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Abstract

Single crystals of 𝐶𝑢𝐺𝑎𝑆𝑒2 are prepared by a technique based on the vertical 

Bridgman procedure. The crystal chemical and phase compositions were identified 

by using dispersive X-ray fluorescence spectrometry and X-ray diffraction data 

analysis, respectively. The Hall effect and the electrical conductivity were determined 

in terms of temperature, parallel and orthogonal to the layer surface, and the 

parameters proved to be strongly anisotropic. From carried out measurements, 

different parameters such like the carrier mobilities, the carrier concentration, the 

relaxation time, the diffusion coefficient, and the length of diffusion for both, 

majority carriers and minority carriers were estimated.

Keywords: Condensed matter physics, Electromagnetism, Materials science

1. Introduction

The triple compound 𝐶𝑢𝐺𝑎𝑆𝑒2 (CGSe) belongs to the 𝐼–𝐼𝐼𝐼–𝑉 𝐼2 chalcopyrite 

semiconductors [1]. This family of materials has got a lot of concern because 

they show promise for interesting practical applications [2] in photo-voltaic solar 

cells [3, 4], light-emitting diodes [5], and various non-linear devices [6]. Further, 

a considerable amount of theoretical and experimental works were done to achieve 

a good understanding of the optical, electronic, and electrical properties of these 

compounds [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, the transport 
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Table 1. Elemental analysis EDXRF data of 𝐶𝑢𝐺𝑎𝑆𝑒2
single crystals.

Element Weight (Wt %) Atomic (At %)

Cu 23.12 26.38

Ga 24.78 25.77

Se 52.10 47.85

Total 100.00 100.00

investigations of anisotropic properties of these compounds are scarce [20, 21]. 

The present report characterizes the production of 𝐶𝑢𝐺𝑎𝑆𝑒2 in single crystal 

shape by utilizing a vertical Bridgman–Stockbarger procedure. The related research 

works were accomplished for different materials [22, 23, 24, 25, 26, 27, 28]. 

Energy dispersive X-ray fluorescence spectrometry technique (EDXRF) was used to 

analyze the chemical composition of the 𝐶𝑢𝐺𝑎𝑆𝑒2 samples. The essential structural 

properties of 𝐶𝑢𝐺𝑎𝑆𝑒2 compounds were identified by X-ray diffraction analysis. 

However, to our knowledge, some parameters are not quite known for 𝐶𝑢𝐺𝑎𝑆𝑒2
crystals, such as its transport parameters and their temperature dependence. In the 

present study, we report the effect of the temperature on the anisotropic electrical 

conductivity and Hall effect for the 𝐶𝑢𝐺𝑎𝑆𝑒2 crystals. We also investigated the 

thermoelectric power measurements (TEP) of the grown 𝐶𝑢𝐺𝑎𝑆𝑒2 single crystals. 

This work is a continuation of previous works implemented for different materials 

[22, 29].

2. Experimental

The crystal growth technique used in this work was the vertical Bridgman–

Stockbarger method as described in our previous papers and other works [22, 24, 

29, 31, 32, 33]. Elementary copper (Cu), gallium (Ga) and selenium (Se) were used 

as starting materials. The needed concentrations were 24.899, 24.799 and 50.299% 

for Cu, Ga and Se, respectively. The mixture was kept at a melting temperature of 

1030 ◦C for 1 day to complete the reactivity and to homogenize the melt [29]. The 

melting point is obtained from the known phase diagram [30, 34]. The first step after 

growth was to identify the crystals by using X-ray diffraction analysis and EDXRF 

techniques. The quantitative analysis was conducted by comparison with known 

standards, and the results are given in Table 1. The X-ray diffraction data assured 

a single-phase tetragonal (chalcopyrite structure) of 𝐶𝑢𝐺𝑎𝑆𝑒2 with cell parameters 

𝑎 = 5.500 ± 0.004 Å and 𝑐 = 11.052 ± 0.003 Å with 𝑐∕𝑎 = 2.0095 ± 0.0009. 

The energy dispersive X-ray microanalysis obviously indicated that the prepared 

crystals were of a stoichiometric compound corresponding to 𝐶𝑢𝐺𝑎𝑆𝑒2. There is a 

good agreement for our results with the data accessible in the literature [12, 34]. In 

Figure 1, the X-ray diffraction outcome for our sample is illustrated. A specimen of 
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Figure 1. The X-ray diffraction motif recorded for 𝐶𝑢𝐺𝑎𝑆𝑒2 powder.

