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Abstract

Competent social organisms will read the social signals of their peers. In primates, the face has evolved to transmit the
organism’s internal emotional state. Adaptive action suggests that the brain of the receiver has co-evolved to efficiently
decode expression signals. Here, we review and integrate the evidence for this hypothesis. With a computational approach,
we co-examined facial expressions as signals for data transmission and the brain as receiver and decoder of these signals.
First, we show in a model observer that facial expressions form a lowly correlated signal set. Second, using time-resolved
EEG data, we show how the brain uses spatial frequency information impinging on the retina to decorrelate expression
categories. Between 140 to 200 ms following stimulus onset, independently in the left and right hemispheres, an
information processing mechanism starts locally with encoding the eye, irrespective of expression, followed by a zooming
out to processing the entire face, followed by a zooming back in to diagnostic features (e.g. the opened eyes in ‘‘fear’’, the
mouth in ‘‘happy’’). A model categorizer demonstrates that at 200 ms, the left and right brain have represented enough
information to predict behavioral categorization performance.
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Introduction

Primates use their faces to transmit facial expressions to their

peers and communicate emotions. If the face evolved in part as a

device to optimize transmission of facial expressions then the

primate brain probably co-evolved as an efficient decoder of these

signals: Competent social interaction implies a fast, on-line

identification of facial expressions to enable adaptive actions. Here,

we propose a computational theory addressing the two important

questions of how and when the brain individuates facial expressions of

emotion in order to categorize them quickly and accurately.

The manuscript is organized in two main parts. The first part

outlines the evidence for the proposal that the face has evolved in

part as a sophisticated system for signaling affects to peers. We

conclude that the face communicates lowly correlated emotive

signals. Turning to the receiver characteristics of these affects, we

review the evidence that the brain comprises a sophisticated

network of structures involved in the fast decoding and categori-

zation of emotion signals, using inputs from low-level vision. These

inputs represent information at different spatial scales analyzed

across a bank of Spatial Frequency filters in early vision.

The second part of the paper develops our integrative

computational account building from the data of Smith et al [1]

and Schyns et al [2]. We also present new data to support the

integration of the different parts of the research. Integrating the

data of Smith et al [1] and Schyns et al [2] in a meta-analysis, we

first show that the six basic categories of emotion (happy, fear,

surprise, disgust, anger, sadness plus neutral [3]) constitute a set of lowly

correlated signals for data transmission by the face. We then show

that correct categorization behavior critically depends on using

lowly correlated expression signals. The brain performs this

decorrelation from facial information represented at different

scales (i.e. across different spatial frequency bands) impinging on

the observer’s retina. Integrating the data of Schyns et al [2], we

show how and when decoding and decorrelation of facial

information occur in the brain. For decoding, the left and right

hemispheres cooperate to construct contra-lateralized representa-

tions of features across spatial frequency bands (e.g. the left eye is

represented in the right brain; the right eye in the left brain.

Henceforth, we will use a viewer-centered description of features.

For example, ‘‘the left eye’’ of a face will be the eye as it appears to

the observer.). Irrespective of expression and observer, this

construction follows a common routine that is summarized in

three stages. Sensitivity to facial features starts at Stage 1 [140–

152 ms], which contra-laterally encodes the eyes of the face at a

local scale (i.e. high spatial frequencies). Stage 2 [156–176 ms]

zooms out from the local eyes to encode more global face

information (i.e. using high and low spatial frequencies). Stage 3

[180–200 ms], most critical here, zooms back in to locally and

contra-laterally encode the features that individuate each expres-

sion (i.e. diagnostic features such as the eyes in ‘‘fear’’, the corners

of the nose in ‘‘disgust’’, again using higher spatial frequencies). At

the end of this time window, the brain has decorrelated the

expression signals and has encoded sufficient information to
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enable correct behavior. In a novel analysis, we demonstrate this

point with a Model Categorizer that uses the information encoded

in the brain every 4 ms between 140 and 200 ms to attempt to

classify the incoming facial expression at 75% correct, as human

observers did.

The face as a transmitter of facial affects
Although humans have acquired the capabilities of spoken

language, the role of facial expressions in social interaction

remains considerable. For over a century we have deliberated

whether facial expressions are universal across cultures, or if

expressions evolve within civilizations via biological mechanisms,

with Charles Darwin’s The Expression of the Emotions in Man and

Animals [4] central to much of this research. Irrespective of

whether facial expressions are inextricably linked to the internal

emotion and therefore part of a structured emotional response, or

whether cultures develop their own expressions, a facial expression

is a visible manifestation, under both automatic and voluntary

neural control, that can be measured. The Facial Action Coding

System (FACS) details the anatomical basis of facial movement to

describe how facial signals are exhibited based on the muscles that

produce them. Ekman & Friesen [5] developed FACS by

determining how the contraction of each facial muscle transforms

the appearance of the face, and how muscles act both singly and in

combination to produce cognitive categories of expressions [6].

On this basis, the face can be construed as a signaling system: as a

system that transmits a signal about the emotional state of the

transmitter. Smith et al [1] measured the characteristics of facial

expressions as signals. Using Bubbles ([7] and Figure 1) they sampled

information from 5 one-octave Spatial Frequency bands and

computed the facial features that observers required to be 75%

correct, independently with each of the 7 Ekman & Friesen [3]

categories of emotion (see also Schyns et al [2] and Figure 2). In

addition, they constructed a model observer that performed the same

task, adding white noise to the sampled information to modulate

performance. In Smith et al [1] the model observer provides a

benchmark of the information that the face signals about each

expression. With classification image techniques, Smith et al [1]

found that the transmitted information formed a set with low average

correlation. That is, they found that different parts of the face

transmitted different expressions, resulting in low Pearson correla-

tions between the features of the face transmitting the expressions. For

example, the wide-opened eyes were mostly involved in ‘‘fear’’, the

wrinkled corners of the nose in ‘‘disgust’’ and the wide-opened mouth

in ‘‘happy’’. They also found that human categorization behavior

depended on using these decorrelated cues.

We have argued that emotion signals have high adaptive value

and there is evidence that they have evolved into a lowly

correlated set. Turning to the receiver of the emotional signals, i.e.

the brain, we can examine the coupling that exists between the

encoding of the expression by the face for transmission and the

decoding of the signals in the brain. Facial expressions of emotion

represent particularly good materials to study the particulars of

this transmitter-receiver coupling because most of us are

expression experts. Thus, brain circuits are likely to have evolved

to decode expression signals fast and efficiently, given the wide

range of viewing conditions in which facial expressions are

typically experienced. We will briefly review where and when in

the brain emotion identification is proposed to happen.

The brain as a decoder of facial affects: Where are the
cortical and subcortical networks?

Emotional stimuli may hold a privileged status in the brain [8],

commanding a distributed neural network of cortical and

subcortical structures for representing different facial expressions

and determining adaptive responses to such stimuli [9,10,11,12]

As established by single-cell analysis, neuroimaging and lesion

studies, this network has contributions from the amygdala,

cingulate gyrus, hippocampus, right inferior parietal cortex,

ventromedial occipito-temporal cortex, inferotemporal cortex

and the orbitofrontal cortex [12,13,14,15].

