirm these
results we determined mRNA expression of different M1 markers such as IFN-y and iNOS. As
reported in Fig 4D and 4E, an increased mRNA expression of iNOS and IFN-y was observed
after aldosterone + salt treatment. All these parameters, but INOS which presented a tendency
to decrease, were reduced (P < 0.05) by spironolactone treatment. Argl or IL-10 mRNA
expression (M2 macrophage markers) did not change after aldosterone administration (Fig 4F
and 4G). All together our results show a polarization towards a M1 phenotype by aldosterone
that may be partially reduced after MR blockade.
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Fig 3. Quantitative analyses of protein levels measured by Western blot for CD-68 (A), TNF-a (B) and representative images of CD68 staining (C) in
control (CONTROL), spironolactone treated animals (SPIRO), aldosterone+salt-treated animals (ALDO) and aldosterone+salt plus spironolactone
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doi:10.1371/journal.pone.0145946.g003

In a further step, macrophages were isolated from treated kidneys and the expression of

M1/M2 markers was quantified by flow cytometry. We first discriminated macrophages popu-
lations in kidneys according to the dual presence of CD45 (leukocyte common antigen) and
CD68 (general macrophage marker) and then analyzed the expression of CD86 (M1 marker)
and CD163 (M2 marker), as previously reported [20,21]. Analysis of renal cells isolated from
kidneys tissues showed an increase in CD45"/CD68" macrophages in aldosterone-treated rats
(Fig 5A and 5B). Moreover, expression of the M1 marker CD86 was only increased in CD45"/
CD68" macrophages from aldosterone-treated rats (Fig 5C); whereas no CD163 expression
was detected in CD45"/CD68" macrophages from any group (Fig 5A). A partial reduction of
CD86 expression was observed after MR blockade in aldosterone-treated rats. Macrophages
isolated from rat peritoneum were used as positive control for the detection of CD86 and
CD163 in CD45/CD68" cells (Fig 5A).
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Fig 4. Quantitative analyses of protein levels measured by Western blot for Arg2 (A), ED2 (B) and SGK-1 (C) and mRNA levels measured by
RT-PCR for iNOS (D), INFy (E), Arg1 (F) and II-10 (G) in control (CONTROL), spironolactone treated animals (SPIRO), aldosterone+salt-treated
animals (ALDO) and aldosterone+salt plus spironolactone treated animals (ALDO+SPIRO). Data are expressed as mean + SEM. *p<0.05 vs.
CONTROL; #p<0.05 vs. ALDO.

doi:10.1371/journal.pone.0145946.9004

Clodronate administration reduced renal macrophage infiltrate and
inflammatory markers, but not fibrosis, in aldosterone-treated rats

To determine whether macrophages were directly implicated in aldosterone-mediated
fibrotic effects, we depleted macrophages by using clodronate liposomes. Neither clodronate-
or control-liposomes had an effect on clinical parameters or kidney structure in control rats
(S1 Table and Fig 6). Administration of liposomal clodronate in aldosterone-treated rats
reduced significantly systolic blood pressure (p<0.05), ameliorated renal morphology and
partly reduced H,O consumption, urine excretion, the relative kidney weight (KW/BW), and
extracellular matrix deposition (sirius red) as well as profibrotic mediators, such as Col I, FN
and CTGF (Fig 6 and S1 Fig), as compared with aldosterone-treated rats that received control
liposomes. Kidneys from aldosterone-treated rats showed a significant decrease in both mac-
rophage number and CD68 mRNA expression upon clodronate administration (Fig 7A-7C).
Consistent with our previous data (Fig 4), this treatment also reduced Arg2 at the protein
level and the mRNA expression of INF-y or iNOS (Fig 7D, 7F and 7H), all of them M1 mark-
ers; whereas non-significant reduction was observed in M2 markers (IL-10, Argl and ED2)
(Fig 7F and 7G). Thus, despite effective reduction of macrophage influx and renal inflamma-
tory response after clodronate treatment, interstitial fibrosis was not fully prevented by this
intervention.
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doi:10.1371/journal.pone.0145946.g005

Discussion

The present study shows that administration of aldosterone plus salt in rats promotes a polari-
zation towards a M1 phenotype by aldosterone, accompanied by hypertension, renal damage,
hypertrophy and fibrosis. All these effects were blocked by MR antagonism with spironolac-
tone, supporting the protective effects of MR blockade in hypertensive renal disease. Moreover,
we observed a reduction in aldosterone-mediated renal inflammation (macrophages and medi-
ators of inflammation) after liposomal clodronate treatment, whereas interstitial fibrosis was
only partially reduced after this intervention.

