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Abstract: Epstein–Barr Virus (EBV) contributes to the development of lymphoid and epithelial
malignancies. While EBV’s latent phase is more commonly associated with EBV-associated
malignancies, there is increasing evidence that EBV’s lytic phase plays a role in EBV-mediated
oncogenesis. The lytic phase contributes to oncogenesis primarily in two ways: (1) the production of
infectious particles to infect more cells, and (2) the regulation of cellular oncogenic pathways, both
cell autonomously and non-cell autonomously. The production of infectious particles requires the
completion of the lytic phase. However, the regulation of cellular oncogenic pathways can be mediated
by an incomplete (abortive) lytic phase, in which early lytic gene products contribute substantially,
whereas late lytic products are largely dispensable. In this review, we discuss the evidence of EBV’s
lytic phase contributing to oncogenesis and the role it plays in tumor formation and progression,
as well as summarize known mechanisms by which EBV lytic products regulate oncogenic pathways.
Understanding the contribution of EBV’s lytic phase to oncogenesis will help design ways to target it
to treat EBV-associated malignancies.
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1. Introduction

EBV-positive malignancies have been associated with the latent phase of EBV’s life cycle;
a non-productive phase in which no progeny virus is formed. However, there is now increasing
evidence that EBV’s lytic phase contributes to EBV oncogenesis (reviewed in [1–5]).

What is meant by the term “EBV’s lytic phase”? To orient the reader, here we introduce
the terminology that has developed with the study of EBV. Epstein–Barr Virus (EBV) is a human
γ-herpesvirus that infects a variety of cells in vivo and naïve B-lymphocytes efficiently in vitro.
EBV induces and maintains proliferation of the infected B cells. In these cells, EBV remains latent,
with few viral genes being expressed reminiscent of the lysogenic state of some bacteriophage
(reviewed in [6]). On rare occasions, these infected cells alter their transcription to support
EBV’s productive cycle, in which progeny virus particles are produced. Early studies of clones

of infected cells found on the order of 1 per 103 cells to 1 per 106 cells would support the productive
cycle per 24 h [7]. Even with its rarity, EBV’s productive cycle has been well examined, being
essential for the propagation of this human tumor virus. These studies have led to a distinctive
terminology. The complete productive cycle of EBV is termed “lytic” because productively infected
cells eventually lyse. The lytic phase has been divided into “immediate early”, “early”, and “late”
phase by analogy to the detailed analyses of α-herpesviruses [8,9]. Viral genes that support
viral DNA amplification are classified as early and those that support viral particle formation
are termed late. The early lytic genes have been further divided, with the subset that mediates the
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transcription of the viral DNA replication genes being termed “immediate early”. Careful studies
of viral gene expression during infection of primary B cells have led to the realization that
multiple immediate early and early lytic genes of EBV are expressed during the first few days
following infection, while others are introduced as proteins from the tegument of the viral particles.
These include the immediate early genes BZLF1 and BRLF1, transcriptional activators that regulate
viral and cellular transcription [10–12]. The expression of these early lytic genes following infection
of primary B cells does not lead to a complete lytic cycle [11] and reactivation of the lytic phase
where one or more early lytic genes are expressed in the absence of virus production is now termed the
“abortive lytic phase” [13].

In this review, we will discuss the evidence of EBV’s lytic phase contributing to tumorigenesis,
and the mechanisms by which it does so.

2. EBV’s Lytic Phase Contributes to Tumorigenesis by Production of Infectious Viral Particles

No EBV-positive tumor forms without a precursor cell being infected by this virus. What evidence
indicates that the risk of EBV’s oncogenesis is dependent on the amount of infectious EBV in a
person? In other words, are people who support atypically high levels of EBV’s productive cycle or
who are infected by variants of EBV that support entry into the lytic phase efficiently more likely to
develop EBV-positive tumors? Multiple findings are consistent with viral load being proportional to
the risk of EBV-associated malignancy. First, a large, prospective serological survey was conducted
in Uganda between 1972 and 1979 to test for an association between infection with EBV and the
development of Burkitt Lymphoma (BL) [14,15]. Blood samples were taken from 42,000 children,
and the children were monitored for development of BL. Over the course of the survey, 16 children
developed BL (1 lymphoma/2600 children). These children were found to have significantly elevated
titers of the antibodies to EBV’s viral capsid antigen (VCA) prior to the manifestation of their BLs [15].
Thus, infection with EBV was a risk factor for developing Burkitt Lymphoma in these children and
their immune response to components of the virus particle prior to lymphoma formation correlated
with this risk factor. One evident interpretation of this finding is that a higher viral load increases the
risk of children developing Burkitt Lymphoma.

A second finding which indicates that an increasing viral load increases the risk of developing
Burkitt Lymphoma comes from an appreciation of malaria being a co-factor for the risk of its
development. Denis Burkitt first hypothesized that malaria might be a risk factor for this cancer, based
on the geographical distribution of BL overlapping with the presence of holoendemic malaria in central
Africa [16]. Insightful work on the role of T cells in suppressing the growth of EBV-infected cells
revealed that during the acute phase of the malarial infectious cycle, the number of anti-EBV cytotoxic
T cells is reduced significantly [17]. This insight was further illuminated by a study in The Gambia
where Burkitt Lymphoma is endemic. Lam et al. [18] measured the number of EBV-infected B cells in
the blood of children during the acute phase of malaria and found five-fold more infected cells than in
the blood of convalescent children. They also showed that when naïve B cells were co-cultivated with
EBV-positive B cells from acute phase children, there was spontaneous outgrowth of lymphoblastoid
cells. However, this outgrowth was absent when the cells were treated with acyclovir, which blocks
lytic DNA replication and the subsequent production of progeny viruses [18]. These combined findings
indicate that there is an increased number of EBV-transformed B cells in vivo during the acute phases
of malaria, and this increase arises at least in part from the release of EBV from infected cells leading to
new infections of uninfected B cells.

The increased numbers of EBV-infected cells constitute an increased risk for developing Burkitt
Lymphoma because they provide a larger reservoir in which mutations that also drive oncogenesis can
occur. For example, greater than 90% of Burkitt Lymphoma tumor cells have a translocation between the
c-Myc locus and one of the three immunoglobulin loci [19–21]. The translocation places the expression
of the c-Myc proto-oncogene under the control of an immunoglobulin locus, resulting in its constitutive
expression in B cells which express immunoglobulin genes [22]. Thus, increased viral loads in vivo lead
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to increased numbers of EBV-infected cells, which, as proliferating lymphoblasts, can both undergo
and maintain chromosomal translocations that can contribute to EBV’s oncogenesis. The increased
viral loads in vivo would thus contribute to an increased risk for developing Burkitt Lymphoma.

A third kind of evidence to support an increased viral load adding to the risk for developing an
EBV-caused cancer comes from studies of naturally occurring or engineered variants of EBV that differ
in their support of the lytic phase. This evidence is complex, though. With the advent of assays for
the activity of EBV in cell culture, researchers have screened for cells that release more particles of
infectious EBV [23] and new strains of EBV that could support entry into the lytic phase more efficiently
than others [24–27]. Multiple studies have subsequently identified sequence variations in the promoter
of BZLF1, an immediate early lytic gene which regulates entry into the lytic phase. These variants can
affect entry of EBV into its lytic phase and the efficiency with which they transform B cells in vitro.
For example, one triple mutant within the BZLF1 promoter increases the rate of virus release from
transfected 293 cells by 7–9-fold and reduces the efficiency of viral transformation of primary B cells by
10-fold [28]. One naturally occurring variant within the BZLF1 promoter, termed Zp-V3, which can be
bound by the NFAT transcription factor, increases an infected B cell’s responsiveness to entry into the
lytic phase by treatment with anti-Ig antibodies, but does not affect the efficiency of transformation of
primary B cells [29]. This variant is found in approximately 50% of Burkitt Lymphomas (ibid.) and has
no apparent effect on tumor formation in immunocompromised mice following reconstitution with
human cord blood cells [30].

Typically, entry and completion of the lytic phase results in cell death, thus seemingly incompatible
with tumorigenesis. However, half of surveyed Burkitt Lymphomas have the lytic responsive Zp-V3
variant, and clearly these infected cells can evolve to become lymphomas. Therefore, we conclude
that following infection of a cell, more efficient entry into EBV’s complete lytic phase is not a barrier
to oncogenesis. What might explain this seeming discrepancy? Entry and passage of newly infected
B cells through the complete lytic phase is undetectable for the first 12 days following infection [31].
This absence is a consequence of the incoming viral DNA being unmethylated [32] and that BZLF1
preferentially binds to methylated sites [33,34]. Over time, EBV viral DNA in infected cells becomes
increasingly methylated, eventually supporting BZLF1 binding on specific sites which drive the
complete lytic phase. Given that during the first few days following infection the infected cells
proliferate unimpeded, when a progeny cell eventually supports the complete lytic phase and dies,
its siblings can continue to proliferate, thus supporting tumorigenesis.

It does seem likely that variants of EBV that support their lytic phase more efficiently than do
others would be more likely to yield higher viral loads in people and accordingly have an increased
risk of being oncogenic. This likelihood is supported by the observations that isolates with the Zp-V3
variant of the BZLF1 promoter occur twice as frequently in Burkitt Lymphomas and nasopharyngeal
carcinomas as in non-malignant EBV-infected cells from people in the same regions of the world in
which these cancers are found [29].

3. EBV’s Lytic Gene Expression in EBV-Associated Tumor Samples

That high viral load is a risk factor for developing an EBV malignancy and that variants of EBV
that support entry into the lytic phase may contribute to this risk are indirect findings for understanding
how EBV’s lytic phase might affect tumor cells. Examination of EBV’s gene expression in samples
of EBV-associated tumors has identified the expression of EBV lytic genes in tumor cells. The most
common lytic gene assayed, the immediate early gene BZLF1, has been identified in Burkitt Lymphoma
(BL) [35], nasopharyngeal carcinoma (NPC) [36,37], and gastric carcinoma (GC) [38] samples. Most of
these identifications used RT-PCR to detect either unspliced or spliced variants of BZLF1. In several
studies, subsets of the tumor samples were also subjected to BZLF1 immunohistochemistry (IHC) [35,36].
The IHCs confirmed the RT-PCR results for each tumor, with BZLF1-expressing cells comprising 10–50%
of tumor cells in each BZLF1-positive sample. Given that IHCs specifically detect proteins, these results
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indicate that, in those samples tested, not only are lytic genes transcribed, the corresponding proteins
are indeed synthesized.

BZLF1 is a principal activator of the cascade of EBV’s lytic gene expression, but its detection does
not ensure completion of the viral lytic cascade as shown by its detection in newly infected B cells,
which do not progress to lytic reactivation [10–12]. Indeed, assays for additional lytic genes have often
failed to detect several such key genes in tumor samples expressing BZLF1. In one study of eight NPC
biopsies, RT-PCR assays for the expression of early genes BMLF1 and BBLF2/3 (encoding EBV’s M
transactivator and primase-associated factor, respectively) found that only five of eight samples tested
positive for BMLF1 expression, and none tested positive for BBLF2/3 [39]. All eight NPC samples had
previously tested positive for BZLF1 expression [36], thus revealing that EBV-associated tumors often
harbor cells undergoing an incomplete or abortive lytic phase, in which some early lytic genes are
expressed, but no viral particles are produced [13].

