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Abstract: Podocytes are visceral epithelial cells covering the outer surface of glomerular capillaries in
the kidney. Blood is filtered through the slit diaphragm of podocytes to form urine. The functional
and structural integrity of podocytes is essential for the normal function of the kidney. As a
membrane-bound organelle, lysosomes are responsible for the degradation of molecules via hydrolytic
enzymes. In addition to its degradative properties, recent studies have revealed that lysosomes may
serve as a platform mediating cellular signaling in different types of cells. In the last decade, increasing
evidence has revealed that the normal function of the lysosome is important for the maintenance of
podocyte homeostasis. Podocytes have no ability to proliferate under most pathological conditions;
therefore, lysosome-dependent autophagic flux is critical for podocyte survival. In addition, new
insights into the pathogenic role of lysosome and associated signaling in podocyte injury and chronic
kidney disease have recently emerged. Targeting lysosomal functions or signaling pathways are
considered potential therapeutic strategies for some chronic glomerular diseases. This review briefly
summarizes current evidence demonstrating the regulation of lysosomal function and signaling
mechanisms as well as the canonical and noncanonical roles of podocyte lysosome dysfunction in the
development of chronic glomerular diseases and associated therapeutic strategies.
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1. Introduction

In the early 1950s, Christian de Duve discovered “sac-like structures” that contained lytic enzymes
while investigating the mechanism of action of insulin [1,2]. Following de Duve’s work, Alex
Novikoff characterized the ultrastructure of these compartments, which led de Duve to rename them
lysosomes [3]. In another pioneering study, Werner Strauss discovered that proteins localized in the
lysosomes were fragmented by tracing the fate of radiolabeled extracellular proteins [4]. As the cell’s
degradative organelle, the lysosome has gained notoriety as the “recycling center” of the cell.

Podocytes are terminally differentiated epithelial cells covering the outer surface of glomerular
capillaries. They typically do not proliferate. Most glomerular diseases in which the podocyte is
the target of injury are not associated with podocyte proliferation [5,6]. As the major degradative
components of cells, the normal function of lysosomes is necessary to renew cellular activity and
maintain the structural and functional integrity of podocytes. Over the last decade, the canonical notion
of the lysosome as a simple recycling center has undergone a dramatic revolution. The mechanistic
target of rapamycin complex 1 (mTORC1), the master regulator of cell growth, was found to be
localized on the surface of the lysosome. As a result of this discovery, the lysosome is now recognized
as a metabolic signaling hub. Recent studies have revealed the essential role of lysosome-dependent
sphingolipid metabolism in glomerular disorders of genetic and non-genetic origin [7]. In this review,
we focus on the lysosome as a platform for physiological and pathological signaling that controls the
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podocyte homeostasis and how the dysregulation of lysosome function leads to podocyte injury and
glomerular diseases.

2. Different Types of Lysosomes

As a membrane-bound organelle in eukaryotic cells, lysosome originates from the Golgi apparatus
and stays in the cytoplasm. Many acid hydrolases are responsible for intracellular digestion by
lysosomes. Lysosomes are divided into two types according to their different functions: conventional
lysosome and secretory lysosome. Conventional lysosome acts as a waste disposal machinery to
control phagocytosis and autophagy [8,9]. Secretory lysosome can move towards and fuse to the
plasma membrane, leading to the release of its contents into the extracellular space. Recently, a new
type of lysosome has been found to repair the damaged plasma membrane via its fusion to plasma
membrane [10–13]. This type of lysosome may also play an essential role in receptor-mediated
endocytosis, leading to the recycling of receptors [14]. More recently, it has been found that exocytosis
of non-secretory cells is dependent on lysosomes [11]. After lysosomes fuse to the plasma membrane,
their contents are released to the extracellular space. Meanwhile, the components in lysosomal
membrane are incorporated into the plasma membrane [11].

3. Cellular Functions Regulated by Lysosomes

Intracellular destruction of endocytic, phagocytic, and autophagic materials is dependent on
lysosomes which serve as the major degradative compartments with their digestive function [15–17].
Beyond intracellular digestion, lysosomes may mediate cellular signaling in different cells [18–20]
such as their role in receptor recycling through an endocytic pathway [21] and as a Ca2+ store
importantly participating in the physiological regulation of cell functions or activities in many tissues
or cells [19,22–25], including podocytes [26–28]. In podocytes, normally functioning lysosomes are
particularly important for the protection of this terminally differentiated cell type from the challenges
of various danger factors [27,29–31]. Recent clinical and experimental studies have indicated that
the deficiency or loss of lysosome function in podocytes results in proteinuria, glomerular sclerosis,
and dramatically increased susceptibility to different pathological stimuli [32–35]. As shown in
Figure 1, lysosomes regulate various important cellular functions. Here, we highlighted some lysosome
functions which may be essential for the maintenance of podocyte homeostasis or implicated in the
onset or development of podocyte injury and glomerular diseases.