It is well known that aldosterone is related to development of inflammation and fibrosis in
kidney [2,9]. Our study shows a pro-inflammatory action of aldosterone in the kidney by an
increment in both TNF-o protein expression and IFN-y mRNA expression level which
decreased when spironolactone was administered. As previously described, the mechanistic
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Fig 6. (A) Representative images showing Sirius red staining, Masson trichrome and Hematoxilin/Eosin staining in control+PBS liposome
(Control+Lipo), aldosterone+PBS liposome (Aldo+Lipo), control+clodronate liposome (Control+Clodr), or aldosterone+clodronate liposome (Aldo
+Clodr) treated animals. Kidney collagen content (B), quantitative analyses of Col | and Fibronectin (FN) protein (C-D) and mRNA expression (E) in
treated rats. Data are expressed as mean + SEM. *p<0.05 vs Control+Lipo; #p<0.05 vs. Aldo+Lipo.

doi:10.1371/journal.pone.0145946.9006

processes induced by aldosterone include dependent MR activation and a close link with the
interplay with Ang II levels together with sodium and potassium ionic transport [22,23].

Although inflammation may promote fibrosis; aldosterone can also directly induce the
expression of pro-fibrotic molecules. In the present study, aldosterone plus salt treatment
increased relative kidney weight and collagen content. Furthermore, aldosterone stimulated
CTGF expression in the rat kidney, which could mediate collagen production through MR acti-
vation, as suggested by the reduction caused by spironolactone treatment. CTGF is a key medi-
ator of matrix protein formation, and upregulated in several fibrotic renal diseases, including
diabetic nephropathy and glomerulosclerosis [24-26]. Our results showed elevation of MMP2
in aldosterone treated rats compared to controls which justify the observed reduced collagen
degradation and enhancement of kidney fibrosis. In vitro studies in rat mesangial cells as well
as in renal fibroblasts have shown an extracellular degradation due to aldosterone deleterious
effects [27].
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Fig 7. (A) Representative images showing CD68 staining in control+PBS liposome (Control+Lipo), aldosterone+PBS liposome (Aldo+Lipo),
control+clodronate liposome (Control+Clodr), or aldosterone+clodronate liposome (Aldo+Clodr) treated animals. Quantitative analyses of CD68
protein (B) and mRNA (C) levels in treated rats. Quantitative analyses of Arg2 (D) and ED-2 (E) protein levels and IL-10 (F), Arg 1 (G) iNOS (H) and
INFy (I) mRNA expression in treated rats. Data are expressed as mean + SEM. *p<0.05 vs Control+Lipo; #p<0.05 vs. Aldo+Lipo.

doi:10.1371/journal.pone.0145946.9007

Protein expression of SGK1, one of the key mediators of aldosterone functions, was
increased in the kidney of the aldosterone-treated rats and normalized after treatment with
spironolactone. It has been reported that aldosterone induces phosphorylation of SGK-1 in a
MR-dependent manner [8,28]. SGK-1 would be enhancing sodium intake as it has been
reported in human renal proximal tubule cells, where aldosterone-stimulated phosphorylation
of SGK1 corresponded to the increase of sodium transporter expression [29]. The increased
salt retention plays a central role in the development of hypertension and renal fibrosis leading
to maladaptive conditions like salt-sensitive hypertension and chronic kidney disease [30].

Renal protection by spironolactone was accompanied by a significant decrease in blood
pressure and this reduction may contribute to the attenuation of renal damage and inflamma-
tion. As previously mentioned, sodium handling by the kidney is a major determinant of blood
pressure changes and is controlled by physiological mechanisms including the sympathetic
nervous system, hormones and inflammatory mediators [31]. In humans, increased blood
pressure has been correlated with progression of nephropathy and incident end-stage renal dis-
ease in the general population. Indeed, it has been proposed that hypertension is related to
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more than 80% of patients with chronic kidney disease contributing to more advance chronic
kidney disease as well as cardiovascular events [32]. Taking into account the evidences, it
seems quite relevant the effort to lower blood pressure in order to reduce progression of
chronic kidney disease [33].