Surprisingly, despite evidence for an incomplete lytic phase, several studies have shown that
late lytic genes are expressed in tumor samples [38,39]. The expression of late lytic genes requires
EBV genome amplification in cis [40], and DNA amplification itself requires a minimum set of early
lytic genes encoding the core replication machinery: BALF5, BALF2, BBLF2/3, BBLF4, BMLF1, BSLF1,
and BMRF1 [41,42]. However, some of the key components of this core replication machinery have
not been detected in tumors in which the late lytic genes are expressed. These findings constitute a
conundrum: how can late lytic genes be expressed in the absence of expression of viral genes shown to
be required for their expression? Some late lytic genes are “leaky”, having low-level expression early in
the lytic phase and are further upregulated following lytic DNA replication [43]. It is possible that these
leaky late genes constitute some of the late genes detected in tumor samples lacking DNA replication.
Indeed, BALF4 (encoding glycoprotein B) was consistently detected in GC samples lacking in expression
of some DNA replication genes [38], and is a leaky late gene [43]. However, leaky late genes do not
underlie the expression of BLLF1 [39], BNRF1, and BPLF1 [38], which are true late genes and therefore
dependent upon lytic DNA replication [43]. The answer to this puzzle may lie in the inefficient
detection of the genes required for lytic DNA replication or in their being expressed in only a small
subset of the tumor cells. What is clear is that EBV-associated tumors often express an assortment of
lytic genes spanning the early and late lytic gene sets. It also appears that the frequent expression of
some lytic genes in EBV-associated tumor samples supports their potential contributions to EBV’s
oncogenesis. In the next section, we discuss what these contributions might be.

4. Functional Contributions of EBV’s Lytic Genes to EBV’s Oncogenesis

Several studies have used animal models to uncover the importance of EBV’s lytic phase to
lymphomagenesis. One study by Hong et al. [44], used engineered variants, mutated for entry
into the lytic phase, to investigate their tumorigenesis and growth in mice with severe combined
immunodeficiency (SCID). The authors used mutant variants of EBV with knockouts of the early lytic
genes, BZLF1 (BZLF1-KO) and BRLF1 (BRLF1-KO) and infected human peripheral blood mononuclear
cells (PBMCs) to generate BZLF1-KO and BRLF1-KO lymphoblastoid cell lines (LCLs). When grown
in vitro, these mutant LCLs had similar proliferation rates as LCLs generated using wild-type EBV.
However, when these LCLs were injected subcutaneously into the flanks of SCID mice, both BZLF1-KO
and BRLF1-KO LCLs had reduced tumor growth rates compared to wild-type LCLs. Within groups
of donor-matched PBMCs, the mutant LCLs grew to at most 25% of the volume of their wild-type
counterparts, with most injections resulting in minimal or no tumor growth. The authors also conducted
a rescue experiment using BZLF1-KO LCLs stably transfected with BZLF1 expression vectors, in which
BZLF1 expression rescued the growth defect of BZLF1-KO LCLs upon injection into SCID mice.
Thus, it is apparent that EBV’s early lytic phase does contribute to lymphomagenesis in SCID mice.

A second study demonstrated the role of lytic phase in lymphomagenesis in an infection model of
humanized mice. Ma et al. [45] used a humanized NOD/LtSz-scid/IL2Rγnull (hNSG) mouse model,
in which NSG mice were injected with purified human CD34+ cells to reconstitute the human immune
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system. These hNSG mice were infected with BZLF1-KO EBV intraperitoneally and assessed for
lymphomas at 60 to 65 days post infection. The tumor incidence of mice infected with BZLF1-KO
EBV was 14% (2/14), while that of wild-type EBV was 54% (6/11). Thus, consistent with the findings
in SCID mice [44], variants of EBV defective for entry into the lytic phase are impaired for tumor
growth in mice. In comparison to SCID mice, hNSG mice have increased immune responses, including
functional T cells and B cells. The results from this study therefore indicate that contributions of EBV’s
lytic phase to lymphomagenesis can occur in the presence of increased immune responses mediated by
the reconstitution of the human immune system.

A third study that supports a role for EBV’s lytic phase in tumorigenesis analyzed primary
effusion lymphomas (PEL) in humanized NSG mice [46]. PEL has been primarily associated with
KSHV, but 90% of PELs are dually infected with EBV. McHugh et al. developed a dual-infection model
in hNSG mice using wild-type or BZLF1-KO EBV, in conjunction with wild-type KSHV. They observed
that mice infected with BZLF1-KO EBV + KSHV had a significantly decreased tumor incidence and
multiplicity compared to mice infected with wild-type EBV + KSHV. This finding again highlights
the significance of EBV’s entry into the lytic phase for its lymphomagenesis. The authors also noted
that there is no difference in KSHV persistence in tumor cells dually infected with the wild-type vs.
BZLF1-KO variants of EBV; this observation indicates that the role of EBV’s lytic phase likely involves
more than a requirement for KSHV maintenance within these PEL-like cells.

Several additional insights can be gained from these mouse models to shed light on the mechanisms
by which EBV’s lytic phase contributes to lymphomagenesis. One role of the lytic phase is to produce
and release new infectious particles. To test whether this function is essential for lymphomagenesis,
Hong et al. [44] did an additional experiment in which they injected SCID mice with wild-type LCLs
and treated them with acyclovir (ACV), an inhibitor of viral lytic DNA replication. The doses of
ACV treatment were determined such that the mean plasma concentration of ACV in the mice was
comparable to the ACV doses used to inhibit the complete lytic phase in patients with infectious
mononucleosis. The authors concluded that ACV treatment did not impair growth of the wild-type
LCLs in SCID mice. This conclusion indicates that the complete lytic phase is not required for
lymphomagenesis. It is also supported by work showing that EBV’s plasma viral load in infected mice
was largely undetectable regardless of BZLF1-KO or wild-type virus variant status [45].

A separate study in NOD/Shi-scid-ILR2γnull (NOD) mice further supports this conclusion [47].
In this study, the authors generated LCLs null for EBV’s BALF5 gene encoding its DNA polymerase
and therefore incapable of supporting lytic DNA amplification. When these LCLs, termed dBALF5,
were xenografted into NOD mice, the mice were observed to have increased weight loss and lower
survival rates in comparison to mice having xenografts infected with wild-type EBV. dBALF5 mice
were also found to have higher EBV copies in various organs. In cells infected with wild-type EBV,
an increased level of EBV copy number could be mediated by increased lytic DNA replication and/or
the proliferation and accumulation of latently infected cells [48]. As EBV is unable to undergo lytic
replication in the absence of BALF5, the increased EBV copies in dBALF5 mice is evidently caused by
the proliferation of latently infected B cells. Furthermore, IHC examinations of dBALF5 organs revealed
an increase in BZLF1-expressing cells, indicating an increased frequency of EBV-infected cells entering
the lytic phase. Of note, dBALF5 EBVs are clearly capable of lytic reactivation; however, as they are
unable to amplify their genome, we can infer that they are accordingly incapable of expressing late
genes, as true late gene expression requires lytic amplification of the genome in cis [40]. Combined with
findings from the BZLF1-KO studies and given that a complete lytic phase would lead to host cell
lysis, this study confirms that EBV’s early lytic phase is important in tumorigenesis, whereas the
late lytic phase is dispensable and even likely to inhibit tumor progression. This conclusion is also
supported by EBV genome analysis of T/NK cells in chronic active EBV infection (CAEBV). Among the
analyzed CAEBV patient samples, 35% (27/77) harbored intragenic deletions, with 77% (21/27) of
these deleted genomes carrying deletions in regions essential for the production of infectious viral
particles [47]. These deleted regions include the BART miRNA clusters (which contain miRNAs that
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negatively regulate BZLF1 and BRLF1), the core lytic replication genes, as well as other genes essential
for infectious particle production. Similar findings were found in cases of EBV-positive diffuse large B
cell lymphomas (DLBCLs) and extranodal NK/T cell lymphomas (ENKLs) [47]. These analyses do
highlight the potential roles of BZLF1, BRLF1, and early EBV genes in viral oncogenesis.

5. Cellular Regulation of Tumorigenesis by EBV’s Lytic Phase

EBV’s lytic phase affects tumorigenesis by modulating cellular pathways that influence tumor
cells and tumor microenvironment. The following sections discuss multiple mechanisms by which
EBV’s lytic phase influences tumorigenesis through the regulation of immunomodulation and immune
evasion, angiogenesis and invasion, genomic instability, as well as cell cycle and apoptosis. For a
summary of the EBV lytic genes included in this review and the tumorigenic properties they regulate,
see Table 1.

5.1. Immunomodulation and Immune Evasion

EBV inhibits the immune response during its lytic phase to support the maturation and release
of progeny virions. How might these activities contribute to tumor cells evading detection and
elimination by the immune system? One mechanism of EBV’s immunomodulation during its lytic
phase is by the induction of cellular cytokines such as IL-6, IL-8, IL-10, IL-13, and IL-1β [44,49–51,54,70].
These cytokines are known to support tumorigenesis, and IL-6, and IL-13 in particular have been
shown to support growth and survival of EBV-associated tumors [51,70]. The increased expression of
these cytokines has been shown to be mediated by several lytic proteins, including BZLF1, BRLF1,
and BLLF3 (for details on the specific cytokines upregulated by these lytic proteins, see Table 1).
The mechanism by which BZLF1 upregulates cytokine expression likely involves its function as
transcriptional activator. BZLF1 binds to promoters of cytokine genes at AP-1 and/or ZRE sites,
activating transcription of downstream gene [49–51]. BZLF1 is capable of binding nucleosomal
DNA, increasing local chromosome accessibility through its interactions with chromatin remodeling
enzymes, consistent with its designation as a pioneer transcription factor [71]. This induction of local
open chromatin allows for a permissive state for transcription, through which BZLF1 could activate
expression of its target genes, including cytokines. BRLF1’s mechanism of upregulating cytokine has
not been directly examined, though we can speculate that its upregulation of cytokine gene expression
is mediated by its transcriptional activator function. BLLF3 is an early lytic gene encoding the viral
dUTPase; how it upregulates cytokine expression is unclear.

In addition to regulating cellular cytokine expressions, EBV has its own IL-10 homolog: vIL-10,
encoded by BCRF1. BCRF1 is late lytic gene, although it is also expressed immediately after infection
of primary B cells [55]. In the context of primary infection, vIL-10 has been shown to inhibit natural
killer (NK) cell-mediated elimination of EBV-infected B cells and inhibit CD4+ T cell activities (ibid.).
These functions support tumor cell evasion of immune detection, one of the hallmarks of cancer.
Were EBV-infected cells to express BCRF1 transiently and survive, this expression could contribute
to tumorigenesis.
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Table 1. EBV’s lytic genes and their roles in oncogenesis.

