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Abstract: Inter-patient molecular heterogeneity is the major declared driver of an expanding variety
of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular
heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in
clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing)
and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas
database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and
gene expression with the repertoires of targeted therapeutics and their molecular targets accepted
by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82
individual molecular targets. For the first time, we showed that the repertoires of molecular targets of
accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the
other hand, we found that the clinical recommendations for the available cancer drugs were strongly
congruent with the gene expression but not gene mutation patterns. We detected the best match
among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder,
ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed
the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted
therapeutics and intensifying drug repurposing efforts.
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1. Introduction

Cancers have high levels of molecular heterogeneity [1]. It is manifested at least at the two levels:
intertumoral, between different patients with the same type of tumor and intratumoral, between different
parts of tumor and/or metastases [2]. While intratumoral heterogeneity is thought to be the main cause
of drug resistance and relapse of individual cancers, the inter-patient level of heterogeneity hinders the
development of universally active anticancer drugs [3,4]. Tumor localization, histologic and molecular
differences dictate the need for the development of multiple drugs with different specificities. From
the molecular perspective, even tumors of the same localization and histological type are considered a
heterogeneous set [5]. The inter-patient heterogeneity of tumors is an important problem in clinical
oncology that requires personalization of most of the treatment options [6].

Modern methods in molecular diagnostics enable classification of tumors not only by their
histologic type but also by specific genetic features [7]. The information on molecular genetic patterns
that determine the course of carcinogenesis, tumor progression and response to treatments is being
constantly accumulating [8].

The evolving molecular features of tumors can be evaluated using high-performance genetic,
transcriptomic, epigenetic and proteomic assays [9]. The databases of genomic, transcriptomic and
epigenetic profiles of both normal and tumor samples have been created; for example, The Cancer
Cenome Atlas (TCGA), Oncobox Atlas of Normal Tissue Expression (ANTE), International Cancer
Genome Consortium (ICGC), Genotype-Tissue Expression (GTEX) project [10–13].

In a number of large-scale experimental and meta-analysis investigations, multiple cancer
molecular biomarkers and critical pathways of carcinogenesis were identified. Understanding the
molecular biology of tumor heterogeneity stimulates updating of therapeutic instruments including
targeted anticancer drugs. These drugs have a known molecular target, which increases their selectivity
and reduces side effects compared to conventional chemotherapy [14–16]. For several cancers, target
drugs demonstrated dramatic increase of survival [14]. There are currently around 200 anticancer target
drugs available in the domain of clinical oncology worldwide [17]. Outstanding improvements were
achieved for hematological and lymphoid malignancies, non-small cell lung cancer (NSCLC), colorectal
cancer, gastro-intestinal stromal tumors, breast cancer, kidney cancer, melanoma and others [18–22].
Nevertheless, results of clinical trials show that generally targeted therapeutics are strongly effective
only for minor cohorts of patients, whereas the average efficacy for all patients of a given cancer
type remains relatively low [14,18]. Furthermore, the mechanism of action of targeted drugs dictates
restrictions of their use only for the patients with specifically expressed/manifested respective molecular
targets or other relevant biomarkers [23]. For example, therapeutic monoclonal antibodies against
EGFR, such as Cetuximab and Panitumumab, are poorly effective in KRAS/NRAS-mutated colorectal
cancers, that is, for ~40% of the patients [24]. Trastuzumab, a therapeutic antibody targeting the HER2
receptor, is effective only for the ~20%–30% cohort of patients overexpressing the ERBB2 gene [18].

The effectiveness of Epidermal Growth Factor Receptor (EGFR)-specific tyrosine kinase inhibitors
in NSCLC is associated with mutations in EGFR gene, that is, deletions of the 19–21st exons and
amplifications of EGFR gene positively correlate with the clinical benefit of treatment [20]. In melanoma
or NSCLC, specific inhibitors of BRAF kinase Vemurafenib and Dabrafenib and MEK inhibitors
Binimetinib and Trametinib are used only in BRAF-mutated tumors. Tyrosine kinase inhibitor
Larotrectinib is recommended for solid tumors with fusions of NTRK genes. In turn, inhibitors of
isocitrate dehydrogenase-1 (IDH1) protein are used for the treatment of patients with relapsed or
refractory acute myeloid leukemia with a diagnostic mutation in IDH1 gene. To the date, there are
similar molecularly-guided restrictions for more than 50 targeted cancer drugs [25].

Moreover, the US Food and Drug Administration (FDA) now recommends developing companion
diagnostic tests for all new cancer drugs entering the pharmaceutical market [26]. Several marketed
target drugs already have such companion molecular tests [25]. Alternatively, clinicians can use
transcriptomics-based high throughput data-driven second opinion systems of targeted therapeutics
selection [27–31].
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Historically, the treatment standards have been formulated for most types of cancer [32–44].
However, the underlying treatment schemes are focused primarily on localization or histological
characteristics of a tumor but do not consider most projections of its molecular phenotype. Moreover,
the currently accepted treatment regimens do not reflect the degree of intertumoral heterogeneity
within a particular cancer type [1]. Exceptions are made only for a narrow spectrum of specific genetic
damages, such as diagnostic mutations discussed above or epigenetic changes like methylation of
MGMT gene promoter in brain tumors [18,19,24,45].