3.1. Autophagic Flux

The acidification of lysosomal compartment facilitates the function of lysosomal hydrolases, which
is dependent on H+-ATPases on the lysosomal membrane. The Ca2+ enters the lysosomal compartment
by H+/Ca2+ exchange under resting conditions and exits in response to various stimuli [23,36].
The regular influx and efflux of Ca2+ are essential for the normal functions of lysosomes. By destroying
various aged organelles within the cell such as dysfunctional mitochondria, lysosomes maintain cell
function and integrity. In this regard, lysosome-dependent autophagy has been found to control the
degradation of damaged or aged materials in podocytes. This autophagic flux plays an important role
in the clearance of waste in podocytes under normal condition and recovery of podocytes from damage
to the glomeruli upon pathological stimuli. The degradation of defective or damaged mitochondria
and consequent inhibition of pro-apoptotic protein release may be the mechanisms by which lysosomes
attenuate cell apoptosis [37]. Furthermore, it has been found that the differentiation and maturation of
podocytes are dependent on autophagy, indicating the importance of lysosome function in maintaining
the epithelial phenotype of podocytes [26,38,39]. Various important cellular functions such as
receptor-mediated endocytosis, receptor recycling, and cell membrane repair [14,40,41] requires normal
function of lysosomes.
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Figure 1. Cellular functions regulated by lysosomes including autophagy, MVB degradation,
lysosomal secretion, phagocytosis, inflammasome activation, membrane repair, and apoptosis. AP,
autophagosome; MVB, multivesicular body.

The localization of the lysosome as a dynamic organelle has been reported to change in response
to a variety of treatments [42]. The kinesin and dynein motors mediate the lysosome movement along
the microtubule in anterograde and retrograde directions, respectively [43,44]. Moreover, intracellular
pH is one of the best-known regulators of lysosomal positioning. The lysosomes redistribute from their
predominantly perinuclear location toward the cell periphery in response to acidification of lysosomal
compartment [45]. Furthermore, nutrients and growth factors can drive lysosomes toward the plasma
membrane, whereas starvation results in lysosomes moving toward perinuclear localization [46,47].
Vacuolar-type proton pumping ATPase (V-ATPase) is a ubiquitous enzyme responsible for H+ transport
across membranes and acidification of cellular compartments in animals [48]. The phosphate bond
energy of ATP is thus converted to a proton gradient across the membrane through the mechanical
rotation of subunits. The proton pumping action of lysosomal V-ATPases results in the generations
of an acidic lumen and proton gradient of lysosomes, which are essential for normal functions of
lysosomes [48]. A recent study in our lab has revealed that inhibition of V-ATPase activity remarkably
attenuated lysosome function, leading to autophagic deficiency and podocyte dedifferentiation [26].

As a master growth regulator, mTORC1 becomes activated at the cytosolic side of lysosomes in
response to nutrients, which increases the peripheral appearance of lysosomes and inhibits fusion
of autophagosome and lysosome. On the contrary, starvation causes the perinuclear clustering of
lysosomes and enhances autophagic flux via inhibition of mTORC1 activity [49,50]. In HeLa cells,
HIV-1 counteracts metabolic and environmental stress-induced intracellular repositioning of lysosomes
through enhancement of mTORC1 activity [51]. In another study, knockdown of FUT1 has been found
to elevate the peripheral distribution of lysosomes by inhibition of mTORC1 activity, leading to the
enhancement of autophagic flux [52]. All these previous findings demonstrate that the mTOR signaling
pathway plays an important role in the regulation of lysosome positioning and trafficking. A recent
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study in our lab has confirmed that mTORC1 inhibition by rapamycin may increase the fusion of
autophagosome and lysosome by enhancing lysosome trafficking. Rapamycin-induced enhancement
of autophagic flux may be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin [28].
Furthermore, palmitate, a saturated free fatty acid, has been found to activate mTORC1, leading to the
endoplasmic reticulum (ER) stress-dependent apoptosis in podocytes. Inhibition of mTORC1 activity
by rapamycin or siRNA for Raptor, a component of mTORC1, ameliorated palmitate-induced ER
stress and apoptosis in podocytes [53]. Together, these previous studies have demonstrated that the
regulation of lysosome trafficking and autophagic flux by targeting mTORC1 is a potential therapeutic
strategy against podocyte injury and glomerular diseases. However, previous studies have revealed
that the basal level of mTORC1 activity is required for maintaining the normal function of podocytes.
Genetic deletion of mTORC1 in podocytes may cause the disruption of autophagic flux, leading to
podocyte dysfunction and proteinuria [54,55]. In addition, patients with certain renal problems may
suffer progressive proteinuria by taking currently available mTORC1 inhibitors [56–58]. Their side
effects may be due to the inhibition of the basal level of mTORC1 activity and the mTORC2-Akt
pathway, which are important for maintaining the integrity of podocytes [59,60].

3.2. Lipid Metabolism

As a digestive organelle, the lysosome is responsible for lipid metabolism. The deprivation
of nutrient may result in association of lipid droplets and autophagic membrane components [61].
The storage of triglyceride in lipid droplets is elevated after inhibition of autophagy [61]. In macrophages,
the lysosome is responsible for the metabolism and transport of cholesterol and low-density lipoprotein.
Under normal conditions, lysosomal acid lipase hydrolyzes cholesteryl esters to free cholesterol.
This product is then actively exported out of lysosomal compartment through Niemann–Pick-type
C1 protein. Several lysosomal proteins such as acid sphingomyelinase (ASM), mucolipin-1, and
H+-ATPase regulate metabolism and transport of cholesterol in lysosomes [62].

As components of the external layer of plasma membranes, sphingolipids are transported by
the endocytic vesicular flow through the early and late endosomal compartment and degraded in
lysosomes [63]. In the lysosomal compartment, sphingolipids are catabolized to simple compounds,
such as sphingosine, fatty acids, and sugars [63,64]. These products are exported out of the
lysosomes through specific membrane proteins and then partially recycled for the biosynthesis
of new sphingolipids [65–67]. In addition, it has been reported that many cellular activities, such
as proliferation, apoptosis, differentiation, and migration, are influenced by sphingolipids [68,69].
Furthermore, sphingolipids have been found to interact with extracellular matrix, growth factor
receptors, and neighboring cells [70].

