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a b s t r a c t 

Novel Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at 

the end of the 2nd decade of the 21st century. COVID-19 is extremely contagious and quickly spreading 

globally making its early diagnosis of paramount importance. Early diagnosis of COVID-19 enables health 

care professionals and government authorities to break the chain of transition and flatten the epidemic 

curve. The common type of COVID-19 diagnosis test, however, requires specific equipment and has rel- 

atively low sensitivity. Computed tomography (CT) scans and X-ray images, on the other hand, reveal 

specific manifestations associated with this disease. Overlap with other lung infections makes human- 

centered diagnosis of COVID-19 challenging. Consequently, there has been an urgent surge of interest to 

develop Deep Neural Network (DNN)-based diagnosis solutions, mainly based on Convolutional Neural 

Networks (CNNs), to facilitate identification of positive COVID-19 cases. CNNs, however, are prone to lose 

spatial information between image instances and require large datasets. The paper presents an alternative 

modeling framework based on Capsule Networks, referred to as the COVID-CAPS, being capable of han- 

dling small datasets, which is of significant importance due to sudden and rapid emergence of COVID-19. 

Our results based on a dataset of X-ray images show that COVID-CAPS has advantage over previous CNN- 

based models. COVID-CAPS achieved an Accuracy of 95.7%, Sensitivity of 90%, Specificity of 95.8%, and 

Area Under the Curve (AUC) of 0.97, while having far less number of trainable parameters in comparison 

to its counterparts. To potentially and further improve diagnosis capabilities of the COVID-CAPS, pre- 

training and transfer learning are utilized based on a new dataset constructed from an external dataset 

of X-ray images. This is in contrary to existing works on COVID-19 detection where pre-training is per- 

formed based on natural images. Pre-training with a dataset of similar nature further improved accuracy 

to 98.3% and specificity to 98.6%. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Novel Coronavirus disease (COVID-19), first emerged in Wuhan,

China [1] , has abruptly and significantly changed the world as we

know it at the end of the 2nd decade of the 21st century. COVID-

19 seems to be extremely contagious and quickly spreading glob-

ally with common symptoms such as fever, cough, myalgia, or fa-

tigue resulting in ever increasing number of human fatalities. Be-

sides having a rapid human-to-human transition rate, COVID-19 is

associated with high Intensive Care Unit (ICU) admissions result-
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ng in an urgent quest for development of fast and accurate di-

gnosis solutions [1] . Identifying positive COVID-19 cases in early

tages helps with isolating the patients as quickly as possible [2] ,

ence breaking the chain of transition and flattening the epidemic

urve. 

Reverse Transcription Polymerase Chain Reaction (RT-PCR),

hich is currently the gold standard in COVID-19 diagnosis [1] ,

nvolves detecting the viral RNA from sputum or nasopharyngeal

wab. The RT-PCR test is, however, associated with relatively low

ensitivity (true positive rate) and requires specific material and

quipment, which are not easily accessible [1] . Moreover, this test

s relatively time-consuming, which is not desirable as the posi-

ive COVID-19 cases should be identified and tracked as fast as

ossible [2] . Images [3] in COVID-19 patients, on the other hand,

https://doi.org/10.1016/j.patrec.2020.09.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.09.010&domain=pdf
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ave shown specific findings, such as ground-glass opacities with

ounded morphology and a peripheral lung distribution. Although

maging studies and theirs results can be obtained in a timely fash-

on, the previously described imaging finding may be seen in other

iral or fungal infections or other entities such as organizing pneu-

onia, which limits the specificity of images and reduces the ac-

uracy of a human-centered diagnosis. 