Thus, it can be assumed theoretically that cancer types with higher degree of intertumoral
molecular heterogeneity have a smaller proportion of responses to a particular targeted therapy and
more different drugs should be accepted for clinical use in these instances. In this study we investigate
whether this concept is in line with the currently accepted standards of care in oncology.

We estimated the degree of intertumoral heterogeneity in different primary cancer localizations
by analyzing the whole exome and gene expression data of 4890 tumors taken from TCGA project
database. The extent of heterogeneity was assessed by measurements of clustering quality. For all
major cancer types, we compared heterogeneities at the levels of mutations and gene expression
with the repertoires of targeted therapeutics and their molecular targets accepted by the National
Comprehensive Cancer Network (NCCN) guidelines. In total, 85 drugs were investigated that included
the classes of targeted monoclonal antibodies; immunotherapeutics; tyrosine kinase, cyclin, histone
deacetylase, poly-ADP ribose polymerase and proteasomal inhibitors; rapalogues; antiangiogenic
and microtubule agents and the others. Collectively, they covered 82 individual molecular targets.
For the first time, we showed that the repertoires of molecular targets of accepted drugs did not
correlate with molecular heterogeneities of different cancer types. On the other hand, we found
that the current clinical recommendations for the available cancer drugs were strongly congruent
with the gene expression but not gene mutation patterns. We detected the best match among the
drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and
endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest
match. These findings provide a theoretical basis for reconsidering clinical guidelines and intensifying
drug repurposing efforts.

2. Results

2.1. Biosample Sets

Intertumoral variation was measured here using gene expression data and mutation frequencies
in genes using molecular profiles for 4890 patient biosamples of thirteen cancer types. The following
cancer types were investigated (according to TCGA classification): (i) Bladder Urothelial Carcinoma,
(ii) Glioblastoma Multiforme and Lower Grade Glioma, (iii) Breast Invasive Carcinoma, (iv) Cervical
Squamous Cell Carcinoma and Endocervical Adenocarcinoma, (v) Colon Adenocarcinoma and Rectum
Adenocarcinoma, (vi) Kidney Renal Clear Cell Carcinoma and Kidney Renal Papillary Cell Carcinoma,
(vii) Liver Hepatocellular carcinoma, (viii) Lung Adenocarcinoma and Lung Squamous Cell Carcinoma,
(ix) Ovarian Serous Cystadenocarcinoma, (x) Prostate Adenocarcinoma, (xi) Stomach Adenocarcinoma,
(xii) Thyroid Carcinoma, (xiii) Uterine Corpus Endometrial Carcinoma.

For those types of cancer, major variation parameters were compared. However, the variation
may depend on the sample size. Ideally, data sets of the same size should be used for reasons of
statistical equivalence in comparative analyses. However, in the reality this is difficult to obtain groups
of biosamples of the same size for different cancer types. Artificially reducing sizes of most cancer
type datasets down to the size of the minimal set is not desirable because it can bias their distribution
patterns. Another possibility is taking datasets of not identical but comparable sizes. To this end,
we selected from TCGA project database thirteen cancer type datasets each having 136–797 samples,
where average number of samples per dataset was 377. For every sample, whole exome and RNA
sequencing data were available.
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We then checked whether there is a relationship between the variation of gene expression and
the number of biosamples per cancer type. For the expression levels of every gene, we calculated a
standard deviation (SD) in every cancer type. Pearson correlation was then calculated for the obtained
SDs and the respective numbers of biosamples per cancer type (Figure 1a). Similarly, mutation data
were investigated using normalized gene mutation rates and their SDs (Figure 1b) [46]. In both
cases, we found no significant correlation between SDs and sample sizes for the thirteen tumor types
investigated. Furthermore, we performed randomization computational experiment to investigate
the effect of sampling size on our expression and mutation dataset. The groups of biosamples that
previously corresponded to cancer types were now selected randomly for 1 000 times. Total numbers
of samples per randomized groups were equal to the numbers of samples per group in the initial
TCGA cancer datasets (Table 1).

Figure 1. Correlation between molecular variability and sampling size for cancer groups under
investigation. Standard deviation (SD) was used as a measure of variation, R is Pearson correlation
coefficient. (a) Correlation of dataset size and SD for gene expression (logarithmic on base 10). Each
dot represents one gene, totally 36304 genes investigated for 13 cancer types. (b) Correlation of cancer
group size and SD for normalized gene mutation rate. Each dot represents one gene, totally 19618 genes
investigated for 13 cancer types. (c) Distribution of correlation coefficients between SD and number of
samples in a group for 1000 randomly formed datasets of gene expression data (logarithmic on base
10). (d) Distribution of correlation coefficients between SD and number of samples in a group for 1000
randomly formed datasets of normalized gene mutation rate.
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Table 1. Sample structure of molecular dataset used.