3.3. Inflammasome Activation

As a cytosolic multiprotein platform, inflammasome assembles in response to pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) [71]. As a vital
intracellular homeostatic recycling process, autophagy has been shown to negatively regulate
inflammasome activation in previous studies [72,73]. Damaged organelles such as mitochondria are
removed by autophagy, leading to reduced release of mitochondrial-derived DAMPs and subsequent
suppression of inflammasome activation [74–76]. Autophagic deficiency results in ROS-producing
mitochondria accumulation, leading to enhancement of NLRP3 inflammasome activation in response
to ATP, monosodium urate crystals, palmitic acid, and influenza A virus [74,75,77,78]. Autophagy also
regulates inflammasome activation through the lysosome-dependent degradation of inflammasome
complexes. It has been reported that pharmacological inhibition of autophagy can greatly increase
activation of caspase-1 and inflammatory cytokine production in response to the induction of AIM2 in
monocytes [79]. Moreover, it has been found that pro-IL-1β can be sequestered into autophagosomes
for degradation by lysosomes after treatment of macrophages with rapamycin, a pharmacological
inducer of autophagy that inhibits mTOR [80].



Int. J. Mol. Sci. 2020, 21, 1559 5 of 25

3.4. Exosome Release

The exosomes, one of the extracellular vesicles (EVs), are released by the fusion of the multivesicular
body (MVB) to plasma membrane [81]. These EVs may regulate cell-to-cell communications. After
long-time challenging and debating about the characterization and classification of EVs, EVs are
now classified as three distinct populations including apoptotic bodies, microvesicles, and exosomes.
Among them, exosomes are the smallest EVs with approximately 50–140 nm in diameter despite no set
clear cut-off size to separate them from microvesicles. Different from other EVs, exosomes are formed
through the endocytic process and released from intracellular MVBs through an active process. EVs or
exosomes have been extensively studied for their biogenesis and related function in cell communication
and in the pathogenesis of different diseases including renal diseases [82–84]. In recent studies,
lysosome dysfunction induced by alkaline agents and lysosomal V-ATPase inhibitor leads to increase in
exosome release of various cells such as neurons, epithelial cells, and vascular cells [85–87]. In addition,
MVBs were found to fuse with autophagosomes (APs) to form amphisomes and subsequently fuse
with lysosomes to terminate MVB fate and thereby reduce exosome release [88–90].

As an important biomarker indicating kidney function or disease, exosomes mediate intra-renal
cell-to-cell communication and contribute to the development of various renal diseases [83]. There
is evidence that exosomes containing podocalyxin, a glycoconjugate on the podocyte apical surface,
are increased in diabetic mice even before the onset of albuminuria [91]. In some patients with focal
segmental glomerulosclerosis (FSGS) and nephrotic syndrome (NS), podocyte-derived exosomes
increased in concert with albuminuria and glomerular degeneration [83,92–96]. Increased exosomes
may serve as a signaling vesicle to trigger phenotypic changes in neighboring cells [97] and they also
participate in the development of albuminuria [98].

There is evidence that the lysosome-mediated regulation can actively respond to microenvironment
changes such as increased autophagosomes, MVBs or other stress signals, which occurs in podocytes and
other cells. Such active regulation of lysosome function determines the disposal of different intracellular
vesicles such as phagosomes, autophagosomes, and MVBs [28,99–101]. Previous studies have shown
that regular lysosome trafficking controls the fusion of lysosomes and MVBs. The lysosomal Ca2+

release determines the active movement of lysosomes [25,100]. As a ubiquitously expressed protein,
transient receptor potential-mucolipin-1 (TRPML1) channel is an ion channel expressed in intracellular
endosomes and lysosomes [102]. The Ca2+ enters the lysosomal compartment by H+/Ca2+ exchange
and exits through TRPML1 channels in response to endogenously produced NAADP [23,103–105] or
other factors like PIPs (PI(3,5)P2) and ions [19,106,107].

4. Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases

Growing evidence reveals that pathological progression of podocyte injury in glomerular
diseases originates from the disarrangement of lysosome function. The resolution of podocyte
injury involves alteration of autophagic flux as well as targeting lysosome-dependent sphingolipid
metabolism by pharmacological intervention or enzyme replacement therapy. All the mechanisms or
regulatory pathways mentioned above that control or modulate lysosome function are important for the
maintenance of podocyte activity and glomerular function. If they fail to function properly, podocyte
dysfunction and glomerular injury will occur. Below, we highlight the role of lysosome dysfunction
and associated dysregulation in several common nephropathies associated with podocyte injury.

4.1. Diabetic Nephropathy

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD)
worldwide [108]. Pathologic changes in the diabetic kidney including thickening of the glomerular
basement membrane, mesangial expansion, proteinuria, inflammation, and fibrosis. Podocyte damage
and loss contribute to the impairment of renal function in DN. In recent years, increasing evidence
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indicates that the disarrangement of lysosomal function is attributed to the initiation of podocyte injury
and the development of ESRD during DN.