With respect to functional roles, the occipito-temporal cortical

pathway (in particular the fusiform gyrus and superior temporal

sulcus) may be involved in the early perceptual encoding that is

essential for differentiating between expressions. Ensuing catego-

rization may require neural structures including the amygdala and

orbitofrontal cortex to integrate perceptual encoding of the face

with prior knowledge of emotion categories [16,17,18].

Another, independent subcortical pathway sidestepping striate

cortex could allow a coarse, very fast processing of facial

expression. In particular, fear or threat-related signals may benefit

from a direct subcortical route to the amygdala, via the superior

colliculus and pulvinar thalamus (see [19,20,21,22]). Evidence for

a subcortical route arises in part from perception of emotional

content without conscious experience, but this is still a controver-

sial topic [21,22,23,24,25,26].

The brain as a decoder of facial affects: When does the
decoding happen?

Estimates of the time course of emotion processing in the brain

can be derived from event-related potential (ERP) studies. The N170

is a face-sensitive ERP, making it a good candidate to study the time

course of emotions signalled by the face. Peaking between 140–

200 ms after stimulus onset and occurring at occipito-temporal sites

[27,28], what this potential actually reflects remains somewhat

controversial–i.e. if it is linked to the structural encoding of faces, a

response to the eyes [27,29], or whether it can be modulated by

emotional facial expression [30,31,32]. Despite some studies

reporting no effect of emotion, due to its robust sensitivity to faces,

the N170 remains a good measure of early facial expression

discrimination. Indeed, Schyns et al [2] demonstrated that activity in

the 50 ms preceding the N170 peak reflects a process that integrates

facial information. This integration starts with the eyes and

progresses down on the face. Integration stops, and the N170 peaks,

when the diagnostic features of an expression have been integrated

(e.g. the eyes in ‘‘fear’’, the corners of the nose in ‘‘disgust’’ and the

mouth in ‘‘happy’’). Consequently, distance of the diagnostic

features from the eyes determines the latency of the N170.

Thus, evidence from brain imaging techniques suggests that

cortical and subcortical networks are both involved in the fast

processing of emotions. In the cortical route, there is evidence that

emotion decoding happens over the time course of the N170 ERP,

in a time window spanning 140 to 200 ms following stimulus

onset. If the face transmits affects for the visual brain to decode, we

must turn to the visual system for an understanding of the specific

visual inputs to the network of brain structures involved in this fast

decoding.

Decoding Facial Affects In Visual Signals: The Role of
Spatial Frequencies

A classic finding of vision research is that the visual system

analyzes the retinal input, therefore including facial expressions,

into light-dark transitions, at different spatial frequencies. A set of

filters, called ‘‘Spatial Frequency Channels’’, performs this

analysis: Each channel is tuned to a preferential frequency band,

with declining sensitivity to increasingly different frequencies. A

‘‘bandwidth’’ characterizes the range of frequencies to which a

Processing Facial Expressions
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channel is sensitive, and channel bandwidths are mostly in the

range of 1 to 1.5 octaves–where an octave is a doubling of

frequency, e.g., from 2 to 4 cycles per deg (c/deg) of visual angle, 4

to 8 c/deg, 16 to 32 c/deg and so forth. In total, approximately six

channels constitute the bank of spatial filters analyzing the retinal

input (see [33] for a review).

At the centre of the research agenda is the debate of how high-

level cognition interacts with inputs from low-level spatial

frequency channels to extract information relevant for visual

categorization (see [33] for a review). Top-down control implies

that the visual system can actively modulate information

extraction from one, or a combination of spatial frequency

channels for stimulus encoding and categorization. For example, if

categorization of ‘‘fear’’ requires extraction of the wide-opened

eyes from the retinal input, and because the wide-opened eyes are

fine scale features, their accurate encoding should draw informa-

tion from higher spatial frequency filters. In contrast, the wide-

opened mouth of ‘‘happy’’ is a large scale feature allowing

encoding to be more distributed across the filters. Top-down

control of spatial frequency channels, often cast in terms of

modulated attention, implies such flexible tuning of the visual

system to encode the combination of spatial channels representing

categorization-relevant information (with e.g., involvement of

different channels for ‘‘the eyes’’ and ‘‘the mouth’’).

Figure 1. Illustration of Bubbles Sampling [1,2]. Human. A randomly selected face (from a set of 7 expressions610 exemplars = 70) is
decomposed into six spatial frequency bands of one octave each, starting at 120–60 cycles per face. Only five bands are shown. The sixth band served
as constant background. At each spatial frequency band, randomly positioned Gaussian windows (with sigma = .36 to 5.1 cycles/deg of visual angle)
sampled information from the face, as shown in the second and third rows of pictures. Summing the pictures on the third row across the five spatial
frequency bands plus the constant background from the sixth band produced one experimental stimulus. This is illustrated as the rightmost picture
on the third row. Model. The bottom row illustrates the modification of the stimuli to be used in the model. We added white noise to the original
picture, which was then decomposed into five spatial frequency bands and sampled with bubbles as described above to produce the experimental
stimulus.
doi:10.1371/journal.pone.0005625.g001
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Several researchers have argued for a special role of the low

frequency bands in face processing [34,35,36,37,38] particularly so

in the categorization of facial expressions. Subcortical structures

[39,40,41], more sensitive to low spatial frequencies [42,43],

would directly activate the amygdala (and related structures [44])

in response to fearful faces represented at low spatial frequencies.

Figure 2. Meta-Analysis of the Behavioral Data. For each spatial frequency band (1 to 5), a classification image reveals the significant (p,.001,
corrected, [51]) behavioural information required for 75% correct categorization of each of the seven expressions. All bands. For each expression, a
classification image represents the sum of the five classification images derived for each of the five spatial frequency bands. Colored Figures. The
colored figures represent the ratio of the human performance over the model performance. For each of the five spatial frequency bands, we
computed the logarithm of the ratio of the human classification image divided by the model classification image. We then summed these ratios over
the five spatial frequency bands and normalized (across all expressions) the resulting logarithms between 21 and 1. Green corresponds to values
close to 0, indicating optimal use of information and optimal adaptation to image statistics. Dark blue corresponds to negative values, which indicate
suboptimal use of information by humans (e.g. low use of the forehead in ‘‘fear’’). Yellow to red regions correspond to positive values, indicating a
human bias to use more information from this region of the face than the model observer (e.g. strong use of the corners of the mouth in ‘‘happy’’).
doi:10.1371/journal.pone.0005625.g002
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Vuilleumier et al [44] also noted a sensitivity of the fusiform cortex

to higher spatial frequency ranges, but an implied dissociation of

subcortical and cortical pathways to process SF information

remains debatable [45]. The idea of a coarse, fast representation

via low spatial frequencies [46] finds echo in Bar et al [47] who

suggest a fast feedforward pathway to orbitofrontal cortex, which

in turn directs precise, high spatial frequency information

extraction in the visual input via the fusiform gyrus (see also

[42,48]. So, not only are spatial frequency bands important

because they represent the building blocks of visual representa-

tions; spatial frequency bands also appear to play a central role in

emotion processing in the brain.