Primary Site of Tumor Number of Samples TCGA Tumor Abbreviation Full Name of Tumor, TCGA

Bladder 136 BLCA Bladder Urothelial Carcinoma
Brain 426 GBM, LGG Glioblastoma multiforme, Lower Grade Glioma
Breast 797 BRCA Breast invasive carcinoma

Cervix 177 CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

Colorectal 603 COAD, READ Colon adenocarcinoma, Rectum
adenocarcinoma

Kidney 595 KIRC, KIRP Kidney renal clear cell carcinoma, Kidney renal
papillary cell carcinoma

Liver 185 LIHC Liver Hepatocellular carcinoma

Lung 525 LUAD, LUSC Lung adenocarcinoma, Lung squamous cell
carcinoma

Ovary 315 OV Ovarian serous cystadenocarcinoma
Prostate 256 PRAD Prostate adenocarcinoma
Stomach 235 STAD Stomach adenocarcinoma
Thyroid 393 THCA Thyroid carcinoma
Uterus 247 UCEC Uterine Corpus Endometrial Carcinoma

We then calculated SDs for logarithms of gene expression and for normalized mutation rates and
correlated them with the numbers of samples per group (Figure 1c,d). We observed lack of significant
correlations between SD and number of samples per group for both mutation and gene expression
data. We, therefore, concluded that the cancer group sizes investigated here are acceptable for further
functional comparisons of inter-patient heterogeneities.

2.2. Intertumoral Heterogeneities

The inter-patient (intertumoral) heterogeneities were measured for every cancer type in two ways:
by similarity with the other cancer types and by similarity between different samples in the same
cancer type.

The similarities in the same cancer type were measured for all genes as pairwise distances
between either normalized mutation rates or logarithms of expression, Figure 2a,b. We then compared
intragroup heterogeneities of different cancer types with numbers of molecular targets for the respective
National Comprehensive Cancer Network (NCCN)-recommended targeted therapeutics. We also did
cancer stage-specific comparisons for stages I-IV, where only samples and corresponding molecular
targets of drugs were considered for each stage (Supplementary File 1).

Figure 2. Intragroup tumor heterogeneities of molecular profiles in comparison with number of targets
for National Comprehensive Cancer Network (NCCN)-recommended drugs. Expression data means
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logarithmic Deseq2-normalized expression counts, mutation data means normalized mutation rate.
Measures of heterogeneity: (a) pairwise intragroup distances for expression data, (b) pairwise intragroup
distances for mutation data, (c) WM area as indicator of clustering quality for the expression (blue
bins) and mutation (red bins) data. (d) Correlation of average pairwise distance per group with
numbers of molecular targets for the respective NCCN-recommended drugs, for expression and
mutation data. (e) Correlation of clustering quality (WM area) with number of molecular targets for the
respective NCCN-recommended drugs, for expression and mutation data. Cancer type abbreviations:
BLCA -Bladder Urothelial Carcinoma, GBM—Glioblastoma multiforme, LGG—Lower Grade Glioma,
BRCA—Breast invasive carcinoma, CESC—Cervical squamous cell carcinoma and endocervical
adenocarcinoma, COAD—Colon adenocarcinoma, READ—Rectum adenocarcinoma, KIRC—Kidney
renal clear cell carcinoma, KIRP—Kidney renal papillary cell carcinoma, LIHC—Liver Hepatocellular
carcinoma, LUAD—Lung adenocarcinoma, LUSC—Lung squamous cell carcinoma, OV—Ovarian
serous cystadenocarcinoma, PRAD—Prostate adenocarcinoma, STAD—Stomach adenocarcinoma,
THCA—Thyroid carcinoma, UCEC—Uterine Corpus Endometrial Carcinoma.

To perform cancer stage-specific investigations, we selected matched transcriptomic and mutational
profiles for 3211 previously untreated cases with known cancer stage. We investigated only
cancer types with a certain stage having 40 and more sample to increase statistical significance
of heterogeneity analysis.

For both expression and mutation data, we found no significant correlations between the intragroup
pairwise distances and numbers of the respective molecular targets of drugs, both for the whole set of
samples (Figure 2d) and for the cancer stage-specific subsets (Supplementary File 1).