Previous studies have demonstrated that autophagy is renoprotective in various renal diseases
including DN [109]. As an anaphase cell with a restricted capacity in differentiation and proliferation,
podocyte is very dependent on autophagy because of its self-repaired feature [110]. Strong evidence
has confirmed that activation of mTOR suppresses autophagy. By this mechanism, nutrient deficiency
activates autophagy by suppressing the expression of mTOR. On the contrary, mTOR is activated
by both growth factors and nutrients, such as glucose and amino acids [111–113]. During diabetes,
hyperglycemia has been found to induce the overactivation of mTOR signaling in lysosomes [114].
The use of rapamycin as a specific mTORC1 inhibitor to effectively attenuate the development of
glomerular injury in the animal models of DN has established that mTOR signaling and related
lysosome function have an important role in the pathophysiology of DN. In this regard, translationally
controlled tumor protein (TCTP), GLUT4, and C1-Ten have been found to regulate mTOR complex 1
(mTORC1) signaling in glomeruli and the podocyte is the principal cell responsible for the regulation
of mTORC1 by these proteins [115–117]. During diabetes, elevation of these regulators may explain
for overactivation of lysosomal mTORC1 in podocytes, leading to podocyte injury and glomerular
diseases. Genetic deletions of these regulators have been shown to prevent the development of diabetic
nephropathy, as indicated by the amelioration of proteinuria, mesangial expansion, podocyte loss and
glomerular sclerosis. Reactive oxygen species (ROS) produced by mitochondria has also been reported
to prevent mTOR activation in podocytes exposed to high glucose for 24 h, leading to enhancement of
lysosome-dependent autophagy which may limit the augmentation of ROS produced by damaged
mitochondria [118,119]. However, chronic exposure to high glucose leads to autophagy insufficiency
and subsequently causes lysosomal dysfunction, leading to podocyte apoptosis [29]. Furthermore,
genetically reducing mTOR levels by eliminating the Raptor allele dramatically prevents podocyte
injury and ameliorates the progression of glomerular dysfunction during diabetes [54]. In addition,
podocyte-specific mTORC1 activation induced by the ablation of an upstream negative regulator
(PcKOTsc1) has been reported to recapitulate many features of DN, including podocyte loss, glomerular
basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and
adult mice [120]. However, it has been reported that podocyte-specific deletion of the mTORC1 gene
induces proteinuria and progressive glomerulosclerosis [54]. These findings suggest that excess of both
activation and inhibition of mTOR signaling may cause podocyte injury. Given the important role of
mTOR signaling in autophagy, lysosome dysfunction and autophagic deficiency due to overactivation
of mTOR signaling may be involved in the pathogenesis of podocyte injury and glomerular damage in
patients with diabetes. Figure 2 summarizes the regulation of mTORC1 in podocytes during DN.

In addition to autophagy, lysosome-dependent lipid metabolism plays an important role in
podocyte injury and glomerular diseases during DN. A previous study has confirmed that rapamycin
effectively attenuates STZ-induced DN which is shown by inhibition of glomerular enlargement and
proteinuria [121]. Mechanically, they have found that ceramide and sphingomyelin are both remarkably
elevated in the renal cortex of rats with DN while rapamycin significantly inhibited the elevations
of ceramide and sphingomyelin. These results indicate that suppression of abnormal sphingolipid
metabolism contributes to the therapeutic effect of rapamycin on DN [121]. Moreover, the activation
of adiponectin receptors has been found to regulate the expression of lysosomal acid ceramidase
(AC) which converts ceramide to sphingosine [122]. The reductions of both adiponectin receptor and
lysosomal AC were detected in diabetic mice, which were significantly attenuated by AdipoRon, an
adiponectin receptor agonist. Furthermore, AdipoRon-induced enhancement of lysosomal AC activity
lowered cellular ceramide levels, which may contribute to the therapeutic effects of AdipoRon [122].
More recently, a clinical study has found that the elevation of urinary ceramide is associated with
DN [123]. According to results from other studies, the abnormal sphingolipid metabolism by lysosomal
enzymes may contribute to the elevation of urinary ceramide in DN patients [123]. These results further
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confirmed that abnormality of lysosome-dependent sphingolipid metabolism might be a molecular
mechanism leading to podocyte injury and glomerular damage during diabetes.

Figure 2. Regulation of mTORC1 in podocytes. During starvation, inactive mTORC1 has no
effects on lysosome function and autophagic flux in podocytes. During diabetic nephropathy (DN),
hyperglycemia upregulates TCTP, GLUT3, and C1-Ten, leading to overactivation of mTORC1 and
inhibition of autophagy. As a specific mTORC1 inhibitor, rapamycin can prevent lysosome dysfunction,
autophagic deficiency, and podocyte injury during diabetes. Reactive oxygen species (ROS) produced
by mitochondria has also been reported to prevent mTORC1 activation in podocytes during diabetes.

Lysosome membrane permeabilization (LMP) has been found to initiate lysosome-dependent
cell death [124]. Lysosome contents including cathepsins as the main stimulator of the cell death are
released during the destabilization of lysosomal membrane [125]. Recent studies have shown the
important role of LMP in podocyte injury under pathological conditions such as idiopathic membranous
nephropathy [27] and diabetic nephropathy (DN) [126]. As a dangerous factor elevated during DN,
advanced glycation end products (AGEs) have been found to induce LMP in murine podocytes [126].
Correspondingly, cathepsins B, D, and L were released into the cytosol of these cells. The LMP
initiates the development of autophagic deficiency, apoptosis, and Rac-1-dependent actin-cytoskeletal
disorganization in these cells. Interestingly, exposures to both C5b-9 and AGEs have been reported to
enhance the production of reactive oxygen species (ROS) [127,128], while the occurrence of LMP is
frequently associated with the overproduction of ROS [129–131]. As an intracellular cysteine protease,
cathepsin L is upregulated in podocytes and glomeruli under different pathological conditions [132,133].
A recent study targeting cathepsin L has confirmed that cathepsin L-knockout mice do not develop
podocyte injury and glomerular damage during diabetes [132]. Mechanistically, CD2-associated protein
(Cd2ap) and synaptopodin proteolysis are promoted by cathepsin L, leading to podocyte damage
and massive foot process effacement [134]. Cathepsin abrogation is protective against a variety of
external stimuli. Furthermore, cathepsin L possesses the function of cleaving dynamin, which affects
the regulation of the actin cytoskeleton in podocyte foot processes [135].