Transmitting Decorrelated Facial Expressions,
Constructing their Spatial Frequency Representations in
the Brain

We have reviewed the evidence that muscle groups in the face

produce lowly correlated signals about the affective state of the

transmitter. These facial signals impinge on the retina where banks

of spatial filters analyze their light-dark transitions at different

scales and orientations. This information is then rapidly processed

(i.e. before 200 ms) in cortical and subcortical pathways for the

purpose of categorization.

In what follows, we will be concerned with the coupling

transmitter-receiver for the categorization of Ekman’s six basic

expressions of emotion plus neutral. Merging the data of Smith et

al [1] and Schyns et al [2], using Bubbles, we will perform an

analysis to characterize the facial expressions of emotion across

spatial frequency bands as signals. In line with Smith et al [1], we

will show that they form a lowly correlated set of signals. We also

perform a meta-analysis on the behavioral data of 17 observers to

understand how categorization behavior depends on facial cues

represented across multiple spatial frequency bands. We will show

that their behavior relies on the decorrelations present in the

expression signals.

With time resolved EEG, we will then report new analyses in

three observers revealing how the left and right occipito-temporal

regions of the brain extract facial information across spatial

frequency bands, over the first 200 ms of processing, to construct

decorrelated representations for classification (see [49] for a

generic version of this point). A simple Model Categorizer which

uses the information represented in the brain as input will

demonstrate when (i.e. the specific time point at which) this

representation becomes sufficient for 75% correct categorizations

of the seven expressions, as required of the observers’ behavior.

Methods

Computational meta-analysis: signalling emotions and
categorizing them, model and human observers

Using classification image techniques (Bubbles, [7]), we will

characterize with a model observer the information signalled in

Ekman & Friesen [3] six basic categories of facial expressions of

emotion plus ‘‘neutral’’. In addition to characterizing signal

transmission, we will characterize, using the same classification

image techniques, how behavior uses information from the

transmitted signals. These meta-analyses follow the methods

developed in Smith et al [1], but pooling data drawn from Smith

et al [1] and Schyns et al [2] to provide more power to the analyses.
Participants. A total of 7 male and 10 female University of

Glasgow students of normal or corrected to normal vision were

paid to participate in the experiments. Their behavioural data

were pooled from Smith et al [1] and from Schyns et al [2]. For

each participant, written informed consent was obtained prior to

the experiment and ethics was granted by University of Glasgow

FIMS ethics committee.

Stimuli. Stimuli were generated from 5 male and 5 female

faces, each displaying the six basic FACS-coded [5] emotions plus

neutral, for a total of 70 original stimuli (these images are part of

the California Facial Expression, CAFÉ, database [50]).

Procedure. Human Experiment. On each trial of the

experiment (1200 trials per expression in Smith et al [1]; 3000

trials per expression in Schyns et al [2], an original face stimulus

was randomly chosen and its information randomly sampled with

Bubbles as illustrated in Figure 1. The stimulus was split into five

non-overlapping spatial frequency bands of one octave each,

starting at 120–60 cycles per image. A sixth spatial frequency band

served as constant background. Information was randomly

sampled from each band with a number of randomly positioned

Gaussian apertures, whose sigma was adjusted across spatial

frequency band so as to sample 6 cycles per aperture. The

information sampled per band was then recombined to form the

stimulus presented on this trial. It is important to note that this

version of Bubbles, which samples information across spatial

frequency bands, has the advantage of sampling information

across the scales of a face. On each trial, global and local face cues

are simultaneously presented to the visual system. Thus, both type

of cues can by used by face processing mechanisms.

Observers indicated their categorization response by pressing

one of 7 possible computer keys. Stimuli remained on the screen

until response. A staircase procedure was used to adjust the

number of bubbles (i.e. the sampling density) on each trial, so as to

maintain categorization performance at 75% correct, indepen-

dently for each expression. This is important: All observers

categorized each one of the seven expressions at the same level of

75% correct performance.

Model Observer. Experimental stimulus sets are samples of

a population of stimuli. To benchmark the information available

in our stimulus set to perform the experiment, we built a model

observer. We submitted the model to the same experiment as

human observers (collapsed across Smith et al [1] and Schyns et al

[2] data), using as parameters the average accuracy per expression

(n = 17 observers), the average number of bubbles per expression

and the total number of trials (25,800) per expression. To maintain

performance of the model at 75% correct for each expression, a

staircase procedure adjusted a density of white noise, on a trial-

per-trial basis, and independently for each expression. On each

trial, the model computed the Pearson correlation between the

input expression and the 70 original faces revealed with the same

bubbles as the input (collapsing all the 3806240 images pixels65

spatial frequency bands into a 1-dimensional vector). A winner-

take-all scheme determined the winning face. Its emotion category

was the model’s response for this trial. To the extent that the

model compares the input to a memory of all stored faces, it can

use all the information present in the original data set to respond.

Thus, the model provides a benchmark of the information present

in the stimulus set to perform the expression categorization task.

Computational analysis: time course of spatial frequency
processing in the brain to encode emotion signals

Having shown that behavioural categorization performance

requires lowly correlated emotion signals to be correct, we now

turn to brain data (i.e. the EEG of three observers from Schyns et

al [2] to understand how this decorrelation is accomplished.

Participants. The three participants from Schyns et al [2],

whose data served in the behavioural meta-analysis, had their

scalp electric activity recorded on each trial of the expression

Processing Facial Expressions
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categorization task described before (with 3000 trials per

expression).

EEG Recording. We used sintered Ag/AgCl electrodes

mounted in a 62-electrode cap (Easy-CapTM) at scalp positions

including the standard 10-20 system positions along with

intermediate positions and an additional row of low occipital

electrodes. Linked mastoids served as initial common reference,

and electrode AFz as the ground. Vertical electro-oculogram

(vEOG) was bipolarly registered above and below the dominant

eye and the horizontal electro-oculogram (hEOG) at the outer

canthi of both eyes. Electrode impedance was maintained below

10 kV throughout recording. Electrical activity was continuously

sampled at 1024 Hz. Analysis epochs were generated off-line,

beginning 500 ms prior to stimulus onset and lasting for 1500 ms

in total. We rejected EEG and EOG artefacts using a [230 mV;

+30 mV] deviation threshold over 200 ms intervals on all

electrodes. The EOG rejection procedure rejected rotations of

the eyeball from 0.9 deg inward to 1.5 deg downward of visual

angle–the stimulus spanned 5.36 deg63.7 deg of visual angle on

the screen. Artifact-free trials were sorted using EEProbe (ANT)

software, narrow-band notch filtered at 49–51 Hz and re-

referenced to average reference.

Computation: Sensor-based EEG Classification

Images. To determine the facial features systematically

correlated with modulations of the EEG signals, we applied

Bubbles to single trial raw electrode amplitudes. We selected, for

each observer, a Left and a Right Occipito-temporal electrode

(henceforth, OTL and OTR) for their highest N170 amplitude

peak on the left and right hemispheres (corresponding to P8 and

PO7 for each observer).