Literature Review: Since revealing the potentials of computed

omography (CT) scans and X-ray images in detecting COVID-19

nd weakness of the human-centered diagnosis, there have been

everal studies [5–7] trying to develop automatic COVID-19 clas-

ification systems, mainly using Convolutional Neural Networks

CNNs) [4] . Xu et al. [1] have first adopted a pre-trained 3D CNN

o extract potential infected regions from the CT scans. These can-

idates are subsequently fed to a second CNN to classify them

nto three groups of COVID-19, Influenza-A-viral-pneumonia, and

rrelevant-to-infection, with an overall accuracy of 86.7%. Wang

t al. [2] have first extracted candidates using a threshold-based

trategy. Consequently, for each case two or three regions are ran-

omly selected to form the dataset. A pre-trained CNN is fine-

uned using the developed dataset. Finally, features are extracted

rom the CNN and fed to an ensemble of classifiers for the COVID-

9 prediction, reaching an accuracy of 88%. CT scans are also uti-

ized in Reference [8] to identify positive COVID-19 cases, where

ll slices are separately fed to the model and outputs are aggre-

ated using a Max-pooling operation, reaching a sensitivity of 90%.

n a study by Wang and Wong [9] , a CNN model is first pre-

rained on the ImageNet dataset [10] , followed by fine-tuning us-

ng a dataset of X-ray images to classify subjects as normal, bacte-

ial, non-COVID-19 viral, and COVID-19 viral infection, achieving an

verall accuracy of 83.5%. In a similar study by Sethy and Behera

11] , different CNN models are trained on X-ray images, followed

y a Support Vector Machine (SVM) classifier to identify positive

OVID-19 cases, reaching an accuracy of 95.38%. 

Contributions: All the studies on deep learning-based COVID-

9 classification have so far utilized CNNs, which although being

owerful image processing techniques, are prone to an important

rawback. They are unable to capture spatial relations between

mage instances. As a result of this inability, CNNs cannot recog-

ize the same object when it is rotated or subject to another type

f transformation. Adopting a big dataset, including all the pos-

ible transformations, is the solution to this problem. However,

n medical imaging problems, including the COVID-19 classifica-

ion, huge datasets are not easily accessible. In particular, COVID-

9 has been identified only recently, and large enough datasets are

ot yet developed. Capsule Networks (CapsNets) [12] are alterna-

ive models that are capable of capturing spatial information us-

ng routing by agreement, through which Capsules try to reach a

utual agreement on the existence of the objects. This agreement

everages the information coming from instances and object parts,

nd is therefore able to recognize their relations, without a huge

ataset. Through several studies [13–18] , we have shown the supe-

iority of the CapsNets for different medical problems such as brain

umor [13–17] and lung tumor classification [18] . In this study, we

ropose a Capsule Network-based framework, referred to as the

OVID-CAPS, for COVID-19 identification using X-ray images. The

roposed COVID-CAPS achieved an accuracy of 95.7%, a sensitiv-

ty of 90%, specificity of 95.8%, and Area Under the Curve (AUC) of

.97. 

To potentially and further improve diagnosis capabilities of

he COVID-CAPS, we considered pre-training and transfer learn-

ng using an external dataset of X-ray images, consisting of 94,323

rontal view chest X-ray images for common thorax diseases. This

ataset is extracted from the NIH Chest X-ray dataset [21] includ-

ng 112,120 X-ray images for 14 thorax abnormalities. From exist-

ng 15 diseases in this dataset, 5 classes were constructed with the
elp of a thoracic radiologist, with 18 years of experience in tho-

acic imaging (A. O.). It is worth mentioning that our pre-training

trategy is in contrary to that of Reference [9] where pre-training

s performed based on natural images (ImageNet dataset). Intu-

tively speaking, pre-training based on an X-ray dataset of similar

ature is expected to result in better transfer learning in compari-

on to the case where natural images were used for this purpose.

n summary, pre-training with an external dataset of X-ray images

urther improved accuracy of COVID-CAPS to 98.3%, specificity to

8.6%, and AUC to 0.97, however, with a lower sensitivity of 80%.

rained COVID-CAPS model is available publicly for open access

t https://github.com/ShahinSHH/COVID-CAPS . To the best of our

nowledge, this is the first study investigating applicability of the

apsNet for the problem at hand. 