Recently, it has been found that D-ribose, an overlooked risk factor in the development of
type II diabetes mellitus, produces AGEs much more rapidly than D-glucose [136,137]. A recent
study in our lab has demonstrated that D-ribose induces formation and activation of NLRP3
inflammasome in podocytes via AGE/RAGE signaling pathway, which may contribute to the initiation
of podocyte injury and glomerular damage during diabetes [138]. After NLRP3 inflammasome is
activated, sphingolipid-mediated regulation of lysosome function significantly affects the release
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of inflammasome-derived products into extracellular space via exosomes [139]. Both inhibition of
lysosomal ASM and activation of lysosomal AC attenuated inflammatory exosome release through
enhancement of lysosome-dependent degradation of MVBs [139]. In conclusion, lysosomal sphingolipid
metabolism as a regulator of inflammatory exosome release may be a novel target for the development
of therapeutic strategy for prevention and treatment of DN. Figure 3 summarizes the mechanism of
inflammatory exosome release in podocytes.

Figure 3. Mechanism of inflammatory exosome release in podocytes. It has been reported that in
podocytes, pathological stimuli may induce inflammasome activation and lysosome dysfunction.
Activated inflammasome produces proinflammatory cytokines, such as IL-1β and IL-18. Lysosome
dysfunction leads to reduced MVB degradation and increased exosome release. The proinflammatory
cytokines in podocytes may be released through exosome release. The released inflammatory exosomes
may induce direct injury of podocytes and inflammatory response, leading to the development of
glomerular sclerosis. NLRP3, nucleotide-binding oligomerization domain-like receptor containing
pyrin domain 3; ASC, adaptor molecule apoptosis-associated speck-like protein containing a caspase
recruitment domain; IL-1β, interleukin-1β; GBM, glomerular basement membrane; EC, endothelial cell.

4.2. Glomerular Injury during Fabry Disease

The mutation of the gene encoding alpha-galactosidase A (α-GalA), a lysosomal enzyme that
hydrolyzes the terminal alpha-galactosyl moieties from glycolipids and glycoproteins, results in the
systemic accumulation of globotriaoslyceramide (Gb3), which is so-called Fabry disease [140]. Elevation
of urinary Gb3 is detected in patients with Fabry disease [141,142]. In the kidney, Gb3 accumulation
occurred mainly within the lysosome, ER, and nuclear markers of renal cells [143], which may be
reversed by enzyme replacement therapy using recombinant α-GalA [142]. In patients with Fabry
disease, the pathological changes observed in podocytes included hypertrophy, lysosome enlargement,
and characteristic inclusion bodies of glycolipids, which led to mesangial cell expansion [144]. A recent
study has demonstrated that the intracellular Gb3 accumulates in response to the lentiviral knockdown
of α-GalA in human podocytes [145]. Mechanically, the loss of mTOR kinase activity and dysregulated
autophagy were associated with the intracellular Gb3 accumulation [145]. The link between α-GalA
and mTOR signaling pathway has further confirmed the importance of normal Gb3 metabolism in
the maintenance of podocyte homeostasis. Enzyme replacement therapy using recombinant human
α-GalA has been found to attenuate Gb3 accumulation in different types of renal cells including vascular
endothelial cells, vascular smooth muscle cells, mesangial cells, interstitial cells, distal tubular epithelial
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cells, and podocytes, which is associated with suspension of the progression of renal pathology and
prevention of renal failure in patients with Fabry disease [146]. However, the clearance of Gb3 by
enzyme replacement therapy in podocytes and distal tubular epithelial cells is more limited than
the clearance observed in other cell types [146]. In this regard, a previous study has unveiled a
strategy for specific delivery of recombinant α-GalA to podocytes. Mannose 6-phosphate/insulin-like
growth II receptor, megalin, and sortilin have been identified in human podocytes [147]. It has been
demonstrated these receptors possess delivery capabilities for enzyme replacement therapy. This study
has identified potential pathways for potential non-carbohydrate-based drug delivery to podocytes for
treatment of Fabry disease-associated podocyte injury and glomerular diseases.

