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Abstract

BRCA1 and possibly BRCA2 proteins may relate to the regulation of autophagy. Autophagy plays a key role in immune
response from both a tumor and immune effector cell standpoint. In cells with BRCA mutations, increased autophagy leads
to elevated expression of major histocompatibility complex class II but may cause subclonal neoantigen presentation, which
may impair the immune response related to clonal neoantigen visibility. We review evidence of BRCA1/2 regulation of
autophagy, immune response, and antigen presentation.

Autophagy refers to the process by which a cell consumes its own
constituents (1). It is increasingly evident that basal levels of
autophagy may play a more important role than previously
thought regarding sensitivity and/or resistance to immunotherapy,
maintaining homeostasis by recycling cytosolic material, regulat-
ing metabolism, and eliminating harmful free radicals (2).
Autophagy also plays a key role as a tumor suppressor (3-6). In the
absence of autophagy, proto(oncoproteins) accumulate, exerting
effects on cell growth, progression through the cell cycle, or angio-
genesis, among other hallmarks (7-12). Similarly, impaired autoph-
agy allows defective organelles to accumulate. Particularly, the
accumulation of mitochondria in the absence of mitophagy results
in increased reactive oxygen species and further damages DNA
(13-15). Several studies demonstrate increased autophagy in cancer
stem cells, during the Warburg effect, in anoikis and metastasis,
and in resistance to chemotherapy (16-19). However, autophagy
has a key role in major histocompatibility complex (MHC) process-
ing (20-22) and permits the mounting of intracellular material onto
MHC class II (MHC-II), which is traditionally thought of as the
bearer of extracellular threats (23). Furthermore, autophagy com-
municates closely with the exosomal and endosomal pathway,
thereby modulating the intercellular exchange of material, includ-
ing tumor antigens and a further relationship to MHC-I display
along with other immunomodulatory molecule expression (1,24).
Together, these actions have important consequences on antitu-
mor immunity.

Autophagy Pathway

Autophagy begins with 3 principal steps: initiation, expansion,
and formation of the autophagosome (1). During initiation, a
phagophore is derived from the endoplasmic reticulum. In ex-
pansion, the phagophore approaches cytosolic material and
expands. Finally, the phagophore completely envelopes the cyto-
solic contents to form the autophagosome. To complete autoph-
agy, the autophagosome may fuse with a lysosome, which
subsequently degrades the material and makes it available for
processing via MHC-II. Alternatively, the autophagosome may
fuse with an endosome to form an amphisome, which fuses with
the lysosome to complete the process (1). Otherwise, it may en-
gage in exosome transfer, in which it secretes its material to the
extracellular matrix (1,24-26). Depending on the derivate cell,
these exosomes may be referred to as tumor exosomes (TEXs) or
dendritic cell exosomes (1).

The machinery for autophagy and exosome production over-
lap considerably. In the total absence of one process, the other
process is incapable of occurring (24,26). Similarly, when condi-
tions including hypoxia, chemotherapy, and endoplasmic retic-
ulum stress occur, both autophagy and exosomal production
are increased in response (24). Homeostasis exists between the
2 pathways, which share endosomes as a substrate (24,26). With
activation of autophagy, intravesicular bodies (IVBs) preferen-
tially fuse with autophagosomes to undergo degradation by
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lysosomes, thereby decreasing flux down the exosomal path-
way. In contrast, when autophagy is inhibited, intravesicular
bodies are shunted toward the exosomal pathway, where they
are secreted as TEXs (1,24,26).

Autophagy Role in Immune Response

Tumor cells predominately express MHC-I; however, they can
express MHC-II even when the tissue of origin does not (27).
Elevated expression of MHC-II by both breast and ovarian
tumors, which are typically associated with BRCA1/2 mutation,
has been correlated with better prognosis and overall survival
advantage (28-30). Autophagy increases the tumor antigen sup-
ply of likely subclonal neoantigens for MHC-II presentation
while decreasing expression of MHC-I by tumor cells (1,25,31).
MHC-II expression of tumor neoantigens is a well-established
immune therapeutic development direction (32). However,
clonal neoantigen display is critical toward effective anticancer
immune response (33). Overdisplay of subclonal neoantigens
may dilute focused immune response to clonal neoantigens
and even activate immune editing of clonal neoantigen effector
cells (34,35). Despite autophagy’s role in refreshing the pool of
available peptides to be presented by MHC-I (31), autophagy
appears to recycle MHC-I more rapidly, resulting in decreased
expression duration. Indeed, inhibition of autophagy related to
gamma interferon expression augmented MHC-I expression in
melanoma (36-38).