The macrophage plays a key role in cardiovascular inflammation, fibrosis and remodeling
induced by aldosterone and high salt intake [34]. While macrophage infiltration has been
reported in aldosterone plus salt treated rats[9], the role or phenotype of the macrophages in
this experimental model remains unknown. Here, we identified that aldosterone + salt admin-
istration mediates inflammatory M1 macrophage phenotype in vivo. Macrophages are hetero-
geneous cells that play different functions [35,36]. M1 macrophages release pro-inflammatory
chemokines and promote fibrosis; whereas M2 macrophages are associated with immunoregu-
latory and tissue-remodeling functions [37]. Increased renal infiltration of pro-inflammatory
M1 macrophages have been described in lupus nephritis [38] and non-immune renal diseases
[39]. However, to our knowledge, this is the first study reporting increased M1-macrophage
infiltration in the aldosterone plus salt experimental model of hypertension. A number of in
vitro studies have shown that macrophage phenotype changes in response to different stimuli,
including aldosterone [11]. Indeed, aldosterone promoted M1 polarization and production of
pro-inflammatory cytokines (TNF-a, CCL2 and CCL5) and pro-fibrotic proteins (TGF-f and
PAI-1) in macrophages in culture [13,40]. In agreement with this observation, our study
showed thatM1 macrophage markers (Arg2 and iNOS) were associated with an augmented
TNF-o content in the kidney from aldosterone-treated rats. We also observed that aldoste-
rone-mediated pro-inflammatory response was prevented by MR antagonism with spironolac-
tone. MR is expressed in infiltrating macrophages and recent evidences indicate a role for MR
in macrophage polarization [41]. Thus, rat peritoneal macrophages treated with aldosterone
resulted in increased expression of the M1 classical activation markers TNF-o, which was
blocked by the MR antagonist spironolactone [40]. Similarly, in an immortalized mouse micro-
glial cell line, which is macrophage-like cells of the central nervous system, MR activation with
aldosterone potentiated LPS-induction of the pro-inflammatory cytokines TNFo and IL-6 in
an MR dependent way [42]. Studies conducted in peritoneal macrophages taken from mice
with MR specifically deleted from macrophages (Mac-MR-KO) reported that MR-deficient
macrophages showed reduced expression of M1 markers, decreased responsiveness to LPS-
induced activation, and a shift toward the alternative-activated M2 phenotype [12]. Overall,
the available data support the conclusion that the MR in macrophages contributes to classical
macrophage activation to the M1 pro-inflammatory phenotype, and that MR blockade or dele-
tion in macrophages prevents classical macrophage activation, which is line with the results by
our study.

Since classical (M1) and alternative (M2) activation have been reported to be competing
pathways, we also determined the effect of aldosterone administration on M2markers. How-
ever, no significant differences on M2 markers were observed, suggesting that aldosterone does
not promote macrophage differentiation toward alternative macrophage differentiation in
vivo. Several studies support the notion that M2 macrophages may promote the development
of fibrotic lesions. These alternatively activated macrophages synthesize a number of pro-
fibrotic factors, such as TGF-f [43] and CTGF [44]. In addition, incubation of fibroblasts with
alternatively activated macrophages promotes fibroblast proliferation and collagen synthesis
[45,46]. Since no increased presence of M2 macrophage markers was observed in our study
after aldosterone administration, our data suggest that this macrophage subtype not contrib-
uted to renal fibrosis in this hypertensive experimental model of renal damage.

In order to investigate the specific role of macrophages in this hypertensive experimental
model, we depleted macrophages using clodronate liposomes. Administration of clodronate in
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aldosterone-treated rats prevented the increase in tissue macrophage number and also reduced
some inflammatory markers at the mRNA level, but did not show major changes neither on
the clinical parameters nor interstitial fibrosis. Therefore, this study shows that aldosterone-
induced fibrosis cannot be prevented by reducing macrophage influx. We could hypothesize
that, in this experimental model, other resident renal cells, such as tubular epithelial cells or
fibroblasts may be continuously activated by aldosterone, being the main source of compo-
nents of the extracellular matrix and therefore promoting fibrosis [6].

In conclusion, administration of aldosterone in presence of salt enhance M1 macrophage
infiltration in the kidney. These aldosterone-mediated effects together with the aldosterone
mediator, SGK-1; are effectively attenuated by the selective MR antagonist spironolactone, sup-
porting the protective effects of MR blockade in hypertension-driven renal injury.
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