Immunomodulation and Immune Evasion

EBV Lytic Gene IE/E/L 1 Lytic Function Role in Oncogenesis Oncogenic Mechanism of Action References

BZLF1 IE Transactivator Induction of pro-inflammatory cytokine expression and secretion
(IL-8, IL-10, IL-13) Binding and activating target gene promoters [49–51]

BGLF5 E Alkaline exonuclease Downregulation of MHCs Host shut off; degradation of cellular mRNAs [52]
BILF1 E gp64, vGPCR Inhibition of MHC trafficking [53]

BLLF3 E dUTPase Induction of pro-inflammatory cytokine expression and secretion
(IL-1β, IL-6, IL-8, IL-10) [54]

BNLF2a E Inhibitor of TAP 2 Inhibition of CD8 T cell recognition of infected cells [55]

BCRF1 L vIL-10 Inhibition of NK cell-mediated elimination of infected cells;
inhibition of CD4 T cells [55]

BDLF3 L gp150 Downregulation of MHCs Ubiquitination and degradation of MHCs [56]
BZLF2 L gp42 Inhibition of MHC II-mediated antigen presentation [57]

Angiogenesis and Invasion

EBV Lytic Gene IE/E/L Lytic Function Role in Oncogenesis Oncogenic Mechanism of Action References

BZLF1 IE Transactivator Upregulation of MMP1, MMP3, MMP9 Binding and activating target gene promoters [58–60]
BRLF1 IE Transactivator Upregulation of MMP9 Binding and activating target gene promoters [61]

Genomic Instability

EBV Lytic Gene IE/E/L Lytic Function Role in Oncogenesis Oncogenic Mechanism of Action References

BALF3 E Terminase Induction of genomic aberration Induction of DNA damage [62]

BGLF4 E S/T protein kinase Induction of genomic aberration Induction of DNA damage pathways and
premature chromosome condensation [63,64]

BGLF5 E Alkaline exonuclease Induction of genomic aberration Induction of DNA damage [65]
BALF4 L gp110 Induction of genomic aberration [66]
BNRF1 L Major tegument protein Induction of genomic aberration [66]

Cell Cycle Progression and Apoptosis

EBV Lytic Gene IE/E/L Lytic Function Role in Oncogenesis Oncogenic Mechanism of Action References

BALF1 E vBcl-2 Pro-survival, anti-apoptotic [67]
BHRF1 E vBcl-2 Pro-survival, anti-apoptotic Inhibition of BIM, PUMA, BAK [67–69]

1 Lytic gene classifications; IE: immediate early; E: early; L: late. 2 TAP: transporter-associated with antigen processing.
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EBV’s lytic phase has also been shown to accommodate immune evasion through prevention
of antigen presentation. Several lytic gene products downregulate MHCs, including BGLF5, BILF1,
BNLF2a, BZLF2, and BDLF3. BGLF5 is EBV’s alkaline exonuclease which mediates host shut off via
mRNA degradation, leading to the inhibition of MHC synthesis [52]. BILF1 is a G protein-coupled
receptor (GPCR) which inhibits MHC trafficking, thereby reducing immune recognition of host
cells [53]. BNLF2a is an inhibitor of the transporter for antigen processing (TAP), which reduces
recognition of infected cells by CD-8 T cells [55]. BZLF2, encoding the viral glycoprotein 42 (gp42)
inhibits MHC II-mediated antigen presentation to T cells [57]. BDLF3, encoding glycoprotein 150
(gp150) ubiquitinates and downregulates MHCI and MHCII [56]. BGLF5, BILF1, and BNLF2a are early
lytic genes, and we speculate that cells surviving the abortive lytic phase avoid immune detection
by expressing these viral genes. On the other hand, BZLF2 and BDLF3 are late lytic genes, and their
potential contributions to tumorigenesis would require their being expressed during the progression of
the tumor cells. Overall, it seems that several lytic proteins could contribute to immune modulation and
evasion by inducing inflammatory cytokines, inhibiting immune cell responses against EBV-infected
primary B cells, and/or downregulating antigen presentation through MHCs.

5.2. Angiogenesis and Invasion

EBV is known to induce angiogenesis and extracellular matrix (ECM) degradation, leading
to enhanced tumorigenesis and tumor invasion in NPCs. The role of EBV in angiogenesis is
well documented in its latency phase (reviewed in [72]). In contrast, the angiogenic properties
of EBV’s lytic phase are less well investigated. Nevertheless, early passage LCLs lacking BZLF1
(BZLF1-KO) or BRLF1 (BRLF1-KO) have been shown to have lower VEGF secretion compared to
wild type [73]. VEGF (vascular endothelial growth factor) is a known stimulant of blood vessel
formation. Correspondingly, supernatants from BZLF1-KO LCLs, when incubated with human
dermal microvascular endothelial cells (HDMECs), induced less vessel formation in comparison to
supernatants from wild-type LCLs, confirming that LCLs defective for lytic phase entry have decreased
angiogenesis. This decrease is likely mediated by reduced VEGF production, although whether BZLF1
or BRLF1 directly regulate expression of VEGF is currently unclear.

EBV in its lytic phase also regulates the matrix metalloproteinases (MMPs). MMPs are involved in
both angiogenesis and the degradation of ECM (reviewed in [74]). Angiogenesis and ECM breakdown,
along with epithelial–mesenchymal transition (EMT), are processes that underlie tumor invasion and
metastasis. BZLF1, and to some extent BRLF1, have been shown to be important for the upregulation
of several MMPs in NPCs. BZLF1 directly upregulates MMP1, MMP3, and MMP9 by binding to
AP-1 sites on the promoters of these genes [58–60]. All three MMPs contribute to cell invasiveness,
as demonstrated in Matrigel invasion assays [59,60], and MMP3 has also been shown to promote cell
migration [60]. Similarly, BRLF1 has been shown to upregulate MMP9, leading to pro-invasive effects
in NPC cell lines [61].

Curiously, in B cells, BZLF1 has been shown to regulate the production of TIMP-1 (tissue inhibitor
of metalloproteinases 1), a known broad-spectrum inhibitor of MMPs, during early EBV infection of
primary B cells [75]. In early infection of EBV, BZLF1 expression increases in the days following infection,
as does TIMP-1 in both its expression and secretion. Ectopic expression of BZLF1 in EBV-negative
BL showed a corresponding upregulation of TIMP-1, whereas shRNA against BZLF1 in LCLs led to
a reduction in TIMP-1 production. BZLF1 was found to bind AP-1 sites on the TIMP-1 promoter,
indicating that it directly upregulates TIMP-1 expression and secretion (ibid.). Whether BZLF1 also
regulates TIMP-1 in the context of lytic phase remains to be investigated. TIMP-1 downregulates MMP
activities, and therefore is typically known to be anti-angiogenic (reviewed in [76]). However, it also
has been shown to have an anti-apoptotic function, as demonstrated in LCLs treated with cisplatin [75],
therefore providing tumor cells a survival advantage. Although both TIMP-1 and MMPs are induced
by BZLF1, their induction has been measured individually in B cells or epithelial cells, respectively.
Their seemingly contradictory effects may therefore reflect functions of BZLF1 differing in different
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host cells. In addition, it is currently unclear how TIMP-1 and MMPs interact in the context of the lytic
phase, and thus the effects of this interplay on tumorigenesis remain unclear.

It is apparent that EBV’s lytic phase contributes to the modulation of angiogenesis and cell
invasion. This contribution is mainly carried out through BZLF1 and BRLF1 as examined in cell
culture, although there may also be other lytic factors involved. Generally, only a small subset of cells
in an EBV-associated tumor undergoes the lytic phase. It is therefore apparent that this minor cell
population, if it does influence tumor progression in vitro, does so non-cell autonomously by changing
the tumor microenvironment and supporting angiogenesis and cell invasion.

5.3. Genomic Instability

EBV’s lytic phase has been shown to induce cellular genomic instability, one of the enabling
characteristics of oncogenesis [77]. In NPC cell lines, chemical induction of the lytic phase in
EBV-positive cells led to an increase in cells with micronuclei and γH2AX, markers of DNA damage
and genomic instability [78]. Additionally, inhibition of the lytic phase through siRNA knockdown of
BZLF1 reduced the number of γH2AX-positive cells upon chemical treatment, confirming the role of
the lytic phase in the induction of DNA damage (ibid.). Similarly, in B cells, the lytic phase has also
been associated with genomic instability. Infection of primary B cells with wild-type EBV led to an
increased number of centrioles, formation of micronuclei, multinucleated cells, and/or aneuploidy,
while infection with a lytic-defective variant (∆ZR; BZLF1 and BRLF1 double knockout) led to fewer
cells with these genomic aberrations [66]. Accordingly, B cells infected with either variant of the virus
had similar growth rates in vitro, but the ∆ZR-infected LCLs had reduced tumor incidence and growth
rate when injected into NSG mice. Surprisingly, genome-less virus-like particles (VLPs) were found to
induce centriole amplification and aneuploidy upon contact with B cells and epithelial cells, regardless
of their EBV status. Apparently, EBV does not need to establish stable infection to induce genomic
aberrations. Moreover, this phenomenon was abolished in VLPs lacking the gp110 protein encoded by
BALF4, a late lytic gene, implicating its contribution to the VLP-mediated genomic effects.

Several EBV lytic proteins have been shown to promote genomic instability. BNRF1, EBV’s major
tegument protein, has been shown to be an important factor in inducing chromosomal instability.
For example, Shumilov et al. found that infection with BNRF1-deleted (∆BNRF1) EBV led to a
decrease in the number of cells with genetic aberrations as compared to that of wild-type EBV [66].
The mechanism of BNRF1-mediated chromosomal instability is unclear, although sucrose gradient
fractionation experiments found BNRF1 to be enriched in the centrosomal fraction. Another lytic protein,
BGLF5, encoding the viral DNase, induced genomic instability upon transfection into EBV-negative
epithelial cells [65]. Its mechanism of action seems to involve induction of DNA damage, correlating
with its nuclease activity, and inhibition of DNA damage repair through decreased expression levels
of DNA-repair genes including MSH2, MSH6, MLH1, and PMS2 (ibid.). BALF3, EBV’s terminase
protein, when transfected into EBV-negative NPC cell lines, led to increased γH2AX signal, formation
of micronuclei, and accumulation of chromosomal aberration [62]. This induction of DNA damage and
genomic instability was found to be dependent upon its endonuclease function. BGLF4, encoding the
viral S/T kinase, has been shown to induce premature chromosome condensation [63,64]. This phenotype
was found to be dependent on BGLF4′s kinase function through interactions with condensin and
topoisomerase II [63]. BGLF4 was also found to induce the formation of micronuclei, a common
marker of genomic instability [64]. Genomic instability predisposes cells to acquiring hallmarks
of cancer. However, it is also important that these cells continue to proliferate as tumor cells.
BGLF4 phosphorylates many cellular proteins including the Aurora kinases, ATM, CDK1, and CDC20,
resulting in the activation of the DNA damage response pathways and inhibition of anaphase promoting
complex/cyclosome (APC/C), both events typically associated with mitotic inhibition [79]. However,
while high levels of BGLF4 in mammalian cell lines were shown to inhibit cell cycle progression, low
levels were found to allow for completion of mitosis [64]. Therefore, while BGLF4 can induce genomic
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instability, its role in cell cycle and tumorigenesis is currently unclear and may be dependent on its
expression level.