The similarities of different cancer types were measured by their abilities to specifically cluster in
a general clustering dendrogram of 4890 tumor samples. Samples of more heterogenous cancer types
did not form separate clusters and showed mixed patterns with samples from the other cancer types
and vice versa. For heterogeneity assessments, cancer types were taken one by one and compared
versus mixed samples of all the remaining cancer types. Two sorts of labels were used for the samples,
that is, whether they belong to a cancer type under investigation or not. On the dendrogram of
4890 tumor samples (for both expression and mutation data) clustering quality reflects the degree
of separation of the cancer type under study from the others, and, consequently, the degree of its
intragroup similarity. The quality of clustering was assessed using the Watermelon Multisection (WM)
method (Supplementary File 2, [10,13,47–56]),where a bigger value of a specific metric termed WM
area corresponds to a higher intragroup similarity (Figure 2c).It is worth noting that measurements of
the WM area suggested an almost perfect separation of every type of cancer from the others using
gene expression data (Figure 2c). However, the mutation data generally showed a very mixed pattern
between the different cancer types. Nevertheless, the WM area for mutation data was relatively high for
three types of cancer—colon/rectum adenocarcinoma, lung adenocarcinoma/squamous cell carcinoma
and bladder urothelial carcinoma (Figure 2c). Intriguingly, two of these cancer types (colorectal,
lung cancer) are outstanding for their known specific mutation patterns strongly associated with the
outcomes of targeted therapies that work for these cancers but not the others [20,24,57]. Finally, from
the perspective of quality of clustering, we found lack of correlation between the intragroup similarities
of cancer groups and numbers of molecular targets for the respective NCCN-recommended drugs
(Figure 2e), for both expression and mutation data. The same phenomenon was observed also for the
cancer stage-specific subsets of gene expression and mutation data (Supplementary File 1)

We then repeated these analyses considering only molecular data for the 82 genes that encode
molecular targets for the NCCN-recommended drugs in the thirteen cancer types under study. For
the same 4890 tumor samples, we established 82-gene expression profiles. For the mutation data, we
analyzed only 2696 tumor samples, because the rest had no mutations in the drug target genes and
screened only for 78-gene profiles as no mutation data were obtained for all the samples.
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Overall, the latter type of analyses fully confirmed the trends established initially using the
whole-exome and transcriptome input data (Figure 3), also for the cancer stage-specific subsets
(Supplementary File 3). The major difference was that for the mutation data in target genes, the thyroid
cancer showed the highest WM area, thus reflecting the most peculiar target gene mutation profiles for
the samples of this group (Figure 3c). This fact can be at least partly explained by outstandingly high
frequency of BRAF V600E mutation in the most frequent papillary subtype of thyroid cancer. In contrast,
bladder cancer samples now showed average value of WM area which may reflect apparently poor
response of this cancer to the targeted therapies [57]. However, the lung cancer and colorectal cancer
groups of samples as before showed relatively high values of WM area which is in line with the previous
considerations. Taken together, our results clearly suggest that for the groups investigated there was
no significant correlation for the different cancer types between the intertumoral heterogeneity and
number of molecular targets for the cancer therapeutics (Figure 3d,e).

Figure 3. Intragroup tumor heterogeneities of molecular profiles for drug target genes in comparison
with number of targets for NCCN-recommended drugs. Expression data means logarithmic
Deseq2-normalized expression counts, mutation data means normalized mutation rate. Measures
of heterogeneity: (a) pairwise intragroup distances for expression data, (b) pairwise intragroup
distances for mutation data, (c) WM area as indicator of clustering quality for the expression (blue
bins) and mutation (red bins) data. (d) Correlation of average pairwise distance per group with
numbers of molecular targets for the respective NCCN-recommended drugs, for expression and
mutation data. (e) Correlation of clustering quality (WM area) with number of molecular targets for the
respective NCCN-recommended drugs, for expression and mutation data. Cancer type abbreviations:
BLCA -Bladder Urothelial Carcinoma, GBM—Glioblastoma multiforme, LGG—Lower Grade Glioma,
BRCA—Breast invasive carcinoma, CESC—Cervical squamous cell carcinoma and endocervical
adenocarcinoma, COAD—Colon adenocarcinoma, READ—Rectum adenocarcinoma, KIRC—Kidney
renal clear cell carcinoma, KIRP—Kidney renal papillary cell carcinoma, LIHC—Liver Hepatocellular
carcinoma, LUAD—Lung adenocarcinoma, LUSC—Lung squamous cell carcinoma, OV—Ovarian
serous cystadenocarcinoma, PRAD—Prostate adenocarcinoma, STAD—Stomach adenocarcinoma,
THCA—Thyroid carcinoma, UCEC—Uterine Corpus Endometrial Carcinoma.

Interestingly, we observed statistically significant correlation between cancer type-specific average
pairwise distances for the mutation and expression profiles of all genes (Figure 4a). The same trend
was seen also for the stage-specific subsets of cancer samples (Supplementary File 4). This finding most
probably reflects direct relationship of overall genetic changes and altered gene expression regulation.
Bigger number of mutated genes here means overall stronger alteration of the expression profiles.
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However, our data also suggest that this pattern may have a complex nature and is evident only for
the high-scale genetic profiles because there was no significant correlations found for the fraction of 78
drug target genes (Figure 4b, Supplementary File 4).

Figure 4. Correlation between cancer type-specific average pairwise distances for gene expression
and mutation data. Each dot corresponds to one cancer type, R is Pearson correlation coefficient.
Correlations are shown for molecular profiles of all genes (a) and for drug target genes (b).

However, for the individual tumor samples from the same datasets we previously showed no
correlation between normalized tumor-specific gene expression changes and normalized mutation
rates [58].