For each electrode of interest, EEG was measured every 4 ms,

from 2500 ms to 1 s around stimulus onset. For each time point,

and for each expression and SF band, we computed a classification

image to estimate the facial features correlated with modulations

of EEG amplitudes. This classification image was computed by

summing all the bubble masks leading to amplitudes above (vs.

below) the mean, at this time point. We repeated the procedure for

each one of the five spatial frequency bands and for each one of

the seven expressions and each one of the 250 time points.

Subtracting the bubbles masks above and below the mean leads to

one classification image per SF band, time point and expression.

This classification image represents the significant (p,.05,

corrected, [51]) facial information (if any) that is correlated with

modulations of the EEG for that SF band, time point and

expression (see Schyns et al [2,53]; Smith et al [1], for further

details).

Results

Computational meta-analysis: signalling emotions and
categorizing them, model and human observers

We performed the same analysis for the human and model

observers. To illustrate, consider the analysis of the expression

‘‘happy’’ in the top row of Figure 2. In each spatial frequency

band, and for each pixel, we compute a proportion: the number of

times this pixel led to a correct response over the number of times

this pixel has been presented. Remember that performance was

calibrated throughout the experiment at 75% correct. On this

basis, we determine the informative from the noninformative

pixels of an expression: the proportion associated with informative

pixels will be above .75. In each Spatial Frequency band, we found

the statistically relevant pixels (corrected, [51], p,.001). The first

row of images (labelled 1–5) illustrates these pixels on one

exemplar of the ‘‘happy’’ category, for each Spatial Frequency

band. The sum of these images (under ‘‘all bands’’) summarizes

the information that the observers required for 75% correct

categorization behavior. To illustrate, ‘‘happy’’ requires the

smiling mouth and the eyes, ‘‘surprised’’ the open mouth, ‘‘anger’’

the frowned eyes and the corners of the nose, ‘‘disgust’’ the

wrinkles around the nose and the mouth, ‘‘sadness’’ the eyebrows

and the corners of the mouth and ‘‘fearful’’ the wide-opened eyes.

These facial features, in the context of equal categorization

performance across expressions, provide the information that

human observers required to choose amongst seven possible

expressions, without much expectation as to what the input

expression would be. A remaining question is the extent to which

other information exists, between the seven emotion categories of

this experiment, to accomplish the task at the same performance

level (here, 75% correct). To this end, we turn to the model

observer for which we performed an identical analysis as that

described for human observers, searching for pixels at the same

level of statistical significance (corrected, [51], p,.001). For each

expression (rows in Figure 2) and Spatial Frequency band

(columns of Figure 2) we computed a measure of the optimality

of information use by human observers: the logarithm of the ratio

between human significant pixels and model significant pixels.

Adding these logarithms across spatial frequency bands per

expression and applying them to an original stimulus reveals in

green an optimal use in humans, in blue, a suboptimal use of

information by humans (e.g. the corners of the nose in ‘‘happy’’,

the mouth region in ‘‘anger’’, the frown of the forehead in ‘‘fear’’)

and in red a particular bias to use information from this region, at

least more so than the model observer (e.g. the corners of the

mouth in ‘‘happy’’ the wrinkle of the nose and the mouth in

‘‘disgust’’). Such human biases might reveal that in a larger

population of stimuli, this information would be more informative

than in the stimulus set of this particular experiment.

Having characterized the use of facial information for

expression categorization, we turn to the effectiveness of the face

as a transmitter of emotion signals and introduce a new

measurement for the effectiveness of the signals themselves. In

signal processing, the more dissimilar the encoding of two signals

the less confusable they are in transmission. An ideal set of signals

is ‘‘orthogonal’’ in the sense that they are fully decorrelated. To

evaluate the decorrelation of the six basic expressions of emotion

plus neutral, we examined the decorrelation of the significant

pixels of the model observer. To this end, we turn the 3806240

image pixels65 Spatial Frequency bands representing each

expression into a one-dimensional vector of 3862465 entries (by

compressing the images by a factor of 10), and cross correlate

(Pearson) them to produce a symmetric correlation matrix where

each (x, y) correlation represents the similarity between two

expressions. If the expressions formed an orthogonal set, then the

correlation matrix should be the identity matrix, with correlations

(x, y) = 0 for each pair of expression, and (x, x) = 1 on the diagonal,

for the correlation of each expression with itself. The Backus-

Gilbert Spread [52] measures the distance between the identity

matrix and an observed matrix. We adapted a Backus-Gilbert

Spread to provide a measure of decorrelation (1).

1{
X

i,j

X{Ið Þ2
,X

i,j

1{Ið Þ2
" #

ð1Þ

Figure 3 illustrates the correlation matrices and their respective

Backus-Gilbert Spread measurement of decorrelation (maximum

decorrelation is 1; minimum decorrelation is 0). For human and
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model observers, Backus-Gilbert Spread was high, indicating high

decorrelation of the facial features represented across spatial

frequencies for the different expressions. The mean pairwise

correlation was therefore low for both the human (m = .23;

std = .2) and model (m = .24; std = .17) observers. So, it is clear that

humans are particularly adapted to the task of extracting the

information that is available in the stimulus set of facial expressions

to decorrelate these categories. It is important to note that our

correlations are based on the locations of the diagnostic pixels for

the expressions, not on the expressions themselves. Our correla-

tions therefore probably overestimate the correlations between the

expressions. To illustrate, although both ‘‘fearful’’ and ‘‘anger’’ use

information from the eye region and so would be correlated, the

wide opened eye and the eye with eyebrows are quite different.

From the model observer, we conclude that on the transmitting

end the brain has evolved to transmit basic expressions of emotion

that are lowly correlated. On the receiving end, the behavioural

data of human observers reveal that the brain has evolved routines

to decorrelate facial emotion signals for adapted categorization

behavior.

Computational analysis: time course of spatial frequency
processing in the brain to encode emotion signals

a. Spatial Frequency Use In the Brain. We aim to

understand how the decoding routines of the brain decorrelate

facial expressions of emotion, using spatial frequency bands, the

early building blocks of visual processing. Figures 4 and 5 illustrate

the analysis for the N170 time window of interest (see [54] for the

full time course on all electrodes). For each observer and

expression (here, illustrated with LP and ‘‘fearful’’), on electrodes

OTR and OTL, a classification image is computed every 4 ms of

the N170 time course to represent the sensitivity of the EEG across

the five Spatial Frequency bands of the input. We represent the

specific combination of Spatial Frequency bands composing the

OTR and OTL classification images at each time point with a

binary code (with decimal values comprised between 1 and 31). To

illustrate, on OTL, at 140 ms, the EEG is sensitive to the contra-

lateral right eye (local information) at Spatial Frequency band 2.