The role of EBV’s lytic phase in inducing genomic instability poses a potential inconsistency.
Typically, cells that undergo the lytic phase die following the release of viral particles. This death means
that any genomic aberrations induced in these cells become irrelevant to tumor progression. How could
the lytic phase contribute to tumorigenesis by inducing genomic instability? One possible mechanism
is through the VLP-mediated genomic instability uncovered by Shumilov et al. [66]. While the lytic cells
die, the virions they produce could interact with neighboring cells and mediate a non-cell-autonomous
effect, resulting in increased genomic instability in the tumor population. This hypothesis could also
explain how a small percentage of lytic cells would have wide-reaching effects within a population of
tumor cells. Another potential mechanism involves an incomplete lytic phase, also referred to as an
abortive lytic phase. Except for BALF4, all the proteins implicated in inducing genomic instability are
early lytic proteins. Thus, in the event of an abortive lytic phase, these early proteins could still be
expressed and exert their function. An abortive lytic phase could increase the importance of early EBV
proteins in viral tumorigenesis because it allows these cells to continue to proliferate and contribute to
the tumor population. To test the role of an abortive lytic phase in tumorigenesis, it would be necessary
to measure its frequency and function in vitro. Without such measurements, the extent to which an
abortive lytic phase affects EBV’s tumorigenesis is currently unclear.

5.4. Cell Cycle Regulation and Apoptosis

EBV encodes two viral homologs of the cellular BCL2 anti-apoptotic proteins: BALF1 and BHRF1.
These vBcl-2 genes are classified as early lytic genes. However, their expression have also been detected
early during infection, although at much lower levels than those found in the lytic phase, and have
been found to be important for cellular transformation of B cells [67,68]. The expression of BALF1 and
BHRF1 early during infection is independent of both BZLF1 and EBNA2, as virus variants lacking either
gene supported expression of these anti-apoptotic genes as does wild-type EBV (ibid.). Additionally,
BHRF1 has been shown to be expressed constitutively in Wp-restricted BLs, and at low levels in
established LCLs two to four months post infection [68,69]. This long-term expression of BHRF1 is
unlikely to be due to low level lytic reactivation in the cell population, as LCLs established using
BZLF1-KO EBV were also found to express BHRF1 long term [68].

Both BALF1 and BHRF1 have been reported to have pro-survival, anti-apoptotic functions,
although BALF1 has also been reported to have pro-death functions instead [80]. In an infection setting,
EBV lacking both BALF1 and BHRF1 failed to generate LCLs and accumulated high levels of subG1 and
apoptotic cells [67]. This defect is rescued in the presence of either one of these vBcl-2 genes, indicating
their functional redundancy in supporting the transformation of B cells. Expression of BHRF1 in both
EBV-positive (Akata-BL) and EBV-negative (BL41, Eµ Myc mouse lymphoma) cell lines protected
cells from death induced by treatment with ionomycin or etoposide [67]. This anti-apoptotic function
of BHRF1 has been ascribed to its binding with and inhibition of the cellular pro-apoptotic protein,
BIM [81]. However, BHRF1 was found to inhibit cell death even in the absence of BIM, indicating
that its protective function is not mediated solely by its interaction with BIM [69]. In addition to BIM,
BHRF1 also binds the pro-apoptotic PUMA and BAK proteins [69,82], showing that it may function
through inhibition of several cellular BCL-2 family members.

In addition to its importance in the initial transformation of B cells, it appears that BHRF1 also
contributes to the tumorigenicity and long-term survival of tumor cells for two reasons. First, expression
of BHRF1 in Eµ-Myc hematopoietic stem and progenitor cells (HSPCs), followed by their injection
into lethally-irradiated mice, led to an accelerated development of lymphomas [69]. Second, while BL
cell lines typically have high rates of TP53 mutations, BL lines that naturally express BHRF1,
including Sal-BL, Oku-BL, and Ava-BL, have wild-type TP53. This finding is consistent with BHRF1′s
anti-apoptotic function compensating for the selective pressure to mutate TP53 in lymphomas (ibid.).
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While BALF1 and BHRF1 are highly expressed in the lytic phase, it is evident that they also
contribute to tumorigenesis early in infection and during latency. Whether by transient expression
post-infection or Wp-mediated long-term expression, it is clear that the anti-apoptotic functions of
these vBcl-2 genes are essential in ensuring cell survival and proliferation, two key characteristics of
tumor cells.

In summary, EBV’s lytic phase regulates cellular oncogenic pathways, including those promoting
angiogenesis, immunomodulation and immune evasion, genomic instability, as well as cell cycle and
survival. These regulated pathways contribute to tumor formation and progression via cell-autonomous
and non-cell-autonomous functions. Cell-autonomous functions that contribute to tumorigenesis
occur in cells that undergo an incomplete (abortive) lytic phase; those cells that complete the lytic
phase would die and can no longer contribute to the tumor. These functions include increased
proliferation, immune evasion, and genomic instability, along with decreased apoptosis. On the
other hand, non-cell-autonomous events can influence surrounding cells and foster a pro-tumorigenic
microenvironment through angiogenesis, modifications of the extracellular matrix, and cytokine
productions. Collectively, these cell-autonomous and non-cell-autonomous outcomes contribute to
EBV-mediated oncogenesis.

6. EBV’s Lytic miRNAs in Tumorigenesis

In addition to its lytic proteins, EBV also regulates tumorigenesis through its miRNAs. EBV
encodes two clusters of miRNAs, one in the BHRF1 locus and one in the BART locus. The BART
miRNAs are detected at all phases of EBV’s life cycle, while the BHRF1 miRNAs are not detected in
some cells in culture and are when the same cells are induced to enter their lytic phase [83]. The levels
of one of the BHRF1 miRNAs also correlates with viral load in the blood of patients consistent
with it being expressed preferentially during EBV’s lytic phase [84]. The BHRF1 miRNAs are found
immediately after infection of primary B cells and in some cases of post-transplant lymphoproliferative
disease [85,86]. The BART miRNAs contribute to transformation by regulating expression of multiple
cellular genes as well as inhibiting immune recognition of the infected cell [87–89]. Their continued
presence in cells in EBV’s lytic phase is likely to contribute also to the success of this portion of the
viral life cycle. The new expression of the BHRF1 miRNAs in cells induced into EBV’s early lytic phase
should affect this phase distinctively, though. Can any of these BHRF1 miRNAs also contribute to
EBV’s oncogenesis?

miR-BHRF1-2 inhibits the tumor suppressors, PTEN and PRDM1, which would likely foster
EBV’s tumorigenesis [86,90]. This same miRNA also inhibits expression of the IL-1 receptor 1 to limit
signaling via receptor engagement and, potentially, any resulting inflammatory response [91]. Some of
the targets of the BHRF1 miRNAs clearly affect late stages of EBV’s lytic phase, too. For example,
miR-BHRF1-1 targets the ubiquitin ligase, RNF4, leading to an accumulation of SUMOylated viral
proteins and completion of the lytic phase [92]. It is possible that an inhibition of RNF4 and of
other cellular targets that aid the late stages of the lytic phase could also favor EBV’s oncogenesis;
whether they do so now is uncertain.

EBV’s miRNAs do contribute to oncogenesis but these contributions are not easily classified as
reflecting their expression during the latent or lytic phases of the viral life cycle. Most viral miRNAs
are expressed during both phases. The BHRF1 miRNAs are expressed most efficiently during the lytic
phase, though, and clearly also can foster EBV’s oncogenesis.

7. Inhibitor Studies: A Test for a Role for EBV’s Lytic Phase in Oncogenesis?

One essential role for EBV’s lytic phase in EBV’s oncogenesis is the production of infectious
virus, which supports the infection and transformation of cells that subsequently can evolve into
tumors. This role was inadvertently highlighted by the transplantation of tissues from allogeneic
donors to recipients who would reject the grafts immunologically. Transplant physicians worked to
limit the graft rejection by inhibiting the recipient’s immune response with, for example, cyclosporine
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A and anti-thymocyte globulin. Cyclosporine A acts by binding Cyclophilin A, which together
inhibit the phosphatase activity of calcineurin. This phosphatase is needed for the activation of the
NFAT transcription factor and much T-cell signaling [93]. Anti-thymocyte globulin kills a variety of
T cells. One unanticipated consequence of this immunological inhibition was a dramatic increase
in EBV-associated lymphoproliferative disease variously termed LPD or PTLD for post-transplant
lymphoproliferative disease. PTLD could be rapidly fatal. In a study of 257 patients who received
allogenic stem-cell transplantation, half died over the course of 17 years and 14% of these had developed
PTLD unequivocally associated with EBV infection [94]. Their clinical symptoms did not foreshadow
their disease adequately to allow treatment (ibid.). More recent work has found that limiting the level
of immune suppression has greatly reduced the frequency of PTLD in hematopoietic cell transplant
recipients while still fostering the reactivation of EBV as measured by the detection of its DNA in the
serum of these transplant recipients [95].

What facets of EBV’s lytic phase contribute to oncogenesis after infection and transformation?
A possible experimental route to address this question is to test small-molecule inhibitors of distinct
steps within EBV’s lytic phase.

One prominent small-molecule inhibitor, acyclovir, was developed for treatment of Herpes
Simplex Viruses (HSV) and is extremely effective. It acts by being preferentially phosphorylated by
the HSV thymidine kinase, the product of which preferentially inhibits HSV DNA polymerases [96].
Acyclovir and its derivatives have been developed to inhibit other herpesviruses including EBV and
some do block EBV’s DNA synthesis during its lytic phase. They, however, have not been found to
be effective clinically [97,98]. This failure reflects the rarity of EBV-positive tumor cells supporting
the complete lytic phase. Investigators have tried to surmount this difficulty by treating these tumors
to induce the lytic phase and then using small-molecule inhibitors of viral DNA synthesis to kill
the cells. This approach has been tested both in cell culture and in animal models [99,100]. It has
been extended to a phase I/II trial for patients with a variety of EBV-positive malignancies [101] with
some success. One conclusion from these studies is that events downstream of EBV’s DNA synthesis
during its lytic phase do not contribute detectably to its oncogenesis once cells have been infected and
transformed. A second is that its lytic DNA synthesis does not contribute to the cancer phenotypes of
these cells either.