The rest of the manuscript is organized as follows:

ection 2 briefly introduces the Capsule networks. The COVID-CAPS

s presented in Section 3 . Utilized dataset for evaluation of the

roposed COVID-CAPS, and our results are presented in Section 4 .

inally, Section 5 concludes the work. 

. Capsule networks 

Each layer of a Capsule Network (CapsNet) consists of several

apsules, each of which represents a specific image instance at a

pecific location, through several neurons. The length of a Capsule

etermines the existence probability of the associated instance.

imilar to a regular CNN, each Capsule i , having the instantiation

arameter u i , tries to predict the outputs of the next layer’s Cap-

ules, using a trainable weight matrix W ij , as follows 

ˆ 
 j| i = W i j u i , (1) 

here ˆ u j| i denotes the prediction of Capsule i for Capsule j . The

redictions, however, are taken into account based on a coefficient,

hrough the “Routing by Agreement” process, to determine the ac-

ual output of the Capsule j , denoted by s j , as follows 

 i j = s j . ̂  u j| i , (2) 

 i j = b i j + a i j , (3)

 i j = 

exp (b i j ) ∑ 

k exp (b ik ) 
, (4) 

nd s j = 

∑ 

i 

c i j ̂  u j| i , (5) 

here a ij denotes the agreement between predictions and outputs,

nd c ij is the score given to the predictions. In other words, this

core determines the contribution of the prediction to the output.

outing by agreement is what makes the CapsNet different from a

NN and helps it identify the spatial relations. 

The CapsNet loss function, l k , associated with Capsule k , is cal-

ulated as follows 

 k = T k max (0 , m 

+ − || s k || ) 2 + λ(1 − T k ) max (0 , || s k || − m 

−) 2 , (6)

here T k is one whenever the class k is present and zero other-

ise. Terms m 

+ , m 

−, and λ are the hyper parameters of the model.

he final loss is the summation over all the l k s. This completes a

rief introduction to CapsuleNets, next we present the COVID-CAPS

ramework. 

. The proposed COVID-CAPS 

The architecture of the proposed COVID-CAPS is shown in Fig. 1 ,

hich consists of 4 convolutional layers and 3 Capsule layers. The

nputs to the network are 3D X-ray images. The first layer is a con-

olutional one, followed by batch-normalization. The second layer

https://github.com/ShahinSHH/COVID-CAPS
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Fig. 1. The proposed COVID-CAPS architecture. 
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is also a convolutional one, followed by average pooling. Similarly,

the third and forth layers are convolutional ones, where the forth

layer is reshaped to form the first Capsule layer. Consequently,

three Capsule layers are embedded in the COVID-CAPS to perform

the routing by agreement process. The last Capsule layer contains

the instantiation parameters of the two classes of positive and neg-

ative COVID-19. The length of these two Capsules represents the

probability of each class being present. 

Since we have developed a Capsule Network-based architecture,

which does not need a large dataset, we did not perform any data

augmentation. However, since the number of positive cases, N 

+ ,
are less than the negative ones, N 

−, we modified the loss func-

tion to handle the class imbalance problem. In other words, more

weight is given to positive samples in the loss function, where

weights are determined based on the proportion of the positive

and negative cases, as follows 

loss = 

N 

+ 

N 

+ + N 

− × loss 
− + 

N 

−

N 

+ + N 

− × loss 
+ 
, (7)

where loss 
+ 

denotes the loss associated with positive samples, and

loss 
−

denotes the loss associated with negative samples. 

As stated previously, to potentially and further improve diag-

nosis capabilities of the COVID-CAPS, we considered pre-training

the model in an initial step. In contrary to Reference [9] where

ImageNet dataset [10] is used for pre-training, however, we con-

structed and utilized an X-ray dataset. The reason for not using

ImageNet for pre-training is that the nature of images (natural

images) in that dataset is totally different from COVID-19 X-ray

dataset. It is expected that using a model pre-trained on X-ray

images of similar nature would result in better boosting of the

COVID-CAPS. For pre-training with an external dataset, the whole

COVID-CAPS model is first trained on the external data, where the

number of final Capsules is set to the number of output classes in

the external set. From existing 15 disease in the external dataset,

5 classes were constructed with the help of a thoracic radiolo-

gist, with 18 years of experience in thoracic imaging (A. O.). To

fine-tune the model using the COVID-19 dataset, the last Capsule

layer is replaced with two Capsules to represent positive and neg-

ative COVID-19 cases. All the other Capsule layers are fine-tuned,

whereas the conventional layers are fixed to the weights obtained

in pre-training. 