4.3. Hyperhomocysteinemic Nephropathy

A homocysteine level that exceeds 15 µmol/L in the plasma of patients is characterized as
hyperhomocysteinemia (hHcy). It has been reported that the progression of many chronic metabolic
diseases including hypertension, peripheral vascular disease, Alzheimer’s disease, diabetes and
atherosclerosis is attributed to elevated homocysteine (Hcy) [148]. Accumulation of Hcy or hHcy in the
blood induces pathological alterations in the glomeruli including extracellular matrix accumulation
and podocyte injury. The inability of this toxic compound to be properly cleared or degraded from the
body eventually leads to compromised renal function and glomerulosclerosis [149,150]. Although it
remains unclear how hHcy causes cellular injury and sclerotic changes in many organs and tissues,
some studies have revealed that ceramide production is upregulated during hHcy, suggesting this
sphingolipid may play a crucial role in these processes [151–153]. In this regard, a recent study in
our lab has demonstrated that hHcy-induced NADPH oxidase-dependent superoxide production
may be attributed to overexpression of lysosomal ASM and consequent ceramide accumulation in the
glomeruli of hHcy mice [154]. A further study has confirmed that hHcy-induced glomerular ceramide
accumulation occurs mainly in the podocytes [155]. In vivo evidence shows that ASM gene deletion
blocks glomerular superoxide production and podocyte injury in mice with hHcy. Pharmacological
inhibition of ASM by amitriptyline has been found to prevent ceramide accumulation, superoxide
production, and cellular injury in cultured murine podocytes [155]. However, it remains unclear how
the overproduction of ceramide by ASM leads to podocyte injury and glomerular diseases during hHcy.

Since superoxide production can induce inflammasome activation, we investigated whether
inflammasome is involved in podocyte injury during hHcy. Strong evidence has confirmed that
NLRP3 inflammasome formation and activation are important molecular mechanisms triggering
podocyte injury and ultimately resulting in glomerular sclerosis during hHcy [156,157]. Moreover,
endogenously produced reactive oxygen species has been found to contribute to the activation of NLRP3
inflammasome in podocytes during hHcy [158]. Recently, we have confirmed that the overproduction
of ceramide by lysosomal ASM induces NLRP3 inflammasome activation in podocytes, leading to
proteinuria and glomerulosclerosis [159]. The assembly and activation of the NLRP3 inflammasome
may be attributed to superoxide production in glomeruli during ceramide accumulation. These results
indicate that an imbalance of lysosome-dependent sphingolipid metabolism may be the molecular
mechanism initiating NLRP3 inflammasome activation in podocytes, leading to podocyte injury and
glomerular sclerosis during hHcy.

4.4. Obesity-Induced Podocyte Injury and Glomerular Disease

Previous studies have revealed that obesity is a risk factor of chronic kidney disease (CKD) and
end-stage renal disease (ESRD) [160,161]. Adipose tissue, especially visceral fat, generates bioactive
substances which contribute to pathological changes of renal hemodynamics and structure, leading
to glomerular injury [162]. These bioactive substances derived from adipose tissue include the
adipokines visfatin, leptin, and adiponectin as well as various cytokines such as tumor necrosis factor-α
(TNF-α), resistin, and interleukin-6 (IL-6) [162]. As an anti-inflammatory adipokine, adiponectin
inhibits pro-inflammatory cytokine release, enhances anti-inflammatory cytokine release, and restores
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intracellular ATP levels [163–165]. It has been reported that adiponectin can inhibit the development of
various obesity-related diseases [163,166,167]. Recently, we have demonstrated that adiponectin inhibits
pannexin-1 (Panx1) channel activity in podocytes via enhancement of lysosomal AC activity [168].
Since the Panx1 channel mediates ATP release, inhibition of the Panx1 channel may contribute to the
anti-inflammatory property of adiponectin. Furthermore, the expression of AC has been found to be
upregulated by activation of adiponectin receptors [122]. Therefore, hypoadiponectinemia may lead to
enhancement of Panx1 channel activity during obesity, leading to increased ATP release, inflammasome
activation, and consequent inflammatory response in local tissues such as glomeruli. Moreover, the
high-fat diet (HFD) has been found to significantly increase glomerular ceramide production, NADPH
oxidase-dependent superoxide production, and NLRP3 inflammasome formation in glomeruli of wild
type mice [159]. The activation of NLRP3 inflammasome mainly occurs in podocytes. However, the
deletion of the ASM gene totally blocked NLRP3 inflammasome activation and glomerulosclerosis
during obesity [159]. These results indicate that the normal function of lysosomal ASM is essential
for the maintenance of podocyte homeostasis. The imbalance of lysosome-dependent sphingolipid
metabolism may induce NLRP3 inflammasome activation, leading to podocyte injury and glomerular
sclerosis during obesity.

Recently, a clinical study has confirmed that urinary excretion of sphingolipids occurs in adolescents
with severe obesity despite the absence of microalbuminuria. Therefore, urinary sphingolipids may
be used as a parameter to detect early glomerular injury in adolescents with severe obesity [169].
The elevated urinary sphingolipids include ceramides, sphingomyelin, and glycosphingolipids. Given
the recently discovered role of ceramide-enriched exosome as a passenger of danger signal and a
stimulator of further damages [170–172], it is possible that the exosome plays a significant role in
the development of glomerular diseases during obesity. In this regard, a recent study in our lab has
revealed that TRPML1 channel-mediated Ca2+ release controls lysosome trafficking and lysosome-MVB
interaction in podocytes [173]. Blockade of TRPML1 channel due to lysosomal AC dysfunction inhibits
the fusion of lysosomes and MVBs, leading to enhanced exosome release from podocytes. Under
pathological conditions, deficiency of lysosomal AC function may inhibit TRPML1 channel activity,
leading to enhancement of podocyte-derived exosome release and consequent podocyte injury and
glomerular damage. Figure 4 summarizes the regulation of lysosome trafficking by sphingolipids
in podocytes.