We lack small-molecule inhibitors of steps earlier than DNA synthesis for EBV’s lytic phase.
Another window, though, on the potential contributions of these steps to EBV’s oncogenesis
comes from detailed studies of treating tumor patients with T cells educated against EBV-encoded
antigens. Researchers have developed adoptive T-cell therapies to treat EBV-positive malignancies
successfully [102,103]. In general, the epitopes that have been recognized by the cytotoxic T cells
are expressed during the latent phase of EBV’s life cycle, in part reflecting the viral gene expression
of LCLs used to educate the T cells in vitro. Some of these studies have also been conducted with
T cells educated with a pool of peptides including some derived from genes expressed during the
early portion of EBV’s lytic phase [104]. These T cells educated to recognize epitopes encoded by
BMLF1, BRLF1, and BZLF1 which are expressed early in EBV’s lytic phase are functional in vitro (ibid.).
They have not yet been shown alone of being capable of limiting EBV-positive malignancies so that an
essential role for these genes in EBV’s oncogenesis remains unclear. These epitope-specific, anti-EBV T
cells are, however, tools that should allow testing for contributions of the viral genes expressed early in
EBV’s lytic phase to EBV’s oncogenesis, particularly in tractable animal models. Such tools, therefore,
can be instrumental in learning how these early lytic genes foster EBV’s oncogenesis.

8. Concluding Remarks

EBV’s lytic phase contributes to tumorigenesis primarily in two ways (see Figure 1): (1) the
production of infectious particles to infect more cells, and (2) the regulation of cellular oncogenic
pathways, mediated by lytic proteins and miRNAs. The production of infectious virus is a requisite
precursor to the infection and transformation of cells that can subsequently evolve into tumors.
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Following infection, reactivation of the lytic phase supports the expression of miRNAs and early lytic
genes which can regulate cellular pathways that promote tumorigenesis. Some of these tumorigenic
effects are cell autonomous, affecting only the cells in which the relevant lytic genes are expressed.
Others are non-cell autonomous, exerting influence over neighboring tumor cells through the production
of secreted molecules and/or the modification of the tumor microenvironment. As the completion of
a lytic phase results in cell death, we speculate that the contribution of lytic phase to tumorigenesis
is in part mediated by an incomplete lytic phase (also termed abortive lytic phase), highlighting the
importance of the early lytic phase. Given the relevance of the lytic phase to tumor progression and
maintenance, it will be important to understand the mechanisms by which EBV’s lytic phase contributes
to tumorigenesis in order to target it as an alternative means to treat EBV-associated malignancies.Microorganisms 2020, 8, x FOR PEER REVIEW 14 of 20 
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Figure 1. EBV’s lytic phase contributes to oncogenesis in both B cells and epithelial cells. In this figure,
B cell lymphomagenesis is used to represent these contributions. Following primary infection and
transformation, EBV is maintained latently in infected cells. On rare occasions, some cells undergo
lytic reactivation, either completely or incompletely. Cells that undergo the complete lytic reactivation
express both early and late lytic genes and produce new viral particles that can infect more cells.
These newly infected cells are transformed and may subsequently evolve into tumor cells. Cells that
complete the lytic phase eventually die, such that they do not contribute as proliferating tumor cells.
However, they can contribute to oncogenesis via non-cell-autonomous mechanisms mediated by early
lytic gene products. These contributions include angiogenesis, pro-tumorigenic cytokine production,
and, in the case of NPCs, extracellular matrix modifications. Some cells that enter the lytic phase do not
complete it, undergoing incomplete (abortive) lytic reactivation. These cells express early lytic genes
but not late lytic genes, and thus do not produce new viral particles. These cells may continue to live,
and contribute to oncogenesis cell autonomously by becoming tumor cells with increased proliferation,
immune evasion, and genomic instability, as well as decreased apoptosis. Having expressed early lytic
genes, abortive lytic cells may also contribute to oncogenesis non-cell autonomously. * Expression
of latent, early lytic, or late lytic genes are indicated in blue (expressed) and red (not expressed).
** Extracellular matrix modifications are primarily studied in NPCs.



Microorganisms 2020, 8, 1824 14 of 19

Author Contributions: Q.R. wrote the manuscript with contributions from B.S. Both authors made a substantial
and intellectual contribution to the work, and contributed to manuscript revision. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by NIH Grant PO1 CA022443.

Acknowledgments: We thank Eric Johannsen and our laboratory colleagues for critical evaluation of this
manuscript. We also thank our colleagues in the EBV community who have suggested papers to be included in
this review. We attempted to be as inclusive as we can, and we acknowledge that we have not covered all the
pertinent sources with apologies to any authors whose contributions we have inadvertently missed. B.S. is an
American Cancer Society Research Professor.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Manners, O.; Murphy, J.C.; Coleman, A.; Hughes, D.J.; Whitehouse, A. Contribution of the KSHV and EBV
lytic cycles to tumourigenesis. Curr. Opin. Virol. 2018, 32, 60–70. [CrossRef] [PubMed]

2. Morales-Sánchez, A.; Fuentes-Panana, E.M. The immunomodulatory capacity of an epstein-barr virus
abortive lytic cycle: Potential contribution to viral tumorigenesis. Cancers 2018, 10, 98. [CrossRef] [PubMed]

3. Li, H.; Liu, S.; Hu, J.; Luo, X.; Li, N.; Bode, A.M.; Cao, Y. Epstein-Barr virus lytic reactivation regulation and
its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016, 12, 1309–1318. [CrossRef] [PubMed]

4. Münz, C. Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol.
2019, 17, 691–700. [CrossRef]

5. Münz, C. Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic
γ-Herpesviruses. Adv. Exp. Med. Biol. 2020, 1225, 127–135. [CrossRef]

6. Lwoff, A. Lysogeny. Bacteriol. Rev. 1953, 17, 269–337. [CrossRef]
7. Sugden, B.; Phelps, M.; Domoradzki, J. Epstein-Barr virus DNA is amplified in transformed lymphocytes.

J. Virol. 1979, 31, 590–595. [CrossRef]
8. Honess, R.W.; Roizman, B. Regulation of Herpesvirus Macromolecular Synthesis I. Cascade Regulation of

the Synthesis of Three Groups of Viral Proteins 1. J. Virol. 1974, 14, 8–19. [CrossRef]
9. Wagner, E.K. Correlation between HSV-1 DNA sequence and viral transcription maps. In Herpesvirus

Transcription and Its Regulation; Wagner, E.K., Ed.; CRC-Press: Boca Raton, FL, USA, 1991; pp. 29–47.
10. Jochum, S.; Ruiss, R.; Moosmann, A.; Hammerschmidt, W.; Zeidler, R. RNAs in Epstein-Barr virions control

early steps of infection. Proc. Natl. Acad. Sci. USA 2012, 109, E1396–E1404. [CrossRef]
11. Pich, D.; Mrozek-Gorska, P.; Bouvet, M.; Sugimoto, A.; Akidil, E.; Grundhoff, A.; Hamperl, S.; Ling, P.D.;

Hammerschmidt, W. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus.
mBio 2019, 10, e01723-19. [CrossRef]

12. Wen, W.; Iwakiri, D.; Yamamoto, K.; Maruo, S.; Kanda, T.; Takada, K. Epstein-Barr Virus BZLF1 Gene,
a Switch from Latency to Lytic Infection, Is Expressed as an Immediate-Early Gene after Primary Infection of
B Lymphocytes. J. Virol. 2007, 81, 1037–1042. [CrossRef] [PubMed]

13. Murata, T.; Sato, Y.; Kimura, H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev. Med. Virol.
2014, 24, 57242–57253. [CrossRef] [PubMed]

14. De-Thé, G.; Geser, A.; Day, N.E.; Tukei, P.M.; Williams, E.M.; Beri, D.P.; Smith, P.G.; Dean, A.G.;
Bornkamm, G.W.; Feorino, P.; et al. Epidemiological evidence for causal relationship between Epstein-Barr
virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 1978, 274, 756–761. [CrossRef]
[PubMed]

15. Geser, A.; De Thé, G.; Lenoir, G.; Day, N.E.; Williams, E.H. Final case reporting from the ugandan prospective
study of the relationship between ebv and burktit’s lymphoma. Int. J. Cancer 1982, 29, 397–400. [CrossRef]

16. Burkitt, D.P. Etiology of Burkitt’s Lymphoma—An Alternative Hypothesis to a Vectored Virus 1. J. Natl.
Cancer Inst. Natl. Cancer Inst. 1969, 42, 19–28.

17. Whittle, H.C.; Brown, J.; Marsh, K.; Greenwood, B.M.; Seidelin, P.; Tighe, H.; Wedderburn, L. T-cell control of
Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 1984, 312, 449–450. [CrossRef]

18. Lam, K.M.C.; Syed, N.; Crawford, D.H.; Whittle, H. Circulating Epstein-Barr virus-carrying B cells in acute
malaria. Lancet 1991, 337, 876–878. [CrossRef]

19. Manolov, G.; Manolova, Y. Marker band in one chromosome 14 from burkitt lymphomas. Nature 1972, 237,
33–34. [CrossRef]

http://dx.doi.org/10.1016/j.coviro.2018.08.014
http://www.ncbi.nlm.nih.gov/pubmed/30268927
http://dx.doi.org/10.3390/cancers10040098
http://www.ncbi.nlm.nih.gov/pubmed/29601503
http://dx.doi.org/10.7150/ijbs.16564
http://www.ncbi.nlm.nih.gov/pubmed/27877083
http://dx.doi.org/10.1038/s41579-019-0249-7
http://dx.doi.org/10.1007/978-3-030-35727-6_9
http://dx.doi.org/10.1128/MMBR.17.4.269-337.1953
http://dx.doi.org/10.1128/JVI.31.3.590-595.1979
http://dx.doi.org/10.1128/JVI.14.1.8-19.1974
http://dx.doi.org/10.1073/pnas.1115906109
http://dx.doi.org/10.1128/mBio.01723-19
http://dx.doi.org/10.1128/JVI.01416-06
http://www.ncbi.nlm.nih.gov/pubmed/17079287
http://dx.doi.org/10.1002/rmv.1786
http://www.ncbi.nlm.nih.gov/pubmed/24578255
http://dx.doi.org/10.1038/274756a0
http://www.ncbi.nlm.nih.gov/pubmed/210392
http://dx.doi.org/10.1002/ijc.2910290406
http://dx.doi.org/10.1038/312449a0
http://dx.doi.org/10.1016/0140-6736(91)90203-2
http://dx.doi.org/10.1038/237033a0


Microorganisms 2020, 8, 1824 15 of 19

20. Taub, R.; Moulding, C.; Battey, J.; Murphy, W.; Vasicek, T.; Lenoir, G.M.; Leder, P. Activation and somatic
mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell 1984, 36, 339–348. [CrossRef]

21. Rowley, J.D. Identification of the constant chromosome regions involved in human hematologic malignant
disease. Science 1982, 216, 749–751. [CrossRef]

22. Hayday, A.C.; Gillies, S.D.; Saito, H.; Wood, C.; Wiman, K.; Hayward, W.S.; Tonegawa, S. Activation of a
translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 1984, 307,
334–340. [CrossRef] [PubMed]

23. Miller, G.; Lipman, M. Comparison of the yield of infectious virus from clones of human and simian
lymphoblastoid lines transformed by epstein-barr virus. J. Exp. Med. 1973, 138, 1398–1412. [CrossRef]
[PubMed]

24. Bornkamm, G.W.; Delius, H.; Zimber, U.; Hudewentz, J.; Epstein, M.A. Comparison of Epstein-Barr virus
strains of different origin by analysis of the viral DNAs. J. Virol. 1980, 35, 603–618. [CrossRef] [PubMed]