Figure 2. The electrical conductivity versus the temperature, as measured for 𝐶𝑢𝐺𝑎𝑆𝑒2 crystal.

(9.10 ×2.95 ×2.10)𝑚𝑚3 dimensions is prepared from the grown ingot using a gentle 

cleavage [29].

The Hall effect, the electrical conductivity (𝜎) and the thermoelectric power (TEP) 

were also discussed in details in our previous studies [22, 24, 29].

3. Results and discussion

In addition to direction parallel to the crystallographic c axis, the electrical

conductivity 𝜎 is also measured in a vertical direction. Assuming that J, c and H 

are the current density, the crystallographic c axis and the strength of magnetic field, 

respectively, then the conditions of the measurements can be expressed as (J ⟂ c // H) 

and (J // c ⟂ H). The measurements were done over a temperature interval extending 

from 125 up to 530 K. Figure 2 demonstrates log 𝜎 Vs. 103/T along and across 

the c axis for 𝐶𝑢𝐺𝑎𝑆𝑒2 single crystals. As confirmed, in the targeted temperature 

interval, the logarithm of 𝜎 demonstrated a linear reliance on temperature with two 
on.2018.e00952
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Figure 3. The anisotropic factor 𝜎⟂, 𝜎∕∕ against temperature.

modes of conduction in addition to the transition area that revealed between them. 

consequently, in such semiconductor, the low-temperature side (extrinsic conduction 

side) appeared in the temperature interval from 125 to 260 K for 𝜎⟂ and from 125 to 

290 K for 𝜎∕∕. With regard to this extrinsic part, 𝜎 increased slowly with temperature. 

This is due to the transition of the carriers from the impurity donor band. The values 

of ionization energy Δ𝐸𝑑 for 𝐶𝑢𝐺𝑎𝑆𝑒2 were found to be 0.12 and 0.13 eV for 𝜎∕∕, 

and 𝜎⟂, respectively. The transition region appeared in the interval 260 to 380 K for 

𝜎⟂ and 290 to 420 K for 𝜎∕∕. On the high-temperature side (intrinsic conduction 

side), it appeared in the temperature interval 380 to 530 K for 𝜎⟂ and 420 to 530 K 

for 𝜎∕∕. In this area, as the temperature increases, the conductivity increases quite 

rapidly because of the sharp increase in the total electric current density (electrons 

plus holes) [22, 29]. The energy gap width Δ𝐸𝑔 for 𝐶𝑢𝐺𝑎𝑆𝑒2 was found to be 

1.72 eV for 𝜎⟂ and 1.71 eV for 𝜎∕∕; these outcomes are in good agreement with 

old data [9, 24]. For instance, the electrical conductivity at 27 ◦C is equal 3.30 ×
10−3 (Ω 𝑐𝑚)−1 for 𝜎⟂ and 1.33 × 10−3 (Ω 𝑐𝑚)−1 for 𝜎∕∕. It is obvious from the 

curves shown in Figure 2 that the conductivity in the direction orthogonal and 

parallel to c axis are strongly different, indicating a high anisotropy of 𝐶𝑢𝐺𝑎𝑆𝑒2
crystals. The anisotropy is characterized by the factor 𝑁 = 𝜎⟂

𝜎∕∕
where 𝜎∕∕ and 

𝜎⟂ are the conductivities in the direction parallel to the crystallographic c axis of 

the crystal and orthogonal to it, respectively, and has a value 2.47 at 27 ◦C. The 

anisotropy ratio is noticed to be varied with temperature. The anisotropic factor 

in terms of absolute temperature is demonstrated in Figure 3. It is clear that 𝜎⟂

has a value larger than 𝜎∕∕ in the investigated temperature interval. This denotes 

that 𝜎 is strongly anisotropic for 𝐶𝑢𝐺𝑎𝑆𝑒2 crystals. This can be assigned partly 

or totally to inter layer macroscopic disorders and or levels of precipitates. This 

also may be due to existing of the “two-dimensional defects” placed between layers 

and responsible for the carrier transition across the layers. This interpretation has 

been already anticipated in similar layer compounds [35]. Figure 4 shows the Hall 

coefficient against the temperature in the two directions of the single crystal. The 
on.2018.e00952
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Figure 4. The Hall coefficient against the temperature for 𝐶𝑢𝐺𝑎𝑆𝑒2 single crystals.