We represent this with binary code 00010 (2 in decimal) and color-

code it in pale yellow. At 172 ms, still on OTL, the EEG is

sensitive to the contra-lateral right eye and neighbouring

information (more global information) across all SF bands,

represented with binary code 11111 (31 in decimal) and color-

coded in red. At 192 ms, sensitivity reverts back to the local

processing of the contra-lateral eye, at a medium frequency band

represented with binary code 00100 (8 in decimal). Note on OTR

the complementary, contra-lateral encoding of the left eye,

following the same high spatial frequency (local processing), then

most frequency bands (local and global processing) then high

spatial frequency again (local processing). In addition, to depict the

respective contributions of the left and right hemispheres to the

encoding of expression features, at each time point we added the

OTR and OTL classification images and color-coded them (OTR

contribution in blue; OTL contribution in red). Contour plots

depict the local and/or global spatial extent of the encoding

process in the face.

Figure 5 summarizes the analysis just described on Figure 4,

with the combination of SF bands represented at each time point

Figure 3. Meta-Analysis of the Behavioral Data: Cross-Correlations of the Classification Images. For both the human and the model
observers, we transformed the 3806240 pixels65 spatial frequency bands classification images into a one-dimensional 3862465 vector. We Pearson-
correlated these vectors to produce the correlation matrices shown in the figure, with correlation values ranging between 1 (in dark red) and 21 (in
dark blue). Backus-Gilbert Spread of the correlation matrix is reported together with mean correlation and standard deviation.
doi:10.1371/journal.pone.0005625.g003
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Figure 4. Analysis of the EEG Data: From EEG Classification Image to Combinations of Spatial Frequency Bands. On each of 3000 trials
per expression, facial information was sampled from one of 70 original stimuli (5 males and 5 females, each displaying one of 7 expressions) using
Gaussian windows from 5 non-overlapping Spatial Frequency bands of one octave each, starting from [120 to 60] cycles per face—i.e., [.36 to .7]
degrees of visual angle. For each SF band and every 4 ms, we computed an EEG classification image, thresholded at p,.05 (illustrated here for PO7,
Occipito-temporal Left, OTL and P8, Occipito-temporal Right, OTR electrodes), for each expression (illustrated for ‘‘fear’’). OTR; OTL. We added the
classification images in each column, across spatial frequency bands, to produce the Occipito-temporal Left and Right classification image movies.
The white-to-red color code illustrates the particular combination of spatial frequency band(s) to which the EEG is sensitive at each time point. Note
that the OTR (vs. OTL) electrode is contra-laterally sensitive to the left (vs. right) eye. OTR+OTL. To depict the respective contributions of the left and
right hemispheres to the encoding of expression features (in the illustration, the left and right eyes), at each time point we added the OTR and OTL
classification images and color-coded them (OTR contribution in blue; OTL contribution in red). Contour plots depict the local and/or global spatial
extent of the encoding process. We repeated this analysis independently, on 64 electrodes, for each one of 3 observer and 7 expressions.
doi:10.1371/journal.pone.0005625.g004
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with a color-coded bar in binary coding space. Figures 5 and 6

illustrate the analysis, for observer LP and expressions ‘‘fear’’ and

‘‘disgust’’ (Figures S1, S2, S3 and S4 illustrate the equivalent data

for observers LF and UM). The binary coding is a useful space to

summarize the time course of the sensitivity of the N170 to specific

combinations of spatial frequency bands. The pattern noted above

of high spatial frequency to full spectrum and back to high spatial

frequency (or local to local_and_global and back to local

processing) characterizes processing in the left and right occipital

regions of all three observers, for ‘‘fear’’ and ‘‘disgust’’ and in fact,

for all seven expressions. Figure 7 presents for observer LP the

binary code data collapsed across all seven expressions (grey-levels

of the binary coding represents frequency of each code, see Figures

S5 and S6 for observers LF and UM).

Together, the results presented in figures 4 to 7 (and

corresponding Figures S1, S2, S3, S4, S5 to S6) reveal a similar

pattern of sensitivity to spatial frequency combinations on the left

and right hemispheres: Starting with a combination of few high

spatial frequency bands, face encoding starts at a local scale with

the eyes, around 140 ms following stimulus onset. Around 156 ms,

encoding zooms out from the local eyes to encode more global

information, using all (or most) spatial frequency bands. Around

180 ms, encoding zooms back in, at a local scale, with sensitivity to

few high spatial frequency bands. For all three observers, all seven

expressions, the pattern of spatial frequency sensitivity, over the

N170 time course, is local (few high spatial frequency bands) to

local-and-global (all spatial frequency bands) to local again (few

high spatial frequency bands).

b. Decorrelation of Expressions Cues from Spatial

Frequency Information. The sensitivity to combinations of

spatial frequency bands just revealed reflects a mechanism that

processes information over the face. Our goal now is to assess

whether this brain mechanism seeks to decorrelate internal

representations of facial expressions. A high decorrelation would

imply that the brain has encoded the information required to

individuate and behaviorally categorize all seven expressions.

To this end, for each observer, every 4 ms, independently for

electrode OTR and OTL, we transformed the 3806240 pixels65

spatial frequency bands representing each expression into a one-

dimensional vector with 3862465 entries, and cross correlate

(Pearson) them to produce a symmetric correlation matrix per

electrode where each (x, y) correlation represents the similarity

between two expressions. For each observer, we applied the

Backus Gilbert Spread measure as explained for behavior,

independently on OTR and OTL, every 4 ms between 140 to

200 ms, to derive a curve of decorrelation (1). Figure 8 presents the

data of observer LP (and Figures S7 and S8 for observers LF and

UM).

Figure 5. Analysis of the EEG Data: Time Course of the Sensitivity to Combinations of Spatial Frequency Bands (Observer LP,
‘‘fear’’). Every 4 ms, on electrode OTL and OTR, we represent the combination of the five spatial frequency bands with a binary number (in decimal
between 1 and 31) and color code it between white (1) and red (31), see Figure 4 for details. OTR+OTL. To depict the respective contributions of the
left and right hemispheres to the encoding of expression features (in the illustration, the left and right eyes), at each time point we added the OTR
and OTL classification images and color-coded them (OTR contribution in blue; OTL contribution in red). Contour plots depict the local and/or global
spatial extent of the encoding process.
doi:10.1371/journal.pone.0005625.g005
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The Backus-Gilbert Spread plots in Figure 8 and Figures S7 and

S8 reveal similar V-shaped dynamic patterns. These dynamics

imply an initial stage of decorrelation, following by a stage of

strong correlation, ending with a stage of decorrelation. To

facilitate interpretation and reduce the complexity of the analysis,

we segment the time course of the Backus-Gilbert Spread into

three distinct periods, roughly corresponding to the two inflexion

points of the curves: Stage 1 [140–152 ms], Stage 2 [156–172 ms],

Stage 3 [180–200 ms]. Within these time intervals, we average for

each observer the OTR and OTL classification images of

illustrative expressions (‘‘fear’’ and ‘‘disgust’’) and color-code

them. Finally, we display the contour plots of scale processing

associated with these illustrative examples to complete the

interpretation.