2.3. Clustering of Cancer Types in Relation with Recommended Targeted Therapeutics and Molecular Data

We then clustered molecular profiles averaged for every cancer type. The averaged profiles
were calculated separately for every cancer type for both gene expression and mutation data.
As before, the clustering was performed in two modes: for all genes and for a reduced set of
target genes of NCCN-recommended drugs (Figure 5), including cancer stage-specific clustering,
(Supplementary File 5).

Figure 5. Clustering of thirteen cancer types by molecular profiles and targets of NCCN-recommended
drugs. Clustering by (a) averaged expression profiles (logarithm of Deseq2 normalized expression
counts) for NCCN-recommended drug target genes, (b) averaged mutation profiles (NMR) for
NCCN-recommended drug target genes, (c) molecular targets of NCCN-recommended drugs,
(d) expression profiles (logarithm of Deseq2 normalized expression counts) for all genes, (e) mutation
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profiles (NMR) for all genes. Cancer type abbreviations: BLCA—Bladder Urothelial Carcinoma,
GBM—Glioblastoma multiforme, LGG—Lower Grade Glioma, BRCA—Breast invasive carcinoma,
CESC—Cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD—Colon
adenocarcinoma, READ—Rectum adenocarcinoma, KIRC—Kidney renal clear cell carcinoma,
KIRP—Kidney renal papillary cell carcinoma, LIHC—Liver Hepatocellular carcinoma, LUAD—Lung
adenocarcinoma, LUSC—Lung squamous cell carcinoma, OV—Ovarian serous cystadenocarcinoma,
PRAD—Prostate adenocarcinoma, STAD—Stomach adenocarcinoma, THCA—Thyroid carcinoma,
UCEC—Uterine Corpus Endometrial Carcinoma.

Interestingly, clustering of the cancer types by expression data reflected the anatomical proximity
of tissues or organs of primary tumor localizations. This trend was more pronounced for the clustering
of full expression profiles (Figure 5a,d). In turn, for the mutation-based clustering by both all and drug
target genes, we observed a tendency for colorectal cancer, lung cancer, uterine corpus endometrial
carcinoma, bladder urothelial carcinoma and stomach adenocarcinoma to cluster together. These
cancers are known for their high frequency of mutations [59].

It is worth noting that the kidney, prostate and thyroid cancers strongly tended to cluster together
in both mutation and expression-based dendrograms (Figure 5a,b,d,e), including cancer stage-specific
subsets (Supplementary File 5).

The molecular-based clustering was then compared with the clustering by the molecular targets of
NCCN-recommended drugs for the particular cancer types (Figure 5c). We assessed whether the cancer
types that had similar repertoires of recommended drugs were also clustering together according to
molecular profiles and vice versa. We screened clustering features for a mix of cancer stages (Figure 5c)
and also separately for all cancer stages I-IV (Supplementary File 5).

For example, for a mix of cancer stages we observed three major clusters of cancer types according
to the target drugs used (Figure 5c). The rightmost cluster differed from the rest by frequent therapeutic
targeting of tubulins, PARP, hormone receptors, cyclin dependent kinases and CD molecules. The
leftmost cluster had targets such as receptors for vascular, placental, platelet derived and endothelial
growth factors, NTRK, DDR2, MAPK11, other tyrosine kinases: ABL1, EPHA2, TEK and FRK. Finally,
for the middle cluster including prostate, stomach, endometrial and cervical cancers we observed the
minimal number of drug targets (Figure 5b,e).

This type of analysis was done for every specific cancer stage (I-IV, Supplementary File 5) and for
all investigations we assessed whether drug usage clustering was reflected by the clustering according
to DNA mutation or gene expression data (Table 2). For some cancer types like kidney, thyroid
and colorectal cancers, enough information was available for targeted drugs recommendations in all
stages, whereas for the prostate, ovarian, endometrial, cervical and brain tumors there was no enough
information of stage-specific targeted drugs usage to enable clustering (Table 2). For both stage-specific
and unspecific settings, we quantified coincidences of molecular- and drug usage-based clustering for
all cancer types (Table 2).

We found that clustering by gene expression profiles was significantly more congruent with the
drugs recommendation-based clustering rather than clustering by mutation data (82% coincidence for
expression vs. only 49% for mutation data, Table 3). Drug usage in some cancer types was perfectly
matching the molecular profiles (e.g., kidney, bladder, stomach, endometrial, cervical and ovarian
cancers for expression data; kidney, prostate, endometrial, ovarian and brain tumors for mutation data).
In turn, the matching outsiders were the brain, prostate and colorectal cancers for expression data and
the lung, colorectal, endometrial and stomach cancers for mutation data (Table 3). The kidney, liver,
endometrial and ovarian cancers were highly matching with drugs usage profiles for both expression
and mutation data and the colorectal cancer was rather poorly matching for both types of molecular
data (Table 3).
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Table 2. Similarities of drug usage clustering and molecular clustering for different cancer types.