In summary, COVID-CAPS architecture contains the following

modifications applied to the original Capsule Network presented

in Reference [12] : 
• The Capsule Network presented in Reference [12] originally

works on a dataset of digital numbers, which are black-and-

white and small in size compared to X-ray images. To make the

Capsule Network applicable in the problem at hand, we have

extended the Capsule layers and the number of routing proce-

dures to be able to extract useful patterns from X-ray images. 
• The dataset originally used for the development of the Cap-

sule Networks is completely balanced in terms of the number

of instances available for each class label. The COVID-19 iden-

tification problem, however, is restricted to highly unbalanced

datasets, as COVID-19 is a new disease. To account for this un-

balanced dataset, we modified the original margin loss to assign

more penalty to mis-classified positive cases. 
• We pre-trained the Capsule Network to compensate for the

small available dataset. The pre-training is performed on an ex-

ternal dataset with 5 classes, reflected in 5 final Capsules. These

5 Capsules are then collapsed into two Capsules, and all the

Capsule layers are fine-tuned on the main COVID-19 dataset. 

We used Adam optimizer with an initial learning rate of 10 −3 ,

00 epochs, and a batch size of 16. We have split the training

ataset, described in Section 4 , into two sets of training (90%) and

alidation (10%), where training set is used to train the model and

he validation set is used to select a model that has the best per-

ormance. Selected model is then tested on the testing set, for the

nal evaluation. The following four metrics are utilized to repre-

ent the performance: Accuracy; Sensitivity; Specificity, and Area

nder the Curve (AUC). Next, we present the obtained results. 

. Experimental results 

To conduct our experiments, we used the same dataset as Ref-

rence [9] . This dataset is generated from two publicly available

hest X-ray datasets [19,20] . As shown in Fig. 2 , the generated

ataset contains four different labels, i.e., Normal; Bacterial; Non-

OVID Viral, and; COVID-19. As the main goal of this study is to

dentify positive COVID-19 cases, we binarized the labels as either

ositive or negative. In other words, the three labels of normal,

acterial, and non-COVID viral together form the negative class. 

Using the aforementioned dataset, the proposed COVID-CAPS

chieved an accuracy of 95.7%, a sensitivity of 90%, specificity of

5.8%, and AUC of 0.97. The obtained receiver operating charac-

eristic (ROC) curve is shown in Fig. 3 . In particular, false positive

ases have been further investigated to have an insight on what types
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Table 1 

Results obtained from the proposed COVID-CAPS, along with the results from Reference [11] . Pre-trained CNN refers 

to a CNN with the same front-end as the COVID-CAPS. 

Method Accuracy Sensitivity Specificity Number of Trainable Parameters 

COVID-CAPS without pre-training 95.7% 90% 95.8% 295,488 

Pre-trained COVID-CAPS 98.3% 80% 98.6% 295,488 

Reference [11] 95.4% 97.3% 93.5% 23,000,000 

Pre-trained CNN 96.2% 50% 97% 368,508,226 

Fig. 2. Labels available in the dataset. 

Fig. 3. ROC curve from the proposed COVID-CAPS. Here, “without pre-train” label 

refers to training from scratch. 
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re more subject to being mis-classified by COVID-19. It is observed

hat 54% of the false positives are normal cases, whereas bacterial

nd non-COVID cases form only 27% and 19% of the false positives,

espectively. 

As shown in Table 1 , we compare our results with Reference

11] that has used the binarized version of the same dataset.

