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Abstract: The incidence of hypertension has increased to epidemic levels in the past decades. In-
creasing evidence reveals that maternal dietary habits play a crucial role in the development of
hypertension in adult offspring. In humans, increased fat consumption has been considered respon-
sible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely
employed in animal models to study various adverse offspring outcomes. In this review, we dis-
cussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided
an in-depth overview of the potential mechanisms underlying hypertension of developmental origins
that are programmed by maternal high-fat intake from animal studies. Furthermore, this review
also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-
induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms
behind programming and reprogramming of maternal high-fat diet on hypertension of develop-
mental origins might provide the answers to curtail this epidemic. Still, more research is needed to
translate research findings into practice.

Keywords: hypertension; high-fat diet; developmental origins of health and disease (DOHaD);
oxidative stress; nitric oxide; renin-angiotensin system; epigenetic regulation; gut microbiota

1. Introduction

The growing occurrence of cardiometabolic disease is a worldwide health problem
that influences all age groups, including women of childbearing age [1–3]. Today, a broad
spectrum of factors contributes to cardiometabolic disease [3], including genetic suscepti-
bility, intra-uterine growth retardation, imbalanced diet, socioeconomic status, physical
activity, etc. Among them, imbalanced diet is a key modifiable factor that can be targeted to
control cardiometabolic disease [4]. Recently, the increased consumption of fats, especially
saturated fats, has raised interest in finding how high-fat diet increases susceptibility to
cardiometabolic disease. A high-fat diet (HFD) is more reflective of the dietary habits in
western society. Dietary patterns with high-fat consumption established in early childhood
tend to continue during pregnancy.

A mounting body of epidemiological and experimental evidence supports a role for
early-life environmental exposures in determining the long-term health of an individual,
which is referred as the Developmental Origins of Health and Disease (DOHaD) theory [5].
Fetal development is dependent on maternal nutrition. Under- or over-nutrition has
adverse effect on offspring [6]. A maternal HFD can alter the morphology and function of
various tissues/organs and thus the offspring become more susceptible to many diseases
later in life [7,8].

It is challenging to study maternal dietary patterns in human participants due to
difficulty in exactly calculating nutrient content of food intake, and ethical issues related to
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manipulating the dietary patterns of pregnant women. Animal models provide an invalu-
able tool to control over diet composition, eliminate confounding factors, and explore the
underlying mechanisms of developmental programming [9]. Animal models of maternal
HFD demonstrate that adverse outcomes may occur in the offspring, such as obesity, insulin
resistance, behavior disorders, endothelial dysfunction, hypertension, hepatic steatosis,
dyslipidemia, increased visceral fat mass, glucose intolerance, and adipocyte hypertro-
phy, etc. [7–11].

Hypertension has a central role in cardiometabolic disease [3,4]. Although blood
pressure (BP) shows multifactorial inheritance patterns, known genetic variants only ex-
plain ~3.5% of BP trait variability [12]. Increasing evidence indicates that developmental
programming can take place in early life, resulting in hypertension later in life [13–15].
A wide array of early-life environmental stimuli can induce developmental programming
of hypertension [13–16]. Among them, maternal nutrition has a role in the pathogenesis of
hypertension of developmental origins [15]. Maternal HFD is considered as a key early-
life trait involving adverse offspring outcomes. Nevertheless, little is known on whether
maternal HFD can induce offspring hypertension and the underlying mechanisms.

To examine and identify the evidence around the impact of maternal HFD on off-
spring hypertension, our search strategy was developed for literature retrieval in the
PubMed/MEDLINE databases on maternal HFD, DOHaD, and hypertension. We used the
following search terms: “developmental programming”, “DOHaD”, “reprogramming”,
“blood pressure”, “mother”, “pregnancy”, “gestation”, “lactation”, “offspring”, “progeny”,
“high-fat diet”, and “hypertension”. We further checked fitting reference lists to find
additional studies in eligible papers. The last search was conducted on 20 June 2022.