Cancer Type All Stages, all Genes All Stages, Drug Target Genes

Cancer type / Drug usage cluster DNA mutation Gene expression DNA mutation Gene expression
COAD, READ / Cluster 1 − − − +

LIHC / Cluster 1 − − + +
KIRC, KIRP / Cluster 1 + + + +

THCA / Cluster 1 + + − +
PRAD / Cluster 2 + − + +
UCEC / Cluster 2 − + − +
CESC / Cluster 2 + + + +
STAD / Cluster 2 − + − +
BRCA / Cluster 3 + + + +

OV / Cluster 3 + + + +
LUAD, LUSC / Cluster 3 − + − +

BLCA / Cluster 3 + + + +
GBM, LGG / Cluster 3 + − + −

Stage I, all genes Stage I, drug target genes
LIHC / Cluster 1 + − + +
THCA / Cluster 1 + + − −

COAD, READ / Cluster 1 − + − +
KIRC, KIRP / Cluster 1 + + + +

BRCA / Cluster 2 − + − −

LUAD, LUSC / Cluster 2 − + − −

Stage II, all genes Stage II, drug target genes
LIHC / Cluster 1 + + + +
THCA / Cluster 1 + + − +

COAD, READ / Cluster 1 − − − −

KIRC, KIRP / Cluster 1 + + + +
BRCA / Cluster 2 − + + +

LUAD, LUSC / Cluster 2 + + + +
STAD / Cluster 2 + + − +

Stage III, all genes Stage III, drug target genes
LIHC / Cluster 1 + + + +
THCA / Cluster 1 + + − −

COAD, READ / Cluster 1 − − + +
KIRC, KIRP / Cluster 1 + + + +

BRCA / Cluster 2 + + + −

LUAD, LUSC / Cluster 2 − + − +
STAD / Cluster 2 + + − +
BLCA / Cluster 2 − + + +

Stage IV, all genes Stage IV, drug target genes
THCA / Cluster 1 + + − +

KIRC, KIRP / Cluster 1 + + − +
BLCA / Cluster 2 − + + +

COAD, READ / Cluster 2 − + + +

Table 3. Overall match of drug usage clustering and molecular clustering for different cancer types.

Cancer Type Maximum Possible
Score (Max)

Mutation Data, Observed Score
(Percentage Share of Max)

Expression Data, Observed
Score (Percentage Share of Max)

COAD, READ 10+ 2+ (20%) 6+ (60%)
LIHC 8+ 7+ (87.5%) 6+ (75%)

KIRC, KIRP 10+ 9+ (90%) 10+ (100%)
THCA 10+ 5+ (50%) 8+ (80%)
PRAD 2+ 2+ (100%) 1+ (50%)
UCEC 2+ 0+ (0%) 2+ (100%)
CESC 2+ 2+ (100%) 2+ (100%)
STAD 6+ 2+ (33%) 6+ (100%)
BRCA 8+ 3+ (37.5%) 6+ (75%)

OV 2+ 2+ (100%) 2+ (100%)
LUAD, LUSC 8+ 0+ (0%) 7% (87.5%)

BLCA 6+ 4+ (67%) 6+ (100%)
GBM, LGG 2+ 2+ (100%) 0+ (0%)

All cancer types 76+ 37+ (49%) 62+ (82%)
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3. Discussion

Molecular classification of tumors is a promising field in cancer research that can bring new
diagnostic, prognostic and therapeutic options along with improved treatment outcomes [60]. High
throughput sequencing provides an instrument for modern classification of tumors based on whole
exome mutation profiles and/or gene expression data. The classes may be the groups of tumors
showing specific molecular features, like mutation and gene expression patterns. The heterogeneity of
cancer types depends on the number of molecular classes/subclasses. However, the criteria for cluster
allocation are most frequently subjectively determined by the researcher. Heterogeneity of a given type
of cancer can be measured by characterizing mixing of the respective samples with the other types
on clustering dendrograms. In this case, homogeneous types of cancer will form separate clusters,
whereas in heterogenous types samples can be mixed with the other types. However, quantitative
assessment of the quality of clustering, especially with high number of samples (e.g., thousands) is a
complex non-intuitive task.

For this purpose, a method termed Watermelon Multisection (WM) was developed that enables
relatively quick and objective assessment of clustering quality and hence the intertumoral heterogeneity.
The method is based on algorithmic assessment of entropy on every cut of clustering. We speculate
that WM may be useful also for the analysis of other types of Big Data in biomedicine. In this
study, we applied WM to assess heterogeneities of thirteen cancer types presented by 4890 tumor
samples with genomic and transcriptomic data. To date, these samples were already described as
a heterogeneous group [61,62], but, to our knowledge, their inter-tumor heterogeneity was never
assessed numerically. Here we quantitatively characterized intertumoral heterogeneities between and
inside different cancer types.

The analysis has been performed independently for the gene expression and DNA mutation data,
both at the levels of full set of human genes and for the fraction of drug target genes. For the first
time we performed a qualitative assessment of the relationship between intertumoral heterogeneity
and repertoires of clinically approved targeted therapeutics. We investigated here the molecular
profiles for 4890 patients representing thirteen cancer types and assessed molecular targets of 85
targeted therapeutics. We found that there is no correlation between the intertumoral heterogeneity
and the number of recommended therapeutics/drugs molecular targets. Our data demonstrate that
currently the repertoire of approved/recommended targeted drugs does not reflect the spectrum of
molecular genetic variants of cancers and probably could be expanded in the case of most highly
heterogenous cancers.