25. Tsai, M.H.; Raykova, A.; Klinke, O.; Bernhardt, K.; Gärtner, K.; Leung, C.S.; Geletneky, K.; Sertel, S.; Münz, C.;
Feederle, R.; et al. Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain
Found in Carcinomas. Cell Rep. 2013, 5, 458–470. [CrossRef]

26. Delecluse, S.; Poirey, R.; Zeier, M.; Schnitzler, P.; Behrends, U.; Tsai, M.-H.; Delecluse, H.-J. Identification and
Cloning of a New Western Epstein-Barr Virus Strain that Efficiently Replicates in Primary B Cells. J. Virol.
2020, 94, 1–22. [CrossRef]

27. Young, L.S.; Yao, Q.Y.; Rooney, C.M.; Sculley, T.B.; Moss, D.J.; Rupani, H.; Laux, G.; Bornkamm, G.W.;
Rickinson, A.B. New type B isolates of Epstein-Barr virus from Burkitt’s lymphoma and from normal
individuals in endemic areas. J. Gen. Virol. 1987, 68 Pt 11, 2853–2862. [CrossRef]

28. Yu, X.; McCarthy, P.J.; Wang, Z.; Gorlen, D.A.; Mertz, J.E. Shutoff of BZLF1 Gene Expression Is Necessary for
Immortalization of Primary B Cells by Epstein-Barr Virus. J. Virol. 2012, 86, 8086–8096. [CrossRef]

29. Bristol, J.A.; Djavadian, R.; Albright, E.R.; Coleman, C.B.; Ohashi, M.; Hayes, M.; Romero-Masters, J.C.;
Barlow, E.A.; Farrell, P.J.; Rochford, R.; et al. A cancer-associated Epstein-Barr virus BZLF1 promoter variant
enhances lytic infection. PLoS Pathog. 2018, 14, e1007179. [CrossRef]

30. Romero-Masters, J.C.; Huebner, S.M.; Ohashi, M.; Bristol, J.A.; Benner, B.E.; Barlow, E.A.; Turk, G.L.;
Nelson, S.E.; Baiu, D.C.; van Sciver, N.; et al. B cells infected with Type 2 Epstein-Barr virus (EBV) have
increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection.
PLoS Pathog. 2020, 16, e1008365. [CrossRef]

31. Sugden, B. Expression of virus-associated functions in cells trnasformed in vitro by Epstein-Barr virus:
Epstein-Barr virus cell surface antigen and virus-release from transformed cells. In Immune Deficiency
and Cancer: Epstein-Barr Virus and Lymphoproliferative Malignancies; Purtilo, D.T., Ed.; Plenum Publishing
Corporation: New York, NY, USA, 1984; pp. 165–177.

32. Kintner, C.; Sugden, B. Conservation and progressive methylation of Epstein-Barr viral DNA sequences in
transformed cells. J. Virol. 1981, 38, 305–316. [CrossRef]

33. Bhende, P.M.; Seaman, W.T.; Delecluse, H.J.; Kenney, S.C. The EBV lytic switch protein, Z, preferentially
binds to and activates the methylated viral genome. Nat. Genet. 2004, 36, 1099–1104. [CrossRef] [PubMed]

34. Kalla, M.; Gobel, C.; Hammerschmidt, W. The Lytic Phase of Epstein-Barr Virus Requires a Viral Genome
with 5-Methylcytosine Residues in CpG Sites. J. Virol. 2012, 86, 447–458. [CrossRef] [PubMed]

35. Xue, S.A.; Labrecque, L.G.; Lu, Q.L.; Ong, S.K.; Lampert, I.A.; Kazembe, P.; Molyneux, E.; Broadhead, R.L.;
Borgstein, E.; Griffin, B.E. Promiscuous expression of Epstein-Barr virus genes in Burkitt’s lymphoma from
the central African country Malawi. Int. J. Cancer 2002, 99, 635–643. [CrossRef]

36. Cochet, C.; Martel-Renoir, D.; Grunewald, V.; Bosq, J.; Cochet, G.; Schwaab, G.; Bernaudin, J.-F.; Joab, I.
Expression of the Epstein-Barr Virus Immediate Early Gen, BZLF1, in Nasopharyngeal Carcinoma Tumor
Cells. Virology 1993, 197, 358–365. [CrossRef]

37. Ramayanti, O.; Juwana, H.; Verkuijlen, S.A.M.W.; Adham, M.; Pegtel, M.D.; Greijer, A.E.; Middeldorp, J.M.
Epstein-Barr virus mRNA profiles and viral DNA methylation status in nasopharyngeal brushings from
nasopharyngeal carcinoma patients reflect tumor origin. Int. J. Cancer 2017, 140, 149–162. [CrossRef]

38. Borozan, I.; Zapatka, M.; Frappier, L.; Ferretti, V. Analysis of Epstein-Barr Virus Genomes and Expression
Profiles in Gastric Adenocarcinoma. J. Virol. 2017, 92, 1–18. [CrossRef]

http://dx.doi.org/10.1016/0092-8674(84)90227-7
http://dx.doi.org/10.1126/science.7079737
http://dx.doi.org/10.1038/307334a0
http://www.ncbi.nlm.nih.gov/pubmed/6420706
http://dx.doi.org/10.1084/jem.138.6.1398
http://www.ncbi.nlm.nih.gov/pubmed/4357683
http://dx.doi.org/10.1128/JVI.35.3.603-618.1980
http://www.ncbi.nlm.nih.gov/pubmed/6252328
http://dx.doi.org/10.1016/j.celrep.2013.09.012
http://dx.doi.org/10.1128/JVI.01918-19
http://dx.doi.org/10.1099/0022-1317-68-11-2853
http://dx.doi.org/10.1128/JVI.00234-12
http://dx.doi.org/10.1371/journal.ppat.1007179
http://dx.doi.org/10.1371/journal.ppat.1008365
http://dx.doi.org/10.1128/JVI.38.1.305-316.1981
http://dx.doi.org/10.1038/ng1424
http://www.ncbi.nlm.nih.gov/pubmed/15361873
http://dx.doi.org/10.1128/JVI.06314-11
http://www.ncbi.nlm.nih.gov/pubmed/22031942
http://dx.doi.org/10.1002/ijc.10372
http://dx.doi.org/10.1006/viro.1993.1597
http://dx.doi.org/10.1002/ijc.30418
http://dx.doi.org/10.1128/JVI.01239-17


Microorganisms 2020, 8, 1824 16 of 19

39. Martel-Renoir, D.; Grunewald, V.; Touitou, R.; Schwaab, G.; Joab, I. Qualitative analysis of the expression
of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J. Gen. Virol. 1995, 76, 1401–1408.
[CrossRef] [PubMed]

40. Djavadian, R.; Chiu, Y.F.; Johannsen, E. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin
of Lytic Replication In Cis to Mediate Late Gene Transcription. PLoS Pathog. 2016, 12, e1005718. [CrossRef]

41. Fixman, E.D.; Hayward, G.S.; Hayward, S.D. Trans-acting requirements for replication of Epstein-Barr virus
ori-Lyt. J. Virol. 1992, 66, 5030–5039. [CrossRef]

42. Fixman, E.D.; Hayward, G.S.; Hayward, S.D. Replication of Epstein-Barr virus oriLyt: Lack of a dedicated
virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J. Virol. 1995, 69,
2998–3006. [CrossRef]

43. Djavadian, R.; Hayes, M.; Johannsen, E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription:
3 Kinetic classes from 2 mechanisms. PLoS Pathog. 2018, 14, e1007114. [CrossRef] [PubMed]

44. Hong, G.K.; Gulley, M.L.; Feng, W.-H.; Delecluse, H.-J.; Holley-Guthrie, E.; Kenney, S.C. Epstein-Barr Virus
Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model. J. Virol. 2005, 79,
13993–14003. [CrossRef] [PubMed]

45. Ma, S.-D.; Hegde, S.; Young, K.H.; Sullivan, R.; Rajesh, D.; Zhou, Y.; Jankowska-Gan, E.; Burlingham, W.J.;
Sun, X.; Gulley, M.L.; et al. A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early
Lytic Viral Protein Expression in the Development of Lymphomas. J. Virol. 2011, 85, 165–177. [CrossRef]
[PubMed]

46. McHugh, D.; Caduff, N.; Barros, M.H.M.; Rämer, P.C.; Raykova, A.; Murer, A.; Landtwing, V.; Quast, I.;
Styles, C.T.; Spohn, M.; et al. Persistent KSHV Infection Increases EBV-Associated Tumor Formation In Vivo
via Enhanced EBV Lytic Gene Expression. Cell Host Microbe 2017, 22, 61–73.e7. [CrossRef] [PubMed]

47. Okuno, Y.; Murata, T.; Sato, Y.; Muramatsu, H.; Ito, Y.; Watanabe, T.; Okuno, T.; Murakami, N.; Yoshida, K.;
Sawada, A.; et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy.
Nat. Microbiol. 2019, 4, 404–413. [CrossRef]

48. Burns, D.M.; Tierney, R.; Shannon-Lowe, C.; Croudace, J.; Inman, C.; Abbotts, B.; Nagra, S.; Fox, C.P.;
Chaganti, S.; Craddock, C.F.; et al. Memory B-cell reconstitution following allogeneic hematopoietic stem
cell transplantation is an EBV-associated transformation event. Blood 2015, 126, 2665–2675. [CrossRef]

49. Hsu, M.; Wu, S.-Y.; Chang, S.-S.; Su, I.-J.; Tsai, C.-H.; Lai, S.-J.; Shiau, A.-L.; Takada, K.; Chang, Y.
Epstein-Barr Virus Lytic Transactivator Zta Enhances Chemotactic Activity through Induction of Interleukin-8
in Nasopharyngeal Carcinoma Cells. J. Virol. 2008, 82, 3679–3688. [CrossRef]

50. Lee, C.-H.; Yeh, T.-H.; Lai, H.-C.; Wu, S.-Y.; Su, I.-J.; Takada, K.; Chang, Y. Epstein-Barr Virus Zta-Induced
Immunomodulators from Nasopharyngeal Carcinoma Cells Upregulate Interleukin-10 Production from
Monocytes. J. Virol. 2011, 85, 7333–7342. [CrossRef]

51. Tsai, S.C.; Lin, S.J.; Chen, P.W.; Luo, W.Y.; Yeh, T.H.; Wang, H.W.; Chen, C.J.; Tsai, C.H. EBV Zta protein induces
the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell
lines. Blood 2009, 114, 109–118. [CrossRef]

52. Rowe, M.; Glaunsinger, B.; Van Leeuwen, D.; Zuo, J.; Sweetman, D.; Ganem, D.; Middeldorp, J.; Wiertz, E.J.H.J.;
Ressing, M.E. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may
contribute to immune evasion. Proc. Natl. Acad. Sci. USA 2007, 104, 3366–3371. [CrossRef]