OVID-CAPS outperforms its counterpart in terms of accuracy and

pecificity. Sensitivity is higher in the model proposed in Reference

11] , that contains 23 million trainable parameters. Reference [6] is
nother study on the binarized version of the same X-ray images.

owever, as the negative label contains only normal cases (in con-

rast to including all normal, bacterial, and non-covid viral cases as

egative), we did not compare the performance of the COVID-CAPS

ith this study. It is worth mentioning that the proposed COVID-

APS has only 295,488 trainable parameters. Compared to 23 million

rainable parameters of the model proposed in Reference [11] , there-

ore, COVID-CAPS can be trained and used in a more timely fashion,

nd eliminates the need for availability of powerful computational re-

ources. 

In another experiment, we pre-trained the proposed COVID-

APS using an external dataset of X-ray images, consisting of

4,323 frontal view chest X-ray images for common thorax dis-

ases. This dataset is extracted from the NIH Chest X-ray dataset

21] including 112,120 X-ray images for 14 thorax abnormalities.

his dataset also contains normal cases without specific findings

n their corresponding images. In order to reduce the number of

ategories, we classified these 15 groups into 5 categories based

n the relations between the abnormalities in each disease. The

rst four groups are dedicated to No findings, Tumors, Pleural dis-

ases, and Lung infections categories. The fifth group encompasses

ther images without specific relations with the first four groups.

e then removed 17,797 cases with multiple labels (appeared in

ore than one category) to reduce the complexity. The adopted

ataset is then used to pre-train our model. Table 2 demonstrates

ur classification scheme and distribution of the data. Results ob-

ained from fine-tuning the pre-trained COVID-CAPS is also shown

n Table 1 , according to which, pre-training improves accuracy and

pecificity. The ROC curve is shown in Fig. 3 , according to which,

he obtained AUC of 0.99 outperforms that of COVID-CAPS without

re-training. 

Based on an inclusive study reported in Reference [22] , human-

entered COVID-19 detection from chest radiography leads to a

igh sensitivity, whereas specificity remains as low as 25%. The

ow specificity can lead to excessive expenses to isolate and treat

alse positive cases. The obtained specificity of 98.6% using the pro-

osed COVID-CAPS can significantly assist radiologists to lower the

umber of reported false positives. Furthermore, the ROC curve can

rovide physicians with a means to calibrate and balance the sen-

itivity and specificity. In other words, by changing the probabil-

ty threshold, above which the positive label is assigned to a sub-

ect, physicians are able to form the desired balance between sen-

itivity and specificity. To make this point more clear, we changed

he probability threshold based on the ROC curve from the de-

ault value of 0.5 to 0.44. This new threshold increases the sen-

itivity to 100%, while specificity remained, more or less, intact

98.4%). 

To further elaborate on the effectiveness of the proposed model,

e designed a CNN that has the same front-end as that of the

OVID-CAPS. In other words, it has the same convolutional layers

the first four main layers of the COVID-CAPS). The Capsule layers,

owever, are replaced with three fully-connected layers, the first

wo of which have 256 neurons and the last one, having a Sigmoid

ctivation, has two neurons representing the two classes of posi-

ive and negative COVID-19 cases. It is worth noting that we con-

idered fully-connected layers after the front-end, because to some
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Table 2 

Description of the external X-ray images dataset used for pre-training COVID-CAPS. 

Final Category Initial Categories Number of Images 

No Findings No Findings 60361 

Tumors Infiltration, Mass, Nodule 16103 

Pleural Diseases Effusion, Pleural Thickening, Pneumothorax 8042 

Lung Infection Consolidation, Pneumonia 1668 

Others Atelectasis, Cardiomegaly, Edema, Emphysema, Fibrosis, Hernia 8149 
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extent they resemble Capsule layers in the sense that there is no

shared weights or kernels. This CNN is pre-trained on the same

external dataset. In the fine-tuning phase, the convolutional layers

are kept fixed and only the fully-connected layers are retrained.