On the other hand, clustering of cancers by gene expression data reflects their anatomical and
histological proximities, whereas clustering by mutations shows little dependence on these factors
(Figure 5). Overall, the most frequently mutated drug target genes were BRAF for thyroid cancer,
FGFR2 for endometrial cancer, EGFR for brain tumors, MGMT for colorectal cancer, FGFR2 and
FGFR3 for bladder cancer, NTRK3 for non-small cell lung cancer and NTRK2, FGFR2, EGFR for
stomach cancer. These mutations were mentioned in the previous literature but additional studies are
necessary to investigate whether they can be considered clinically actionable. Thus, thyroid carcinomas
bearing BRAF mutations are less sensitive to BRAF inhibitors than melanomas and develop primary
or acquired resistance due to additional mutations and activation of alternative signaling pathways
that reinforce ERK signaling [63]. Recently NRG Oncology/Gynecologic Oncology Group study
showed association of FGFR2 mutations with poor outcomes in endometrial cancer [64]. Targeting
the EGFR signal transduction pathway in brain tumors faces the issue of rapid adaptation through
activation of alternative signaling pathways. The role of temozolomide in colorectal cancer still remains
controversial and further research is warranted. Temozolomide showed a modest activity in colorectal
cancers with MGMT promoter methylation and the corresponding clinical trial did not meet its primary
end point [65]. Tracing FGFR3 mutation is currently used for following bladder cancer recurrence but
no related therapeutic options became available [66]. Finally, the role of mutated NTRK3 as target gene
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for treatment of non-small cell lung cancer is exploited by clinical trials [67], whereas targeting FGFR2
and EGFR in stomach cancer is considered promising for improving current strategies [68].

Our results also add to the discussion of whether gene expression biomarkers have a potential to
replace or add value to DNA mutation biomarkers [69]. When comparing the molecular clustering for
the drugs recommendation patterns and for the molecular profiles, we found that the gene expression
data reflected drugs usage practice much better that the gene mutation profiles (Table 3). This finding
may be in line with the results of a previous clinical investigation WINTHER, where personalized
gene expression-guided experimental drug prescriptions to advanced cancer patients resulted in better
clinical outcomes than in the case of mutation-based prescriptions [70].

NCCN treatment guidelines for drugs usage represent consensus critical assessment of multiple
clinical trials results. We showed that they are in line with the transcriptomic features of different
cancer types, as reflected by coincidence of clustering by drugs usage patterns and by gene expression
in 82% of the cases tested (Table 3). This was not the case for the mutation data, where coincidence was
detected in only 49% of the cases, thus strongly arguing that theoretically gene expression data could
be more adequate source of information for the cancer treatment selection.

From this perspective, considering the existing repertoire of targeted therapeutics, kidney, stomach,
bladder, ovarian and endometrial cancer patients receive the best molecular-matched therapy. In
contrast, brain tumor, prostate and colorectal cancer patients receive the least molecular-matched
targeted therapy (Table 3). We hypothesize that rethinking drugs usage practice towards more
molecularly-matched therapeutics has a potential to improve treatment outcomes in the latter group
of cancers.

The best validation for our results could be similar analyses of individual cancer molecular profiles
associated with known responses on treatment with targeted therapeutics. Unfortunately, only 130 out
of 4890 tumor profiles investigated here have been annotated with known responses to targeted drugs.
Such a small number of samples does not make it possible to analyze statistically significant groups of
drug responders and non-responders.

However, further accumulation of clinically annotated high throughput molecular profiles, for
example, References [71–73] can dramatically improve this situation in the future.

To conclude, we showed here for the first time that the repertoires of current targeted therapeutics
do not correspond to molecular heterogeneities of different cancer types. On the other hand, the clinical
recommendations for the available cancer drugs are mostly congruent with the gene expression but not
gene mutation patterns. We detected the best match among the drugs usage and molecular patterns
for the kidney, stomach, bladder, ovarian and endometrial cancers; in contrast, brain tumors, prostate
and colorectal cancers showed the lowest match. We propose that studies of a similar design could be
carried out periodically to control the progress of anticancer drugs development.

4. Materials and Methods

4.1. Tumor Samples

We used molecular profiles for individual tumor samples simultaneously investigated by RNA
sequencing and whole exome sequencing in The Cancer Genome Atlas (TCGA) project [10]. For higher
statistical significance, we considered only primary localizations having at least one hundred samples
with RNA sequencing and exome sequencing data. Totally, 4890 tumor samples were selected for
the analysis (Table 1). The term “cancer type” is used as the synonym of cancer from a particular
primary site according to TCGA classification [74]. TCGA sample barcodes for all molecular profiles
investigated are given in Supplementary Table S1.