Figure 5. Reliance of Hall mobility on temperature for 𝐶𝑢𝐺𝑎𝑆𝑒2.

evaluated shape of the figure is relatively identical to that acquired commonly in 

semiconductors. In contrast to our previous work [29], the conductivity during the 

entire temperature interval was found to be n-type for our 𝐶𝑢𝐺𝑎𝑆𝑒2 single crystal 

as concluded from the negative sign value of the Hall coefficient. The value of 𝑅𝐻

at 27 ◦C equals 2.28 × 105 𝑐𝑚3∕𝐶 at right angle to the layer planes and 2.12 ×
105 𝑐𝑚3∕𝐶 parallel to the layer planes. On the low-temperature side, we deduced 

the energy of ionized donor atoms (Δ𝐸𝑑). The value of (Δ𝐸𝑑) for 𝐶𝑢𝐺𝑎𝑆𝑒2 was 

0.134 ± 0.001 and 0.132 ± 0.001 eV across to the layer planes and along to the layer 

planes, respectively. From the high temperature side (intrinsic region), the forbidden 

gap width (Δ𝐸𝑔) was deduced. The value of Δ𝐸𝑔 for 𝐶𝑢𝐺𝑎𝑆𝑒2 was found to be 

1.70 eV at the right angle to the crystallographic c axis and 1.69 eV parallel to it. 

Two regions of the curve can be distinguished. Figure 5 demonstrates the dependence 

of Hall mobility on temperature in both vertical and parallel directions to the c axis. 

The first part is below 380 K where it obeys the relation 𝜇𝑛 ≈ 𝑇 𝑛 where n is equal to 

1.25 for 𝜇⟂ and 1.10 for 𝜇∕∕. This dependence implies that scattering mechanisms 

may be explained as a result of scattered impurity after its ionization in the extrinsic 

region [29]. At the high-temperature interval from 380 to 530 K, the mobility grows 
on.2018.e00952
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Figure 6. Variation of charge carriers concentration versus temperature for 𝐶𝑢𝐺𝑎𝑆𝑒2.

with temperature according to the low 𝜇𝑛 ≈ 𝑇 𝑛 too. The mean value of the power 

n was evaluated to be 8.75 for 𝜇⟂ and 8.50 for 𝜇∕∕. In this domain, we assume that 

the essential cause for the spreading mechanism is the spreading optical phonons. 

At 27 ◦C, the electron mobility value is 769 for 𝜇⟂ and 283 𝑐𝑚2∕𝑉 𝑠 for 𝜇∕∕. The 

variation of charge carriers concentration versus absolute temperature is illustrated 

in Figure 6. It is noticed from the curve that, the carrier concentration increases as 

the temperature rises [29].

The donor atoms ionisation energy at the low-temperature range was found to be 

Δ𝐸𝑑 = 0.136 eV at right angle to the c axis and Δ𝐸𝑑 = 0.133 eV parallel to it. With 

regard to intrinsic behaviour, the following equation can be used [36]:

n𝑖 = (𝑁𝑐𝑁𝑣)1∕2exp−(𝐸𝑔∕2𝐾𝑇 ) = Cexp−(𝐸𝑔∕2𝐾𝑇 ) (1)

From equation (1), Δ𝐸𝑔 can be estimated.

The energy gap width Δ𝐸𝑔 for 𝐶𝑢𝐺𝑎𝑆𝑒2 was found to be 1.71 eV at the right 

angle to the c axis and 1.70 eV parallel to it. The values are in a suitable agreement 

with those acquired from the conductivity and the Hall effect data. For instance, the 

electron concentration for 𝐶𝑢𝐺𝑎𝑆𝑒2 at room temperature was found to be 2.74 ×
1014 𝑐𝑚−3 at right angle to the cleavage planes and 2.9 × 1013 𝑐𝑚−3 parallel to it. 

As a complementary aspect to the Hall effect and electrical conductivity, the TEP 

assessments were performed. The temperature tendency direction was orthogonal to 

the crystallographic c axis and in the temperature interval between 125 and 530 K. 

The outcomes demonstrate that the conductivity might be highly considered as n-

type accompanied by no polarity change over the whole temperature interval, which 

has good agreement with Hall coefficient measurements. Figure 7 demonstrates 

clearly the TEP in terms of absolute temperature. From this relation, we noticed that 

𝛼 grows monotonically with temperature going through a sharp maximum value of 

1208 𝜇𝑉 𝐾−1 corresponding to 153 K. This is because of the thermal excitement 

of the impurity ionization in this extrinsic area. With further temperature increase, 
on.2018.e00952
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Figure 7. The relation between TEP 𝛼 and natural logarithm of absolute temperature for 𝐶𝑢𝐺𝑎𝑆𝑒2.