Furthermore, the cross-entropy loss function is modified (similar

in nature to the modifications introduced on the margin loss of the

COVID-CAPS in Eq. (7) ) to give more penalty to mis-classified posi-

tive cases. All other hyper-parameters, including the optimizer and

learning rate, exactly resemble the hyper-parameters of the COVID-

CAPS. The training, validation, and test sets are also the same as

the ones used in COVID-CAPS. Based on the obtained results, which

are presented in Table 1 , the designed CNN, having 368,508,226

trainable parameters, achieves an accuracy of 96.24%, a sensitivity

of 50%, and a specificity of 96.97%. The lower performance of the

CNN, and the fact that it has exactly the same front-end with only

the Capsule layers replaced with fully-connected ones support the

effectiveness of the Capsule layer with the routing by agreement

mechanism. 

Finally, it is worth providing some intuition on COVID-CAPS

time and space complexity. In particular and following the litera-

ture [23] , we model the time complexity as a function of the num-

ber of required multiplications in both Capsule and fully-connected

layers. Generally speaking, a fully-connected layer involves a ma-

trix multiplication. Considering m × d 1 and n × d 2 neurons in

two consecutive fully-connected layers, the required matrix mul-

tiplication involves m × d 1 × n × d 2 multiplication operations. Re-

shaping the two fully-connected layers into two consecutive Cap-

sule layers leads to m Capsules of dimension d 1 making predic-

tions for n Capsules of dimension d 2 . Each single prediction in-

volves d 1 × d 2 multiplications, as each lower layer Capsule i with

dimension d 1 should be multiplied by the weight matrix W ij to

form the prediction 

ˆ u j| i for the higher layer Capsule j of dimen-

sion d 2 . In other words, W ij has d 1 rows and d 2 columns. Consid-

ering n Capsules in the lower layer and m Capsules in the higher

layer, the total number of operations is m × d 1 × n × d 2 , which is

exactly the same as the fully-connected scenario. However, based

on Eq. (5) , each parent Capsule is calculated as a weighted av-

erage over the predictions. Weighting each prediction 

ˆ u j| i by the

coupling coefficient c ij involves d 2 (dimension of the prediction

and parent Capsule) multiplications. Again having n Capsules in

the lower layer and m Capsules in the higher layer, one routing

by agreement process includes d 2 × n × m multiplications. In

conclusion, even with one round of routing by agreement, which

means equal contribution of all the predictions, a Capsule layer has

d 2 × n × m multiplications more than a fully-connected layer. In

practice, however, Capsule Networks require far less layers to have

comparable performance with CNNs. To illustrate this point we cal-

culated the time needed to predict the outcome of one single sub-

ject using the proposed COVID-CAPS. Our TITAN Xp GPU computer

takes almost 0.16 s to calculate the outcome, whereas this time

is approximately 1.62 s for the ResNet-50 model utilized in Refer-

ence [11] . Finally, regrading the space complexity, as we showed

in the Table 1 , COVID-CAPS contains far less trainable parameters

compared to its counterparts. In particular, while trained COVID-
APS occupies almost 1.5 Megabytes, the ResNet-50 requires 98

egabytes. 

. Conclusion 

In this study, we proposed a Capsule Network-based frame-

ork, referred to as the COVID-CAPS, for diagnosis of COVID-19

rom X-ray images. The proposed framework consists of several

apsule and convolutional layers, and the lost function is modi-

ed to account for the class-imbalance problem. The obtained re-

ults show that the COVID-CAPS has a satisfying performance with

 low number of trainable parameters. Pre-training was able to

urther improve the accuracy, specificity, and AUC. Trained COVID-

APS model is available publicly for open access at https://github.

om/ShahinSHH/COVID-CAPS . As more and more COVID-19 cases

re being identified all around the world, larger datasets are be-

ng generated. We will continue to further modify the architecture

f the COVID-CAPS and incorporate new available datasets. New

ersions of the COVID-CAPS will be released upon development

hrough the aforementioned link. 
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