For stage-specific studies, we selected molecular profiles for previously untreated tumor samples
with known stage diagnosed (Supplementary Table S1). For our analyzes, we considered minimal
group size of 40 samples per cancer type per stage. For stage I, 1115 tumor samples were analyzed,
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997 samples for stage II, 855 samples for stage III and 244 samples for stage IV, totally 3 211 samples.
Structure of tumor datasets for different stages is shown on Supplementary Table S2.

4.2. Mutation Data

Gene mutation data were extracted from the COSMIC database v76 containing validated mutations
for TCGA tumor samples [75]. We selected non-synonymous somatic mutations of the following
mutation types: “substitution-missense”, “deletion-frameshift”, “substitution-nonsense”, “insertion-in
frame”, “deletion-in frame”, “insertion-frameshift”, “complex-deletion in frame”, “nonstop extension”,
“complex”, “complex-compound substitution”, “complex-frameshift”, “complex-insertion in frame”.
Mutation profiles were generated for every tumor sample under investigation using normalized mutation
rates of 19 618 genes.

Normalized mutation rate (NMR) was calculated as follows:

NMRn,g =
1000 ∗N mut(n, g)

Length CDS (g)
, (1)

where NMRn,g is NMR of gene n in sample g; N mut(n,g) is the number of mutations for gene n in sample
g; Length CDS(n) is the length of coding DNA sequence (CDS) of gene n in nucleotides [27,46]. The
gene CDS normalization was done to eliminate a bias caused by different gene lengths [46], calculated
NMR values are given in Supplementary Table S3. Averaged NMR profiles for thirteen cancer types
under investigation are shown on Supplementary Table S4.

4.3. Gene Expression Data

RNA sequencing data were extracted from the GDC portal in HTSeq counts format [76]. For
every gene expression profile, Deseq2 normalization was applied [47]. For further analyses we used
logarithms of normalized gene counts.

4.4. Clinical Utility of Drugs and Molecular Targets

We extracted information about targeted therapeutics used in clinical practice for treatment of the
cancer types under investigation from the US Food and Drug Administration (FDA) portal [25] and
from the National Comprehensive Cancer Network (NCCN) guidelines [32–44]. The inclusion criterion
for a therapeutic was its FDA approval and/or recommendation by the NCCN, category higher than
2B. Only those drugs were included that are accepted for the histotypes presenting in the 4890-tumor
sampling for the thirteen cancer types investigated here (Table 1), histotypes of all individual samples
are listed in Supplementary Table S5. The matrix drug-disease indicating approval of therapeutics for
treatment of the cancer types under analysis is shown on Supplementary Table S6. The information was
collected for 164 targeted drugs, of them only 85 are accepted for the thirteen cancer types investigated.
The stage-specific usage of drugs for the cancer types under study is shown on Supplementary Table S6.
Molecular targets of drugs were identified using public databases DrugBank and Selleckchem [17,77].
In total, we identified 82 unique genes for molecular targets of the drugs selected (Supplementary
Table S7).

4.5. Clustering Parameters and Quality

The clustering of tumor samples was performed using Ward.D2 method [78] using “euclidian”
distance method. The assessment of clustering quality was performed by calculation of Watermelon
Multisection (WM) metric. WM is the method characterizing entropy of cluster dendrogram on every
cut level. The obtained values are compared with random orders of class labels. The final output value
of WM termed WM Area reflects the quality of clustering. When the elements of different classes are
perfectly separated, the clustering has minimal entropy on every dendrogram cut level and WM area
is equal to 1. When the elements of different classes are randomly distributed among clusters, WM
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area may vary around zero, also taking negative values. WM scoring demonstrates an advantage over
other clustering quality metrics, described in detail in Supplementary File 2.

4.6. Data Presentation

The results were visualized using packages grafics and ggplot2 [79,80].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1580/
s1. Supplementary file 1. Analysis of disparity between inter-patient molecular heterogeneity of all genes
and repertoires of target drugs used for different types of cancer, performed separately for cancer stages I-IV.
Supplementary file 2. Detailed description of Watermelon Multisection method. Supplementary file 3. Analysis
of disparity between inter-patient molecular heterogeneity of drug target genes and repertoires of target drugs used
for different types of cancer, performed separately for cancer stages I-IV. Supplementary file 4. Correlation between
cancer type-specific average pairwise distances for gene expression and mutation data, calculated separately for
cancer stages I-IV. Supplementary file 5. Clustering of cancer types under investigation by molecular profiles
and targets of NCCN-recommended drugs, performed separately for cancer stages I-IV. Supplementary Table
S1. TCGA barcodes of the investigated in this study and tumor staging information. Supplementary Table S2.
Stage-specific structure of tumor sample dataset. Supplementary Table S3. Normalized mutation rate profiles for
4890 tumor samples. Supplementary Table S4. Averaged NMR profiles for thirteen cancer types under study.
Supplementary Table S5. Histotypes of TCGA tumor samples, separately for general set and for cancer samples
with annotated stages. Supplementary Table S6. Drug-disease matrix indicating approval of therapeutics for
treatment of the cancer types under analysis, separately for general set and for cancer samples with annotated
stages. Supplementary Table S7. Molecular targets of drugs investigated in this study.
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