The OTR (blue) and OTL (red) Backus-Gilbert Spread curves

reveal that the process of decorrelating facial expressions happens

in parallel on the left and right occipito-temporal electrodes PO7

and P8, over a 50 ms time window spanning 140 to 200 ms

following stimulus presentation, in a process shared between the

left and right hemispheres. Specifically, the left and right

hemispheres cooperate to construct contra-lateralized representa-

tions of information (e.g. the left eye is represented in the right

brain; the right eye in the left brain, see Figure 8). Irrespective of

expression and observer, this construction follows a common

routine that is summarized in three stages. Sensitivity to facial

features starts at Stage 1 [140–152 ms], which contra-laterally

encodes the eyes of the face at a local scale. Stage 2 [156–176 ms]

zooms out from the local eyes to encode more global face

information. Stage 3 [180–200 ms], most critical here and

highlighted by a black box, zooms back in to locally and contra-

laterally encode the features that individuate each expression (i.e.

diagnostic features such as the eyes in ‘‘fear’’, the corners of the

nose in ‘‘disgust’’, see Figure 1).

c. Robustness of Early Brain Representations and

Usefulness for Behavior. We have shown in the previous

section that the left and right hemispheres progressively construct,

over 16 time points of 4 ms between 140 and 200 ms following

stimulus onset, decorrelated representations of the seven

expression categories. We now examine how the information

accrued in the brain at each time point (summing the OTL and

OTR classification images) can predict the observer’s

categorization behavior—i.e. 75% categorization accuracy for

each expression. We also examine how robust the representations

are to noise. Robustness to noise informs on the efficiency of a

representation for a given task: More efficient representations will

typically tolerate more noise for a given level of performance (here,

75% accuracy).

To predict categorization behavior from EEG classification

image data, we developed a Winner-take-all Model Categorizer

similar to that described in the section Model Observer presented

earlier (see Figure 1). The difference was that the model’s inputs

were not the original face pictures plus noise, but the sum of the

OTL and OTR classification images (derived for this observer, for

this expression and at this particular time point, see OTL+OTR

Figure 6. Analysis of the EEG Data: Time Course of the Sensitivity to Combinations of Spatial Frequency Bands (Observer LP,
‘‘disgust’’).
doi:10.1371/journal.pone.0005625.g006
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on figures 4 to 6, for examples) to which we added white noise

using a stair-case procedure (see Model Observer earlier). Repeating

the simulation independently for each observer and time point, we

(1) determine when, between 140 and 200 ms, brain representa-

tions can predict the observer’s 75% correct behavior and (2) how

much additive noise is then required to maintain the model’s

performance at 75% with each expression, expecting an increase

in noise if the representations become more efficient.

We ran a total of 600 trials for each combination of observer,

expression and time point. We then averaged, for each observer

and across all seven expressions, the added level of noise

(represented as a value of sigma between 0 and 1) required to

maintain 75% correct categorization at each of the 16 time points.

Results appear as black curves in Panel A of Figure 8 (see also

Figures S7 and S8). From the time point when 75% correct

performance was achieved (marked as a vertical bar on the black

curve), added noise will tend to slowly increase over time to

maintain constant performance, reflecting progressively more

efficient internal representations. See the ‘‘noise’’ curve in

Figure 8 (see also Figures S7 and S8).

In sum, analyses of the EEG signal of observers categorizing

facial expression have revealed a process whereby (1) the brain

progressively decorrelates representations for behavior between

140 and 200 ms following stimulus onset; (2) these representations

follow a common routine of spatial frequency extraction (starting

with local to the eyes, then local and global to the face and then

local again to the diagnostic features); (3) these representations

become sufficient to warrant behavioural performance and

progressively more robust to additive noise.

Discussion

If the face evolved in part to transmit the relevant internal

emotional states of primates, then their brains probably co-evolved

as fast and efficient decoders of facial expressions. We tested these

claims using models and the behavioural and time-resolved EEG

data of human observers. A model observer demonstrated that the

face, as an organ of emotion transmission, sends a different signal

for each of the basic expressions of emotion. The model

demonstrated that the diagnostic signal was located in different

regions of the face for each emotion category, implying that

evolution engineered the face to transmit expression signals as a

lowly correlated set. To understand how the brain decodes the

signals, we first meta-analyzed the behavioural data of 17

observers confronted to the 7 facial expression categories. We

showed that their correct behavior depended on the proper

Figure 7. Analysis of the EEG Data: Time Course of the Sensitivity to Combinations of Spatial Frequency Bands (Observer LP,
collapsed across all seven expressions). For each electrode, we collapsed the time course of sensitivity to the combinations of spatial frequency
bands across the seven expressions (see Figure 5 and 6 for individual examples). OTR+OTL. To depict the respective contributions of the left and right
hemispheres to the encoding of expression features, at each time point we added the OTR and OTL classification images across the seven expressions
and color-coded them (OTR contribution in blue; OTL contribution in red). Contour plots depict the local and/or global spatial extent of the encoding
process.
doi:10.1371/journal.pone.0005625.g007
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extraction of the diagnostic, decorrelated information from the

faces. Turning to the brain to finely understand the time course of

the information extraction mechanisms, we examined the first

signal known to be robustly sensitive to visual event categories, the

N170 [55]. We found, in the left and right occipito-temporal

regions, that the decoding process functioned as a decorrelation

over three main time stages. The first stage, starting about 140 ms

following stimulus onset, represents the eyes, irrespective of

expression, using combinations of high-spatial frequency informa-

tion (a local process). Around 156 ms a second stage zooms out

from the local eyes to represent more global information using

most spatial frequency bands. Around 180ms, encoding zooms

Figure 8. Meta-Analysis of the EEG Data: Decorrelation of Facial Expressions Between 140 and 200 ms Following Stimulus Onset. A.
Backus-Spread Measure of Decorrelation of Facial Expressions (Observer LP). At each time point, for each expression, we transform the
classification image (OTR+OTL) into a single high-dimensional vector (of 38624 image pixels65 spatial scales of dimensionality). We then cross-
correlate the vector for each expression to generate a 767 cross-correlation matrix (displayed in the Figure for each time point and electrode OTR,
OTL). If the brain aims to individuate expressions, it should decorrelate its representations. In computational terms, the cross-correlation matrices
should evolve towards the identity matrix over time (with correlation = 0, in blue, for each pair of expressions; correlation = 1, in red, for self-
correlations). Backus-Gilbert Spread (6) measures this distance between the identity and observed matrices. Between 140 and 200 ms following
stimulus presentation, the measure identifies three time intervals of decorrelation, represented in a ‘‘V’’-shaped curve on OTL (red curve) and OTR
(blue curve). The black curve reveals the performance of the Model Categorizer which predicts the emotion category from the OTL+OTR classification
images plus noise—i.e. from the representation of the expression constructed in the brain. The categorizer was a Winner-Take-All scheme which
compared (Pearson correlated) the noisy input with the 70 original stimuli and adjusted noise level, independently for each expression and time
point, to maintain classification at 75% correct. The increase of noise level with time (averaged across all 7 expressions) reveals that the
representations constructed in the brain are sufficient for behavior and become more robust with time. The vertical marker on the black curve
indicates the time point from which 75% correct performance can be achieved. B. Three Stage of Spatial Frequency Sensivitity in the EEG. The ‘‘V’’
shaped Backus Gilbert curves identify three time intervals of decorrelation (color-coded in green). (a) Within each time interval, we averaged the
classification images and color-coded them for the respective contribution of OTR (blue) and OTL (red). These illustrate the time course of the
decorrelation process for the facial features of ‘‘disgust’’ and ‘‘fear’’. (b) The contour plots reveal, in both expressions, that Stage 1 [140–152 ms]
contra-laterally encodes the eyes of the face at a local scale. Stage 2 [156–176 ms] zooms out from the local eyes to encode more global face
information. Stage 3 [180–200 ms], highlighted with a black box, zooms in to locally and contra-laterally encode the features individuating each
expression with maximum decorrelation—i.e. the eyes in ‘‘fear’’ and the corners of the nose in ‘‘disgust’’.
doi:10.1371/journal.pone.0005625.g008
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back in, at a local scale to represent diagnostic features. We further

showed that at this time point, for each observer, the represen-

tations of the 7 expressions were maximally decorrelated across

both hemispheres. A model categorizer further demonstrated that

the brain representations predicted 75% correct behavioural

performance and were progressively more robust to added noise.