Although autophagy has been confirmed to be essential for the maintenance of podocyte
differentiation, its role in obesity-induced podocyte injury may be different. Recently, it has
been found that inhibition of GLUT4 translocation to the plasma membrane induces excessive
autophagy in podocytes, which contributes to the development of obesity-related glomerulopathy [174].
The glucagon-like peptide-1 analog inhibits excess of autophagy in podocytes to prevent obesity-related
glomerulopathy [174]. On the contrary, rapamycin, an autophagy inducer, was found to worsen
podocyte injury induced by palmitic acid [174]. These results indicate that both inhibition and
excess of lysosome-dependent autophagy can cause podocyte injury and glomerular diseases under
pathological conditions.
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Figure 4. Regulation of lysosome trafficking by sphingolipids in podocytes. Dynein-mediated
retrograde transport of lysosomes promotes their fusion with MVB. This transport is dependent on the
TRPML1 channel-mediated Ca2+ release. In the lysosome, ASM converts SM into CER and AC converts
CER to Sph. These sphingolipids, SM, Cer, and Sph had different effects on TRPML1 channel activity in
podocytes, with inhibition by SM, no effect from Cer, but enhancement by Sph. SM, sphingomyelin;
Cer; ceramide; Sph, sphingosine.

4.5. APOL1-Associated Nephropathy

As a minor apoprotein component of high-density lipoprotein, apolipoprotein L1 (APOL1) is
expressed in different tissues, such as kidney, liver, pancreas, and brain [175,176]. Recently, increasing
evidence has indicated that a major disparity in renal health is strongly associated with two coding
sequence variants in APOL1 [177–180]. Compared with European Americans, African Americans have
higher possibility of suffering progressive nephropathy, including FSGS, human immunodeficiency
virus (HIV)-associated nephropathy (HIVAN), and hypertension-associated ESRD [181,182]. Many
African Americans possess risk variants of APOL1. On the contrary, coding sequence variants of
APOL1 occur infrequently in European Americans [181,183,184]. This remarkable population disparity
has confirmed that abnormality of APOL1 contributes to the development of progressive nephropathy.

A clinical study has shown that patients with FSGS and HIVAN have lower expression of APOL1
in podocytes compared to other kinds of cells [185]. In a recent study, enhanced lysosomal swelling
and necrosis have been found in human podocytes expressing APOL1 variants [186]. The enhanced
lysosomal swelling may be due to increased lysosomal membrane permeability in podocytes with
APOL1 variants. As a secreted protein, APOL1 can induce lysosomal membrane depolarization
and continuous chloride influx [187]. Correspondingly, inhibition of chloride channel and blockade
of interaction between APOL1 and lysosome have been found to attenuate lysosomal swelling
and podocyte injury due to APOL1 variants [186]. In this regard, an in vivo study has shown
that transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in
mice [188]. Podocyte foot process effacement, albuminuria, and glomerular sclerosis were found
in mice with podocyte-specific inducible expression of the APOL1 risk variants. Mechanically,
podocyte-specific inducible expression of the APOL1 risk variants may inhibit autophagic flux and
induce inflammatory cell death, leading to autophagosome accumulation and podocyte loss [188].
More recently, it has been found that the interaction between APOL1 and microRNA-193a is involved in
high glucose-induced podocyte dedifferentiation [189]. High glucose induced both reduction of APOL1
and upregulation of microRNA-193a which contributed to podocyte dedifferentiation. Moreover,
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APOL1 siRNA upregulated microRNA-193a and overexpression of microRNA-193a downregulated
APOL1 in podocytes [189]. A further study has demonstrated that disruption of APOL1-microRNA-193a
axis induces podocyte dedifferentiation through blockade of autophagic flux [190]. The expression of
APOL1 risk variants has also been found to dedifferentiate podocytes through autophagic deficiency.
In conclusion, APOL1 as a regulator of lysosome function may be a novel target for the development
of therapeutic strategy against podocyte injury and glomerular diseases.

5. Therapeutic Potential of Chronic Glomerular Diseases by Restoring Lysosome Function

The prolonged clinical silence in chronic glomerular diseases leads to irreversible damage including
accumulation of extracellular matrix proteins, proteinuria, glomerular hypertrophy, glomerular
basement membrane thickening, mesangial expansion and glomerular fibrosis. Early detection of
these pathological changes is necessary to facilitate therapies that can improve clinical outcomes.
Management of risk factors such as hypertension, hyperglycemia, and albuminuria is essential
for slowing progression to ESRD. Although beneficial effects have been confirmed in the usage
of traditional therapeutics such as angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers, mineralocorticoid receptor antagonists, and statins [191], the morbidity and mortality of
patients with CKD remain high. The identification of new therapeutic targets and the development of
new strategies for the treatment of chronic glomerular diseases are imperative and there is a need to
search for new pathways.