TEP falls rapidly to a minimum value 80 𝜇𝑉 𝐾−1 at 308 K. This leads to the postulate 

about the attendance of trapping centres or several crystal defects in the carrier move 

direction. Above 308 K, 𝛼 increases again with the temperature rise.

During high-temperature interval, 𝛼 increases dilatory with temperature; that was 

interpreted before to be caused by the thermal generation of the charge carriers with 

rising temperature which appears in the conduction band [29]. The dependence of 𝛼

variation on temperature in the intrinsic region is presented in equation (2).

𝛼 = 𝐾

𝑒
[
𝜇𝑛 − 𝜇𝑝

𝜇𝑛 + 𝜇𝑝

(
𝛿𝐸𝑔

2𝐾𝑇
+ 2) + 3

4
ln

𝑚∗
𝑛

𝑚∗
𝑝

] (2)

Here 𝜇𝑝, 𝑚∗
𝑝
, 𝜇𝑛 and 𝑚∗

𝑛
are hole mobility, hole effective mass, electron mobility and 

electron effective mass, respectively [29, 37].

When we plot equation (2), we compute the fractions 𝜇𝑛 / 𝜇𝑝 and 𝑚∗
𝑛

/ 𝑚∗
𝑝

from 

the slope-intercept form in the intrinsic region. They are 1.49 and 1.20 × 10−3, 

respectively. Since the quantity 𝜇𝑛 is found at room temperature as 759 𝑐𝑚2∕𝑉 𝑠, 

𝜇𝑝 comes to be 509 𝑐𝑚2∕𝑉 𝑠. Another important relationship is that of Wilson [38]

which is applied in the extrinsic part:

𝛼 = 𝐾

𝑒
[2 − ln 𝑝ℎ3

2(2𝜋𝑚∗
𝑛
𝐾𝑇 )3∕2

] (3)

When we plot equation (3), we should obtain a linear relation in the extrinsic part. 

From the graph, we can calculate 𝑚∗
𝑛
= 8.09 ×10−34𝐾𝑔; hence, 𝑚∗

𝑝
is 6.74 ×10−31𝐾𝑔. 

Figure 8 demonstrates the reliance of TEP on the natural logarithm of 𝜎, according 

to equation (4) [39].

𝛼 = −𝐾

𝑒
[𝐴 − ln

2(2𝜋𝑚∗
𝑛
𝐾𝑇 )3∕2

(2𝜋ℎ)3
] − 𝐾

𝑒
ln 𝜎 (4)
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Figure 8. The TEP versus ln 𝜎 for 𝐶𝑢𝐺𝑎𝑆𝑒2 single crystals.

The relationship between 𝜎 and 𝛼 is identical to the general behaviour of 𝛼 in terms 

of temperature (Figure 7). The obtained effective mass values for both minority 

and majority charge carriers are used for the calculation of the carriers relaxation 

time. They are 𝜏𝑝 = 2.10 × 10−16 and 𝜏𝑛 = 3.80 × 10−19 s for holes and 

electrons, respectively. The diffusion coefficients for holes and electrons were also 

calculated. They were 𝐷𝑝 = 12.70 and 𝐷𝑛 = 18.98 𝑐𝑚2 𝑠−1, respectively. A further 

significant parameter which was evaluated from both, the relaxation time and the 

diffusion coefficient, was the diffusion length, because L = 
√

𝐷𝜏. The diffusion 

length for electrons is 𝐿𝑛 = 2.70 × 10−9 cm, while for holes, it is 𝐿𝑝 = 5.20 ×
10−8 cm.

The above outcomes are supposed to indicate the strong anisotropy of 𝐶𝑢𝐺𝑎𝑆𝑒2
crystals due to the durable anisotropy of the carrier move across and parallel to the 

crystal plane.

4. Conclusions

Single crystals of 𝐶𝑢𝐺𝑎𝑆𝑒2 are prepared by the modified vertical Bridgman method. 

The prepared crystals were identified by X-ray diffraction and energy dispersive 

X-ray fluorescence spectroscopy technique. The thermoelectric power, electrical 

conductivity and Hall coefficient were presented in terms of temperature. The Hall 

effect and electrical conductivity were obtained orthogonal and parallel to the 

layer planes for 𝐶𝑢𝐺𝑎𝑆𝑒2 crystals, and it proved to be highly anisotropic. From 

these measurements, different physical parameters were estimated in two-directional 

crystals. The Hall coefficient value is negative over the exact temperature interval. 

This indicates that the main carriers are electrons, and therefore, 𝐶𝑢𝐺𝑎𝑆𝑒2 crystal 

is n semiconductor type.
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