To conclude, the face transmits lowly correlated signals of internal

emotional states. The brain of the receiver decorrelates these

signals, early on, to categorize them.

a. Attention to Features, Spatial Frequency Processing,
Global-to-Local

As discussed there is a debate in the literature over whether

attention to spatial frequency information in the brain is under

top-down cognitive control. Intertwined with this debate is the

open question of precisely what is being attended: most studies

implicitly assumed that it is a combination of spatial frequency

bands (at least this is what their design can demonstrate when they

test recognition against low vs. high spatial frequency versions of

the original stimuli). But we have proposed that what could be

attended are specific features (e.g. the eyes or the mouth)

represented across several spatial frequency bands [1,2,7,33,56];

see Ullman et al [57] for computational evidence that such visual

features of intermediate complexity are successful in visual

classification).

The behavioural data and the model observer presented here

offer an unequivocal answer: Attention to spatial frequency

information is under top-down cognitive control to extract the

combination of spatial frequency information identifying each

expression. The object of attention is a number of facial features

(e.g. the wide opened eyes in ‘‘fear’’, the corners of the nose in

‘‘disgust’’ and the smiling mouth in ‘‘happy’’) that are themselves

represented across a number of spatial frequency bands. Turning

to brain data, we find further evidence for top-down guidance of

attention to features, because the process of representing

expressions in the brain finishes with the encoding of the

diagnostic, expression specific information, independently in the

left and right hemispheres. And these diagnostic features are

represented across several spatial frequency bands. However, the

process leading to this end point appears to be much more

automatic in nature. Irrespective of expression, it starts locally with

the eyes, using combinations of high spatial frequencies (or at least

few frequencies) in a first stage. In the second stage, again

irrespective of expressions, encoding uses most spatial frequency

bands to zoom out from the eyes to the face, again independently

in the left and right hemispheres. This more automatic process,

never demonstrated before is akin to the zoom-lens metaphor of

attention with one caveat: When it zooms out from the eyes to the

entire face, it still keeps a high resolution on the eyes, whereas the

background face is in low resolution. This suggests an increase of

the span of attention to locate the diagnostic features, to which the

third stage zooms back in, at a high local resolution.

Morrison and Schyns [58], following Schyns & Oliva [46];

Oliva & Schyns [59]) discussed two possible accounts of spatial

frequency use for visual categorization: fixed (coarse-to-fine) or

flexible, determined by diagnostic information. Coarse-to-fine is

the ‘‘fleshing of the skeleton’’ metaphor in which the initially

encoded low spatial frequencies of the stimulus are later fleshed

out by high spatial frequency details (see also [47]). Flexible is the

top-down, cognitively controlled extraction of whichever spatial

information suits the needs of the observer in the task considered.

Our EEG data depict a more complex picture of spatial frequency

use in the brain. As discussed, we find flexibility in Stage 3, when

different diagnostic cues are flexibly encoded for each expression.

But we find a fixed pattern of spatial frequency use over Stages 1

to 3, which is the same for each expression and observer,

independently in their left and right hemispheres. This pattern is

not a fixed coarse to fine and it is not fine to coarse. At least in the

case of faces, it is a more complicated interaction between what

appears to be the requirements of locating automatically landmark

facial features such as the eyes (which are fine scale features) to

expand out from these to category specific diagnostic features.

Future research should attempt to understand the origin of

control, both for the apparently automatic and the more strategic

attention to features and the dynamics of this process over the

spatial frequency space.

It must be noted that the frequency bands chosen to decompose

the face stimuli with Bubbles ascribe a relative ‘‘high’’ to ‘‘low’’

spatial frequency content to stimulus information (see Figure 1).

This spatial frequency content is a function of the angular

dimension of the stimulus as it projects on the retina of the

observer. We have recently demonstrated that the categorization

accuracy of the seven facial expressions was dependent on viewing

distances [60]. This implies that diagnostic features have a

particular scale making the recognition of certain expressions

more proximal (e.g. ‘‘sad’’, and ‘‘fear’’) than other expressions (e.g.

‘‘happy’’ and ‘‘surprise’’) that can be recognized over a range of

viewing distances. It therefore remains an open question to

understand how a change in the size of the expressive faces (e.g.

dividing or multiplying their size by a factor of two) will change the

pattern of spatial frequency processing reported here for each

expression (because changing stimulus size changes the spatial

frequency composition of diagnostic features projecting on the

retina).

b. Processing of Features; Time Course of Expression
Categorization

The data demonstrate that the categorization information is

available, but split across the two hemispheres around 200 ms

following stimulus onset. We have shown that the brain has in

principle accrued sufficient information to perform robust

categorizations. This raises a number of questions about the

relationship between this information and behavior.

A first question is whether ‘‘fear’’, assumed to be sub-cortically

processed faster than other expressions, could also be processed

faster in our cortical model? An argument could be put that the

diagnostic features of ‘‘fear’’ are the wide-opened eyes. Given that

the eyes are the landmark features that are first encoded for all

expressions in Stage 1, there could be a considerable (around

50 ms) processing gain for this expression. However, behavioral

data did not reveal significant reaction time differences among

expressions. EEG classification images reveal that despite initial

encoding of the eyes in Stage 1, encoding zooms back to the eyes

at Stage 3. Analyses of the ERP latencies in Schyns et al [2]

showed that ‘‘fear’’ elicited some of the fastest ERP peaks, but

these peaks all happened at Stage 3 and the differences between

slowest to fastest peak were of the order of 20 ms. Our data do not

provide evidence for a faster cortical route for ‘‘fear’’ and of course

they do not inform the subcortical hypothesis.

A second question is whether information represented across the

hemispheres must first be integrated in the brain before

categorization decision is made. This is an interesting problem

with many ramifications, including conscious perceptions [61,62].

Our intention here was to examine whether and when the brain

orthogonalizes it’s decoding of expression signals for the purpose

of categorization, not examine when categorization happens.