53. Zuo, J.; Quinn, L.L.; Tamblyn, J.; Thomas, W.A.; Feederle, R.; Delecluse, H.-J.; Hislop, A.D.; Rowe, M.
The Epstein-Barr Virus-Encoded BILF1 Protein Modulates Immune Recognition of Endogenously Processed
Antigen by Targeting Major Histocompatibility Complex Class I Molecules Trafficking on both the Exocytic
and Endocytic Pathways. J. Virol. 2011, 85, 1604–1614. [CrossRef] [PubMed]

54. Glaser, R.; Litsky, M.L.; Padgett, D.A.; Baiocchi, R.A.; Yang, E.V.; Chen, M.; Yeh, P.E.; Green-Church, K.B.;
Caligiuri, M.A.; Williams, M.V. EBV-encoded dUTPase induces immune dysregulation: Implications for the
pathophysiology of EBV-associated disease. Virology 2006, 346, 205–218. [CrossRef] [PubMed]

55. Jochum, S.; Moosmann, A.; Lang, S.; Hammerschmidt, W.; Zeidler, R. The EBV immunoevasins vIL-10
and BNLF2a protect newly infected B cells from immune recognition and elimination. PLoS Pathog. 2012,
8, e1002704. [CrossRef] [PubMed]

56. Quinn, L.L.; Williams, L.R.; White, C.; Forrest, C.; Zuo, J.; Rowe, M. The Missing Link in Epstein-Barr Virus
Immune Evasion: The BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility
Complex Class I (MHC-I) and MHC-II. J. Virol. 2016, 90, 356–367. [CrossRef] [PubMed]

http://dx.doi.org/10.1099/0022-1317-76-6-1401
http://www.ncbi.nlm.nih.gov/pubmed/7782768
http://dx.doi.org/10.1371/journal.ppat.1005718
http://dx.doi.org/10.1128/JVI.66.8.5030-5039.1992
http://dx.doi.org/10.1128/JVI.69.5.2998-3006.1995
http://dx.doi.org/10.1371/journal.ppat.1007114
http://www.ncbi.nlm.nih.gov/pubmed/29864140
http://dx.doi.org/10.1128/JVI.79.22.13993-14003.2005
http://www.ncbi.nlm.nih.gov/pubmed/16254335
http://dx.doi.org/10.1128/JVI.01512-10
http://www.ncbi.nlm.nih.gov/pubmed/20980506
http://dx.doi.org/10.1016/j.chom.2017.06.009
http://www.ncbi.nlm.nih.gov/pubmed/28704654
http://dx.doi.org/10.1038/s41564-018-0334-0
http://dx.doi.org/10.1182/blood-2015-08-665000
http://dx.doi.org/10.1128/JVI.02301-07
http://dx.doi.org/10.1128/JVI.00182-11
http://dx.doi.org/10.1182/blood-2008-12-193375
http://dx.doi.org/10.1073/pnas.0611128104
http://dx.doi.org/10.1128/JVI.01608-10
http://www.ncbi.nlm.nih.gov/pubmed/21123379
http://dx.doi.org/10.1016/j.virol.2005.10.034
http://www.ncbi.nlm.nih.gov/pubmed/16321417
http://dx.doi.org/10.1371/journal.ppat.1002704
http://www.ncbi.nlm.nih.gov/pubmed/22615564
http://dx.doi.org/10.1128/JVI.02183-15
http://www.ncbi.nlm.nih.gov/pubmed/26468525


Microorganisms 2020, 8, 1824 17 of 19

57. Ressing, M.E.; van Leeuwen, D.; Verreck, F.A.W.; Keating, S.; Gomez, R.; Franken, K.L.M.C.; Ottenhoff, T.H.M.;
Spriggs, M.; Schumacher, T.N.; Hutt-Fletcher, L.M.; et al. Epstein-Barr Virus gp42 Is Posttranslationally
Modified to Produce Soluble gp42 that Mediates HLA Class II Immune Evasion. J. Virol. 2005, 79, 841–852.
[CrossRef]

58. Yoshizaki, T.; Sato, H.; Murono, S.; Pagano, J.S.; Furukawa, M. Matrix metalloproteinase 9 is induced by the
Epstein-Barr virus BZLF1 transactivator. Clin. Exp. Metastasis 1999, 17, 431–436. [CrossRef]

59. Lu, J.; Chua, H.H.; Chen, S.Y.; Chen, J.Y.; Tsai, C.H. Regulation of matrix metalloproteinase-1 by Epstein-Barr
virus proteins. Cancer Res. 2003, 63, 256–262.

60. Lan, Y.Y.; Yeh, T.H.; Lin, W.H.; Wu, S.Y.; Lai, H.C.; Chang, F.H.; Takada, K.; Chang, Y. Epstein-Barr Virus
Zta Upregulates Matrix Metalloproteinases 3 and 9 that Synergistically Promote Cell Invasion In Vitro.
PLoS ONE 2013, 8, e56121. [CrossRef]

61. Lan, Y.Y.; Chang, F.H.; Tsai, J.H.; Chang, Y. Epstein-Barr virus Rta promotes invasion of bystander tumor
cells through paracrine of matrix metalloproteinase 9. Biochem. Biophys. Res. Commun. 2018, 503, 2160–2166.
[CrossRef]

62. Chiu, S.H.; Wu, C.C.; Fang, C.Y.; Yu, S.L.; Hsu, H.Y.; Chow, Y.H.; Chen, J.Y. Epstein-Barr virus BALF3
mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget 2014, 5,
8583–8601. [CrossRef]

63. Lee, C.-P.; Chen, J.-Y.; Wang, J.-T.; Kimura, K.; Takemoto, A.; Lu, C.-C.; Chen, M.-R. Epstein-Barr virus BGLF4
kinase induces premature chromosome condensation through activation of condensin and topoisomerase II.
J. Virol. 2007, 81, 5166–5180. [CrossRef] [PubMed]

64. Chang, Y.H.; Lee, C.P.; Su, M.T.; Wang, J.T.; Chen, J.Y.; Lin, S.F.; Tsai, C.H.; Hsieh, M.J.; Takada, K.; Chen, M.R.
Epstein-barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality.
PLoS ONE 2012, 7, e39217. [CrossRef] [PubMed]

65. Wu, C.-C.; Liu, M.-T.; Chang, Y.-T.; Fang, C.-Y.; Chou, S.-P.; Liao, H.-W.; Kuo, K.-L.; Hsu, S.-L.; Chen, Y.-R.;
Wang, P.-W.; et al. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells.
Nucleic Acids Res. 2010, 38, 1932–1949. [CrossRef] [PubMed]

66. Shumilov, A.; Tsai, M.H.; Schlosser, Y.T.; Kratz, A.S.; Bernhardt, K.; Fink, S.; Mizani, T.; Lin, X.; Jauch, A.;
Mautner, J.; et al. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability.
Nat. Commun. 2017, 8, 14257. [CrossRef]

67. Altmann, M.; Hammerschmidt, W. Epstein-barr virus provides a new paradigm: A requirement for the
immediate inhibition of apoptosis. PLoS Biol. 2005, 3, e404. [CrossRef]

68. Kelly, G.L.; Long, H.M.; Stylianou, J.; Thomas, W.A.; Leese, A.; Bell, A.I.; Bornkamm, G.W.; Mautner, J.;
Rickinson, A.B.; Rowe, M. An epstein-barr virus anti-apoptotic protein constitutively expressed in transformed
cells and implicated in burkitt lymphomagenesis: The Wp/BHRF1 link. PLoS Pathog. 2009, 5, e1000341.
[CrossRef]

69. Fitzsimmons, L.; Cartlidge, R.; Chang, C.; Sejic, N.; Galbraith, L.C.A.; Suraweera, C.D.; Croom-Carter, D.;
Dewson, G.; Tierney, R.J.; Bell, A.I.; et al. EBV BCL-2 homologue BHRF1 drives chemoresistance and
lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ. 2020, 27,
1554–1568. [CrossRef]

70. Jones, R.J.; Seaman, W.T.; Feng, W.H.; Barlow, E.; Dickerson, S.; Delecluse, H.J.; Kenney, S.C. Roles of
lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated
lymphoproliferative disease. Int. J. Cancer 2007, 121, 1274–1281. [CrossRef]

71. Schaeffner, M.; Mrozek-Gorska, P.; Buschle, A.; Woellmer, A.; Tagawa, T.; Cernilogar, F.M.; Schotta, G.;
Krietenstein, N.; Lieleg, C.; Korber, P.; et al. BZLF1 interacts with chromatin remodelers promoting escape
from latent infections with EBV. Life Sci. Alliance 2019, 2, e201800108. [CrossRef]

72. Rivera-Soto, R.; Damania, B. Modulation of angiogenic processes by the human gammaherpesviruses,
Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus. Front. Microbiol. 2019, 10, 1544. [CrossRef]

73. Hong, G.K.; Kumar, P.; Wang, L.; Damania, B.; Gulley, M.L.; Delecluse, H.-J.; Polverini, P.J.; Kenney, S.C.
Epstein-Barr Virus Lytic Infection Is Required for Efficient Production of the Angiogenesis Factor Vascular
Endothelial Growth Factor in Lymphoblastoid Cell Lines. J. Virol. 2005, 79, 13984–13992. [CrossRef]
[PubMed]

http://dx.doi.org/10.1128/JVI.79.2.841-852.2005
http://dx.doi.org/10.1023/A:1006699003525
http://dx.doi.org/10.1371/journal.pone.0056121
http://dx.doi.org/10.1016/j.bbrc.2018.08.006
http://dx.doi.org/10.18632/oncotarget.2323
http://dx.doi.org/10.1128/JVI.00120-07
http://www.ncbi.nlm.nih.gov/pubmed/17360754
http://dx.doi.org/10.1371/journal.pone.0039217
http://www.ncbi.nlm.nih.gov/pubmed/22768064
http://dx.doi.org/10.1093/nar/gkp1169
http://www.ncbi.nlm.nih.gov/pubmed/20034954
http://dx.doi.org/10.1038/ncomms14257
http://dx.doi.org/10.1371/journal.pbio.0030404
http://dx.doi.org/10.1371/journal.ppat.1000341
http://dx.doi.org/10.1038/s41418-019-0435-1
http://dx.doi.org/10.1002/ijc.22839
http://dx.doi.org/10.26508/lsa.201800108
http://dx.doi.org/10.3389/fmicb.2019.01544
http://dx.doi.org/10.1128/JVI.79.22.13984-13992.2005
http://www.ncbi.nlm.nih.gov/pubmed/16254334


Microorganisms 2020, 8, 1824 18 of 19

74. Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.;
Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and
Cancer. Front. Oncol. 2019, 9, 1370. [CrossRef] [PubMed]

75. Lin, S.J.; Wu, S.W.; Chou, Y.C.; Lin, J.H.; Huang, Y.C.; Chen, M.R.; Ma, N.; Tsai, C.H. Novel expression and
regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology 2015, 481,
24–33. [CrossRef] [PubMed]

76. Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural
and functional diversity. Biochim. Biophys. Acta Mol. Cell Res. 2010, 1803, 55–71. [CrossRef] [PubMed]

77. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
78. Fang, C.Y.; Lee, C.H.; Wu, C.C.; Chang, Y.T.; Yu, S.L.; Chou, S.P.; Huang, P.T.; Chen, C.L.; Hou, J.W.; Chang, Y.;

et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression
of nasopharyngeal carcinoma cells. Int. J. Cancer 2009, 124, 2016–2025. [CrossRef]

79. Li, R.; Liao, G.; Nirujogi, R.S.; Pinto, S.M.; Shaw, P.G.; Huang, T.C.; Wan, J.; Qian, J.; Gowda, H.; Wu, X.;
et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage
Response and Mitotic Signaling. PLoS Pathog. 2015, 11, e1005346. [CrossRef]

80. Bellows, D.S.; Howell, M.; Pearson, C.; Hazlewood, S.A.; Hardwick, J.M. Epstein-Barr Virus BALF1 Is a
BCL-2-Like Antagonist of the Herpesvirus Antiapoptotic BCL-2 Proteins. J. Virol. 2002, 76, 2469–2479.
[CrossRef]

81. Desbien, A.L.; Kappler, J.W.; Marrack, P. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by
binding to a limited amount of Bim. Proc. Natl. Acad. Sci. USA 2009, 106, 5663–5668. [CrossRef]

82. Kvansakul, M.; Wei, A.H.; Fletcher, J.I.; Willis, S.N.; Chen, L.; Roberts, A.W.; Huang, D.C.S.; Colman, P.M.
Structural basis for apoptosis inhibition by Epstein-Barr virus bhrf1. PLoS Pathog. 2010, 6, e1001236.
[CrossRef]

83. Amoroso, R.; Fitzsimmons, L.; Thomas, W.A.; Kelly, G.L.; Rowe, M.; Bell, A.I. Quantitative Studies of
Epstein-Barr Virus-Encoded MicroRNAs Provide Novel Insights into Their Regulation. J. Virol. 2011, 85,
996–1010. [CrossRef] [PubMed]

84. Hartung, A.; Makarewicz, O.; Egerer, R.; Karrasch, M.; Klink, A.; Sauerbrei, A.; Kentouche, K.; Pletz, M.W.
EBV miRNA expression profiles in different infection stages: A prospective cohort study. PLoS ONE 2019, 14,
e0212027. [CrossRef] [PubMed]

85. Feederle, R.; Haar, J.; Bernhardt, K.; Linnstaedt, S.D.; Bannert, H.; Lips, H.; Cullen, B.R.; Delecluse, H.-J.
The Members of an Epstein-Barr Virus MicroRNA Cluster Cooperate to Transform B Lymphocytes. J. Virol.
2011, 85, 9801–9810. [CrossRef] [PubMed]

86. Ma, J.; Nie, K.; Redmond, D.; Liu, Y.; Elemento, O.; Knowles, D.M.; Tam, W. EBV-miR-BHRF1-2 targets
PRDM1/Blimp1: Potential role in EBV lymphomagenesis. Leukemia 2016, 30, 594–604. [CrossRef] [PubMed]

87. Riley, K.J.; Rabinowitz, G.S.; Yario, T.A.; Luna, J.M.; Darnell, R.B.; Steitz, J.A. EBV and human microRNAs
co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 2012, 31, 2207–2221.
[CrossRef]

88. Skalsky, R.L.; Corcoran, D.L.; Gottwein, E.; Frank, C.L.; Kang, D.; Hafner, M.; Nusbaum, J.D.; Feederle, R.;
Delecluse, H.J.; Luftig, M.A.; et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines.
PLoS Pathog. 2012, 8, e1002484. [CrossRef]

89. Albanese, M.; Tagawa, T.; Buschle, A.; Hammerschmidt, W. Innate and Adaptive Antiviral Immunity. J. Virol.
2017, 91, 1–6. [CrossRef]

90. Bernhardt, K.; Haar, J.; Tsai, M.H.; Poirey, R.; Feederle, R.; Delecluse, H.J. A Viral microRNA Cluster Regulates
the Expression of PTEN, p27 and of a bcl-2 Homolog. PLoS Pathog. 2016, 12, e1005405. [CrossRef]

91. Skinner, C.M.; Ivanov, N.S.; Barr, S.A.; Chen, Y.; Skalsky, R.L. An Epstein-Barr Virus MicroRNA Blocks
Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1. J. Virol. 2017, 91, e00530-17. [CrossRef]

92. Li, J.; Callegari, S.; Masucci, M.G. The Epstein-Barr virus miR-BHRF1-1 targets RNF4 during productive
infection to promote the accumulation of SUMO conjugates and the release of infectious virus. PLoS Pathog.
2017, 13, e1006338. [CrossRef]

93. Matsuda, S.; Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology 2000, 47, 119–125.
[CrossRef]

http://dx.doi.org/10.3389/fonc.2019.01370
http://www.ncbi.nlm.nih.gov/pubmed/31921634
http://dx.doi.org/10.1016/j.virol.2015.02.015
http://www.ncbi.nlm.nih.gov/pubmed/25765004
http://dx.doi.org/10.1016/j.bbamcr.2010.01.003
http://www.ncbi.nlm.nih.gov/pubmed/20080133
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1002/ijc.24179
http://dx.doi.org/10.1371/journal.ppat.1005346
http://dx.doi.org/10.1128/jvi.76.5.2469-2479.2002
http://dx.doi.org/10.1073/pnas.0901036106
http://dx.doi.org/10.1371/journal.ppat.1001236
http://dx.doi.org/10.1128/JVI.01528-10
http://www.ncbi.nlm.nih.gov/pubmed/21068248
http://dx.doi.org/10.1371/journal.pone.0212027
http://www.ncbi.nlm.nih.gov/pubmed/30759142
http://dx.doi.org/10.1128/JVI.05100-11
http://www.ncbi.nlm.nih.gov/pubmed/21752900
http://dx.doi.org/10.1038/leu.2015.285
http://www.ncbi.nlm.nih.gov/pubmed/26530011
http://dx.doi.org/10.1038/emboj.2012.63
http://dx.doi.org/10.1371/journal.ppat.1002484
http://dx.doi.org/10.1128/JVI.01667-16
http://dx.doi.org/10.1371/journal.ppat.1005405
http://dx.doi.org/10.1128/JVI.00530-17
http://dx.doi.org/10.1371/journal.ppat.1006338
http://dx.doi.org/10.1016/S0162-3109(00)00192-2


Microorganisms 2020, 8, 1824 19 of 19

94. Aalto, S.M.; Juvonen, E.; Tarkkanen, J.; Volin, L.; Ruutu, T.; Mattila, P.S.; Piiparinen, H.; Knuutila, S.;
Hedman, K. Lymphoproliferative disease after allogeneic stem cell transplantation—Pre-Emptive diagnosis
by quantification of Epstein-Barr virus DNA in serum. J. Clin. Virol. 2003, 28, 275–283. [CrossRef]

95. Walker, I.; Panzarella, T.; Couban, S.; Couture, F.; Devins, G.; Elemary, M.; Gallagher, G.; Kerr, H.; Kuruvilla, J.;
Lee, S.J.; et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients
with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors:
A randomised, controlled, open-label, phase 3, multicentre trial. Lancet Oncol. 2016, 17, 164–173. [CrossRef]

96. Elion, G.B. Mechanism of action and selectivity of acyclovir. Am. J. Med. 1982, 73, 7–13. [CrossRef]
97. Hanto, D.W.; Frizzera, G.; Gajl-Peczalska, K.J.; Sakamoto, K.; Purtilo, D.T.; Balfour, H.H.; Simmons, R.L.;

Najarian, J.S. Epstein–Barr Virus-Induced B-Cell Lymphoma after Renal Transplantation. N. Engl. J. Med.
1982, 306, 913–918. [CrossRef] [PubMed]

98. Gershburg, E.; Pagano, J.S. Epstein-Barr virus infections: Prospects for treatment. J. Antimicrob. Chemother.
2005, 56, 277–281. [CrossRef]

99. Gutiérrez, M.I.; Judde, J.G.; Magrath, I.T.; Bhatia, K.G. Switching viral latency to viral lysis: A novel
therapeutic approach for Epstein-Barr virus-associated neoplasia. Cancer Res. 1996, 56, 969–972.

100. Feng, W.; Hong, G.; Delecluse, H.-J.; Kenney, S.C. Lytic Induction Therapy for Epstein-Barr Virus-Positive
B-Cell Lymphomas. J. Virol. 2004, 78, 1893–1902. [CrossRef]

101. Perrine, S.P.; Hermine, O.; Small, T.; Suarez, F.; O’Reilly, R.; Boulad, F.; Fingeroth, J.; Askin, M.; Levy, A.;
Mentzer, S.J.; et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr
virus-associated lymphoid malignancies. Blood 2007, 109, 2571–2578. [CrossRef]

102. Heslop, H.E.; Ng, C.Y.C.; Li, C.; Smith, C.A.; Loftin, S.K.; Krance, R.; Brenner, M.K.; Rooney, C.M.
Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified
virus-specific T lymphocytes. Nat. Med. 1996, 2, 551–555. [CrossRef]

103. Gottschalk, S.; Rooney, C.M. Adoptive T-cell immunotherapy. Curr. Top. Microbiol. Immunol. 2015, 391,
427–454. [CrossRef] [PubMed]

104. Nowakowska, J.; Stuehler, C.; Egli, A.; Battegay, M.; Rauser, G.; Bantug, G.R.; Brander, C.; Hess, C.; Khanna, N.
T cells specific for different latent and lytic viral proteins efficiently control Epstein-Barr virus-transformed B
cells. Cytotherapy 2015, 17, 1280–1291. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1386-6532(03)00022-2
http://dx.doi.org/10.1016/S1470-2045(15)00462-3
http://dx.doi.org/10.1016/0002-9343(82)90055-9
http://dx.doi.org/10.1056/NEJM198204153061506
http://www.ncbi.nlm.nih.gov/pubmed/6278307
http://dx.doi.org/10.1093/jac/dki240
http://dx.doi.org/10.1128/JVI.78.4.1893-1902.2004
http://dx.doi.org/10.1182/blood-2006-01-024703
http://dx.doi.org/10.1038/nm0596-551
http://dx.doi.org/10.1007/978-3-319-22834-1_15
http://www.ncbi.nlm.nih.gov/pubmed/26428384
http://dx.doi.org/10.1016/j.jcyt.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26276009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	EBV’s Lytic Phase Contributes to Tumorigenesis by Production of Infectious Viral Particles 
	EBV’s Lytic Gene Expression in EBV-Associated Tumor Samples 
	Functional Contributions of EBV’s Lytic Genes to EBV’s Oncogenesis 
	Cellular Regulation of Tumorigenesis by EBV’s Lytic Phase 
	Immunomodulation and Immune Evasion 
	Angiogenesis and Invasion 
	Genomic Instability 
	Cell Cycle Regulation and Apoptosis 

	EBV’s Lytic miRNAs in Tumorigenesis 
	Inhibitor Studies: A Test for a Role for EBV’s Lytic Phase in Oncogenesis? 
	Concluding Remarks 
	References