Molecular Signaling and BRCA1/2 Function
Related to Autophagy Regulation

Several molecular pathways overlap to control autophagy, par-
ticularly mTOR and Beclin1/ATG5. Type I PI3K/AKT/mTOR
inhibits autophagy, whereas type III PI3K/vps34/Beclin1 acti-
vates autophagy (39). New evidence suggests that wild-type
BRCA1 and BRCA2 proteins negatively regulate autophagy, with
increased autophagy noted in mutant BRCA1/2 gene samples as
well as in BRCA1/2 gene silencing studies (40-43).
Coimmunoprecipitation studies of BRCA1 with Beclin1 show
that when this complex is interrupted via a BRCA1 mutation,
the canonical pathway is enhanced because of the free action of
Beclin1, and autophagy levels are increased (40). Additionally,
in the role that BRCA1 functions as an antioxidant, the absence
of functional BRCA1 increases reactive oxygen species, and
autophagy increases in response to oxidative stress (41). Finally,
BRCA1 interacts with PTEN, an inhibitor of the type I PI3K/AKT/
mTOR pathway (44).

BRCA2 has been less thoroughly studied in relation to
autophagy. Nonetheless, evidence supports a negative regula-
tory role of wild-type BRCA2 on autophagy (42,43). Knockdown
of BRCA2 via RNA interference in tumors with BRCA1 allelic loss
enhanced autophagy and mitophagy, a derivative of autophagy
that recycles mitochondria (42). This same study suggested that
PARP inhibitors, particularly olaparib whose mechanism
depends on interrupted BRCA1/2 function, have enhanced func-
tion in the context of increased autophagy (42). It remains un-
known if autophagy is similarly upregulated regardless of BRCA

gene variant or in tumors that are homologous recombination
deficient. It is known that autophagy is required for homolo-
gous recombination to take place, and in the absence of autoph-
agy, DNA damage accumulates, resulting in cell death (45).

BRCA1/2 Mutation Role in Autophagy and
Cancer Immunity

Autophagy and exosome transport are multifaceted processes,
and their role in cancer development, progression, and immu-
nity relates to BRCA1/2 expression and genetic stability (31).
BRCA1/2 wild-type expression decreases autophagy, whereas
BRCA1/2 mutation enhances autophagy activity (1,40). Tumors
with increased autophagy due to defective BRCA1/2 demon-
strate increased MHC-II expression of tumor antigens (1,40,42).
However, tumors with BRCA1/2 mutation also exhibit increased
estimated glomerular filtration rate (EGFR) expression, which
decreases MHC expression compared with wild-type tumors
(46,47). EGFR also directly regulates autophagy in a context-
dependent manner, which may be depend on localization (48).
Through association with Beclin1, inactive EGFR can decrease
autophagy; however, when localized to the endosome, EGFR
can also initiate autophagy (49,50). The complex correlation be-
tween autophagy, EGFR, and MHC expression warrants further
research.

It is hypothetically possible that germline vs somatic BRCA
mutation status may affect immune response differently. In
patients with germline mutations, it is presumed that immune
and cancer cells would be impacted by altered BRCA function-
ing, potentially resulting in increased autophagy across the
board. It has been shown that BRCA heterozygous mice have de-
creased white blood cells and lymphocytes. The same study
also showed that heterozygous BRCA1 carriers are more at in-
creased risk for chemotherapy-associated hematopoietic com-
plications (51). Although this could be due to increased DNA
damage in these cells, it may be linked to autophagy. Further in-
vestigation would be needed to validate this hypothesis. Of in-
terest, immune cells with increased autophagy express both
increased MHC-I and MHC-II (1,31,52,53). This is explained by in-
creased dendritic cell participation in cross-presentation
(1,25,54). Complementary to autophagy, cross-presentation
allows extracellular material to be presented by MHC-I (autoph-
agy places intracellular material on MHC-II) (1,25). Moreover,
cross-presentation allows DCs to accept tumor antigens from
TEXs and to present them on MHC-I and II on the DC surface
(1,25). Because DCs express costimulatory molecules, cross-
presentation allows antigens from TEXs to elicit a more effec-
tive immune response than the same antigen could in the ab-
sence of DCs (1,54). In contrast, we presume that patients with
somatic BRCA1/2 mutations demonstrate the effect of autoph-
agy induction exclusively in the tumor cells containing the
BRCA1/2 mutation.

BRCA1/2 activity on autophagy, however, is complicated. For
example, increased autophagy in BRCA1/2 mutant or dysfunc-
tional tumor cells destabilizes the immunological synapse be-
tween cytolytic immune cells and their targets, consequently
disrupting transfer of cytotoxic molecules (55). In particular,
autophagy increases degradation of granzyme B and connexin-
43, which are 2 important molecules in the tumor-killing path-
way enacted by cytotoxic T lymphocytes (CTLs) and natural
killer (NK) cells (55-59). Moreover, inhibition of autophagy
restores cytolytic activity in cell populations that are resistant
to CTL- and NK-mediated killing (57,60,61). Conversely, upregu-
lation of autophagy decreases CTL- and NK-mediated killing,
particularly during the endothelial-mesenchymal transition,
which is vital for metastasis (62).