However, using a paradigm similar to Gerson et al [63] we could

reverse the analysis in time, using reaction time as a ‘‘trigger’’ (not
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stimulus onset). We would search for a specific time window over

all electrodes, going backwards in time from response to the N170

time window examined here. In this critical time window, we

should find evidence for an integration of the information from the

OTL and OTR electrodes reported here. This window, assumed

to happen shortly after the N170 time window, would provide the

first evidence of bi-lateral, integrated diagnostic information. If the

time window co-varied with reaction time, then we would have a

handle on when integration for categorization behavior is

performed.

c. Categorization Tasks, Available Facial Information and
Diagnostic Information

Strictly speaking, the reported data are only valid under the

specific conditions of experimentation tested here. As discussed in

Schyns’ ([64]; see also Gosselin & Schyns [65]) Diagnostic

Recognition framework, any categorization task involves three

components of visual information. The first component is the

information available in the stimulus set to resolve the task (and this

information can be severely restricted if the sample of stimuli is not

representative of its population). Here, the model observer revealed

what this information could be for each expression (see Figure 2).

The second component is the information that the observer expects

in the input to categorize the stimulus, in the context of the other

categories to discriminate in the task (e.g. the wide-opened eyes in

‘‘fear’’ vs. the wide-opened eyes and the open mouth in ‘‘surprise’’).

The third component is the subset of the available information that

the observer uses for categorization: the diagnostic information as

revealed from the behavioural analysis of bubbles data. It should be

clear that changing the categorization task (e.g. discriminating

‘‘fear’’ from ‘‘happy’’ vs. discriminating ‘‘fear’’ from ‘‘surprise’’)

changes the information that is diagnostic. For example, the wide-

opened eyes are sufficient for ‘‘fear’’ when discriminating it from

‘‘happy’’ but the eyes and the mouth might be checked from the

same fearful face, if it is to be discriminated from ‘‘surprise’’ (the eyes

display highly correlated information between ‘‘fear’’ and ‘‘sur-

prise’’). Thus, it is important to keep the constraints of a

categorization task in mind when discussing generalization of

results. Here, observers had to discriminate between seven

expressions. This provides a more realistic situation of information

uncertainty than discriminating between only two expressions.

Starting from the argument of co-evolution between signalling

expressions by the face and their decoding in the brain, we have

shown that the 6 basic categories of expression plus neutral form a

lowly correlated set of signals. With time-resolved brain data, we

have shown that the left and right hemispheres cooperate to

decorrelate the expressions for categorization between 140 to

200 ms following stimulus onset.

Supporting Information

Figure S1 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

LF, ‘‘fear’’). Every 4 ms, on electrode OTL and OTR, we

represent the combination of the five spatial frequency bands with

a binary number (in decimal between 1 and 31) and color code it

between white (1) and red (31), see Figure 4 for details.

OTR+OTL. To depict the respective contributions of the left

and right hemispheres to the encoding of expression features (in

the illustration, the left and right eyes), at each time point we

added the OTR and OTL classification images and color-coded

them (OTR contribution in blue; OTL contribution in red).

Contour plots depict the local and/or global spatial extent of the

encoding process.

Found at: doi:10.1371/journal.pone.0005625.s001 (1.46 MB TIF)

Figure S2 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

UM, ‘‘fear’’).

Found at: doi:10.1371/journal.pone.0005625.s002 (1.65 MB TIF)

Figure S3 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

LF, ‘‘disgust’’).

Found at: doi:10.1371/journal.pone.0005625.s003 (1.70 MB TIF)

Figure S4 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

UM, ‘‘disgust’’).

Found at: doi:10.1371/journal.pone.0005625.s004 (1.65 MB TIF)

Figure S5 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

LF, collapsed across all seven expressions). For each electrode, we

collapsed the time course of sensitivity to the combinations of

spatial frequency bands across the seven expressions. OTR+OTL.

To depict the respective contributions of the left and right

hemispheres to the encoding of expression features, at each time

point we added the OTR and OTL classification images across the

seven expressions and color-coded them (OTR contribution in

blue; OTL contribution in red). Contour plots depict the local

and/or global spatial extent of the encoding process.

Found at: doi:10.1371/journal.pone.0005625.s005 (1.71 MB TIF)

Figure S6 Analysis of the EEG Data: Time Course of the

Sensitivity to Combinations of Spatial Frequency Bands (Observer

UM, collapsed across all seven expressions).

Found at: doi:10.1371/journal.pone.0005625.s006 (1.72 MB TIF)

Figure S7 Analysis of the EEG Data: Decorrelation of Facial

Expressions Between 140 and 200 ms Following Stimulus Onset.

A. Backus-Spread Measure of Decorrelation of Facial Expressions

(Observers LF). At each time point, for each expression, we

transform the classification image (OTR+OTL) into a single high-

dimensional vector (of 38624 image pixels65 spatial scales of

dimensionality). We then cross-correlate the vector for each

expression to generate a 767 cross-correlation matrix (displayed in

the Figure for each time point and electrode OTR, OTL). If the

brain aims to individuate expressions, it should decorrelate its

representations. In computational terms, the cross-correlation

matrices should evolve towards the identity matrix over time (with

correlation = 0, in blue, for each pair of expressions; correla-

tion = 1, in red, for self-correlations). Backus-Gilbert Spread (6)

measures this distance between the identity and observed matrices.

Between 140 and 200 ms following stimulus presentation, the

measure identifies three time intervals of decorrelation, represent-

ed in a ‘‘V’’-shaped curve on OTL (red curve) and OTR (blue

curve). The black curve reveals the performance of the Model

Categorizer which predicts the emotion category from the

OTL+OTR classification images plus noise-i.e. from the repre-

sentation of the expression constructed in the brain. The

categorizer was a Winner-Take-All scheme which compared

(Pearson correlated) the noisy input with the 70 original stimuli

and adjusted noise level, independently for each expression and

time point, to maintain classification at 75% correct. The increase

of noise level with time (averaged across all 7 expressions) reveals

that the representations constructed in the brain are sufficient for

behavior and become more robust with time. B. Three Stage of

Spatial Frequency Sensivitity in the EEG. The ‘‘V’’ shaped Backus

Gilbert curves identify three time intervals of decorrelation (color-

coded in green). (a) Within each time interval, we averaged the
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classification images and color-coded them for the respective

contribution of OTR (blue) and OTL (red). These illustrate the

time course of the decorrelation process for the facial features of

‘‘disgust’’ and ‘‘fear’’. (b) The contour plots reveal, in both

expressions, that Stage 1 [140–152 ms] contra-laterally encodes

the eyes of the face at a local scale. Stage 2 [156–176 ms] zooms

out from the local eyes to encode more global face information.

Stage 3 [180–200 ms], highlighted with a black box, zooms in to

locally and contra-laterally encode the features individuating each

expression with maximum decorrelation-i.e. the eyes in ‘‘fear’’ and

the corners of the nose in ‘‘disgust’’.

Found at: doi:10.1371/journal.pone.0005625.s007 (1.70 MB TIF)

Figure S8 Analysis of the EEG Data: Decorrelation of Facial

Expressions Between 140 and 200 ms Following Stimulus Onset.

A. Backus-Spread Measure of Decorrelation of Facial Expressions

(Observers UM).

Found at: doi:10.1371/journal.pone.0005625.s008 (1.81 MB TIF)
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