The abnormality of mTOR pathway signaling has been found to participate in all the key steps of
DN progression, including damage and loss of podocytes, an early event in DN that further causes
glomerular sclerosis. Increasing evidence has confirmed the efficacy of mTOR inhibitors in treating
DN [192–196], although they may cause hyperglycemia due to the combination of impaired insulin
secretion and insulin resistance [197]. Rapamycin is a well-known mTOR inhibitor, but its limited
bioavailability led to the development of semisynthetic analogs, named rapalogues, which possesses
improved pharmacokinetic properties and superior aqueous solubility. There are clinical evidences
showing the serious disadvantage of rapalogues in terms of its desired therapeutic effects, and its
cytostatic effect may partially inhibit its efficacy [198]. Furthermore, mTORC1 is the only target of
rapamycin and rapalogues. The long-term treatments with these molecules may initiate aberrant
feedback loops in mTOR network, leading to abnormal activation of compensatory pro-survival
signaling pathways. The therapeutic effects of these treatments on glomerular diseases during diabetes
can be severely compromised by these side effects. Another drawback of this approach was the ablation
of raptor expression in podocytes and consequent development of proteinuria, which is consistent with
the side effects of rapamycin in both animal models and humans [199–203]. In conclusion, increasing
evidences have confirmed the significant contribution of mTOR activation in the development of DN
by acting on different types of renal cells. However, this theoretically attractive therapeutic target
is still lack of clinical trials using mTOR inhibitors against DN. The side effects of mTOR inhibitors
in transplanted patients, such as dyslipidemia, hyperglycemia, and insulin resistance, may explain
the scarceness of progression in clinical studies. Notably, pharmacological inhibition of mTORC1
with rapamycin is the only interfering method in most of the previous studies on the role of mTOR in
the development of DN. A recent study has indicated that activation of mTORC2 also contributes to
podocyte apoptosis and albuminuria in diabetic mice, which provides a novel therapeutic strategy for
further exploration [175]. More recently, rapamycin has been found to regulate microRNA expression in
kidney [204]. Furthermore, inhibition of microRNA-21 has been shown to inhibit abnormal activation
of the PI3K/Akt/mTOR pathway and thereby enhance autophagic flux, leading to attenuation of high
glucose-induced podocyte injury [205]. Correspondingly, it has been demonstrated that inhibition of
microRNA-217 can block high glucose-induced podocyte injury by restoring autophagic flux [206].
These findings indicate that targeting microRNA may be a novel approach to regulate mTORC1 activity.
However, it remains unknown whether long-term modification of microRNA produces side effects
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during treatment of DN. More experiments need to be performed to enhance our understanding of
this therapeutic strategy.

EVs such as exosomes are found in almost all biofluids and the cargo of EVs change with disease
states. This property positions EV as a potential source for the discovery of novel biomarkers of
different diseases. In this regard, the urinary exosome has been reported to be a novel biomarker for
renal disease [207–209]. Moreover, the stability and enrichment of miRNA in the exosome make it
a promising candidate as a biomarker for different glomerular diseases [210–215]. However, recent
studies have indicated that exosomes derived from glomerular cells such as podocytes may not be
regarded only as an indicator of glomerular status. Furthermore, the biogenesis, degradation, and
release of exosomes could be a novel target for the development of therapies against CKD. For example,
D-ribose has been shown to induce NLRP3 inflammasome activation and inflammatory exosome release
in podocytes both in vitro and in vivo [139]. In addition, TRPML1 channel-mediated Ca2+ release has
been demonstrated to control lysosome trafficking, MVB degradation, and exosome release in murine
podocytes [173]. Convincing evidence has shown that an imbalance of sphingolipid metabolism in
lysosomes may block lysosome function and thereby results in the enhancement of exosome release.
These released exosomes may induce or worsen the pathological changes in podocytes and glomeruli.
Both inhibitions of lysosomal ASM by amitriptyline and activation of lysosomal AC by genistein have
been confirmed to attenuate ceramide accumulation and podocyte injury [139,173]. However, there are
still many steps before the therapeutic strategy of targeting exosome release being tested in preclinical
studies. To our knowledge, amitriptyline has been demonstrated to act as an agonist for TrkA and TrkB
receptors [216]. In addition, amitriptyline is a PARP1 inhibitor [217]. Furthermore, Amitriptyline acts
as an antagonist or inverse agonist of serotonin receptors, α1-adrenergic receptor, histamine receptors,
and muscarinic acetylcholine receptors, and as an agonist of sigma σ1 receptor [218–220]. Many side
effects have been observed while taking amitriptyline. Therefore, new functional inhibitors of ASM
with high efficacy and selectivity are required for clinical usage. As a well-known medicine for the
treatment of mental illnesses, amitriptyline may affect the central nervous system if taking it for a long
time. To overcome this obstacle, podocyte-specific aptamer-mediated targeted drug delivery may be a
potential solution.

It is expected that more therapeutic strategies will be forthcoming, which include the use of ASM
inhibitor, AC inducer, AdipoR agonist, TRPML1 channel agonist, mTOR inhibitor, lysosome stabilizer,
and cathepsin inhibitor. These potential therapeutics may target different components of lysosome
function, which may be selected for the use in the prevention or treatment of ESRD and associated
glomerular diseases.

6. Concluding Remarks

This review briefly summarizes current evidence about molecular mechanisms by which the
lysosome affects podocyte function and integrity under pathological conditions, including the
involvement of mTORC1, microRNA, APOL1, cathepsin, α-GalA, ASM, AC, and TRPML1 channel.
All these studies have provided innovative insights into ways to prevent aberrant lysosome function
with the goal of preventing the development of podocyte damage and progressive renal insufficiency.
The crosstalk between lysosomes and podocytes may be activated by pathological stimuli such as
hyperglycemia, hHcy, obesity, cytokines, adipokines, and genetic defects. Therefore, lysosomes have
been implicated in the development of a variety of renal diseases due to their induction of podocyte
dysfunction and injury, which results in glomerulosclerosis, ultimately leading to ESRD. A deeper
investigation is of the utmost importance to understand how these various signaling pathways interact
to regulate lysosome function in podocytes, which may promote the development of more effective
therapies for the prevention or treatment of glomerular diseases and consequent ESRD.
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