Autophagy also suppresses the immune response indirectly
via its effects on the exosomal pathway. Presumably, expressive
BRCA wild-type tumor cells have increased exosome secretion
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as opposed to BRCA-mutation tumor cells. With low levels of
autophagy, homeostasis shifts toward the exosomal pathway,
with subsequently increased release of TEXs (24,26). Although
TEXs represent a vehicle for transporting tumor antigens to dis-
tant antigen presenting cells (APCs), they also have a major role
in immunosuppression of the anticancer immune response
(54). This is accomplished through expression of immunosup-
pressive proteins including TGF-b, IL-6, and PGE2 (63-66).
Furthermore, TEXs frequently carry miRNAs that suppress ex-
pression of immunostimulatory genes in target cells (54,67,68).
Other immunosuppressive effects include redirection of mye-
loid precursors toward myeloid-derived suppressor cells, along
with inhibited differentiation of DCs from precursors (63,69).
Along these same lines, TEXs prevent the maturation of imma-
ture DCs, alter pattern recognition receptors to impair antigen
recognition, and reduce DC production of immunostimulatory
cytokines including TNF-a and IL-12 (66,70). Furthermore, TEXs
induce the CD14þ HLA-DR-/low monocyte subtype, which sup-
presses T-cell proliferation and cytotoxicity (64). Beyond mono-
cytes, TEXs negatively impact the development of NK cells and
CTLs (71-76). Finally, TEXs induce the regulatory subtypes of T
and B cells (77-80). In sum, TEXs have a complicated impact on
anticancer immunity, and they are increased in settings with
low autophagy. This includes wild-type expression of BRCA1/2
(40-43).

Clinical Relevance

Tumor expression of PD-L1, an immune checkpoint, is inversely
related to autophagy (31). With activation of autophagy, PD-L1
levels are decreased. In contrast, inhibition of autophagy results
in increased expression of PD-L1 (31). Similarly, approximately
90% of human lung cancer samples with increased PD-L1 ex-
pression showed inhibition of autophagy, whereas 83% of
tumors with negative PD-L1 had increased autophagy (81).
Likewise, blocking PD-L1 disinhibited autophagy, whereas in-
creasing PD-L1 signaling inhibited autophagy (82). Thus, it is
expected that BRCA wild-type patients would have increased
PD-L1 signaling, whereas BRCA mutant would have decreased
PD-L1 signaling. Therefore, BRCA mutation status may relate to
clinical benefit of immune checkpoint inhibitor (ICI) therapy.

In the BRCA1/2 wild-type population, for example, patients
would likely derive benefit from therapies that introduce tumor
antigens to the immune system via an alternative mechanism,
for example, use of Vigil, a personalized neoantigen-educating
immunotherapy as opposed to checkpoint-inhibitor therapy,
which does not modulate neoantigen expression and would
have limited activity in lower clonal neoantigen expressive
tumors (83-86). Vigil is an experimental therapeutic that edu-
cates the immune system via an autologous tumor vaccine
along with plasmid DNA-encoding upregulators of the immune
system (granulocyte-macrophage colony-stimulating factor)
and blocking downregulators of the immune system (furin,
which activates TGF-b, a major immunomodulatory molecule)
(87). In clinical trials involving melanoma, Ewing sarcoma, ovar-
ian cancer, and other solid tumors, Vigil was well tolerated
(83,87-91). In solid tumors, improved clinical outcomes related
to Vigil treatment were correlated with c-IFN-ELISPOT positive
response, indicating that Vigil is able to activate a durable im-
mune response. Combination of Vigil followed by immune
checkpoint inhibitor may sensitize patients to checkpoint inhib-
itors by priming T cells to the relevant clonal tumor
neoantigens.

Conclusion

Increased tumor cell autophagy (as in BRCA mutant) likely leads
to enhanced presentation of subclonal neoantigens to the im-
mune system but impaired cytotoxic killing. Conversely, inhib-
ited tumor autophagy (as in BRCA wild-type) likely causes lower
tumor antigen presentation but may preserve clonal neoantigen
display supporting increased target-directed susceptibility to
cell-mediated destruction. Consequently, BRCA status may im-
pact a patient’s response to certain immunotherapies. Going
forward, research involving clinical therapeutic measures that
involve and/or modulate BRCA1/2 signaling as involved in
autophagy control and relationship to antigen presentation is
justified.
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