2. Maternal High-Fat Diet Programs Adult Diseases

Relatively little information currently exists concerning the impact of maternal HFD
on offspring health in humans. Although some evidence links maternal obesity during
pregnancy with an increased risk of obesity in offspring in later life [17,18], maternal obesity
does not necessarily correspond to maternal high-fat diet [10]. Most epidemiological studies
that pool various participants as well as fat components from different dietary sources
bring great risk for diluting any real findings. In contrast, dietary composition can be
easily determined for the purpose of comparisons in animal models across species. Hence,
much of what is known about the implication of maternal HFD on offspring health is
mainly based on animal models. Animal models have been instrumental in indicating
the biological plausibility of the relations noticed in epidemiological research and provide
proof of causality.

High-fat diets have long been known for generating obesity in animal models and
associated diseases [18,19]. Nevertheless, this dietary intervention is not standardized, and
the HFD-induced phenotypes vary distinctly among different studies [18,19]. Prior reviews
demonstrated that different HF diets with fat fractions ranged from 20% to 60% energy
as fat, and the basic constituents of fats vary between plant oils (e.g., corn or coconut oil)
and animal-derived fats (e.g., lard or butter) [7,8,19]. Notably, diets rich in saturated fats
can lead to health risks, while unsaturated fats are beneficial to heart health [20]. These
obviously lead to a considerable variability in the results being reported.

The effect of a maternal HFD on the offspring has been examined in rats [7,8], mice [7,8],
rabbits [21], pigs [22], and non-human primates [23]. A systematic review recruiting
17 animal studies demonstrated that maternal HFD may compromise parameters in feeding
behavior and body composition of offspring [24]. Another systemic review including
11 studies identified the risk of type 2 diabetes and obesity in male offspring exposed to
a maternal HFD [25].

Current evidence has emerged from animal models that offspring exposed to a ma-
ternal HFD manifest various components of metabolic syndrome [26,27], including obe-
sity [26], insulin resistance [28], liver steatosis [29], dyslipidemia [29], and hypertension [30].
Additionally, maternal HFD may modify the development of the brain, resulting in reduced



Int. J. Mol. Sci. 2022, 23, 8179 3 of 17

cognitive development, increased depressive-like and aggressive behaviors, and alteration
in feeding habits in the offspring [8]. A brief summary of adverse offspring outcomes
consequent of maternal HFD is depicted in Figure 1.
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Figure 1. Schematic diagram summarizing the adverse offspring outcomes related to maternal
high-fat diet.

Although a variety of adverse offspring outcomes related to maternal HFD have been
reported, at present, our understanding of how maternal HFD induces offspring hyperten-
sion, the mechanisms behind developmental programming, and efficient reprogramming
strategies remain largely unknown.

3. High-Fat Diet and Hypertension

Regulation of blood pressure (BP) is a complex integrated response involving a variety
of organ systems, including the heart, blood vessels, brain, and kidneys [28]. Besides,
the maintenance of normal BP needs the interconnection and coordination of several
regulatory mechanisms involving the nitric oxide (NO), renin–angiotensin system (RAS),
the sympathetic nervous system, and sodium excretion [31].

3.1. Cardiovascular System

Observational studies in humans linked high saturated fat consumption with atheroscle-
rosis and coronary artery disease, while monounsaturated fat consumption is association
with reduction of cardiovascular mortality [32]. Endothelial cells are important constituents
of blood vessels that determine cardiovascular homeostasis [33]. Dysfunction of endothe-
lium has been characterized by a shift from executing physiologic functions of endothelium
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to a pro-inflammatory setting, a pro-thrombotic state, and vasoconstriction. All these to-
gether implicate in the pathogenesis of hypertension. Notably, these events can be induced
by oxidative stress in the presence of high-fat intake [34]. The vasculature is a major source
of NADPH oxidase-derived ROS [35]. High-fat diet causes endothelial dysfunction and
vascular oxidative stress is related to increases of NADPH oxidase-derived ROS [36]. Addi-
tionally, several endothelium-derived vasoconstrictors, such as angiotensin II (Ang II) [37],
urotensin II [38], and vasoconstrictor prostaglandins [39], can be released by endothelium
in response to a high-fat diet.

On the other hand, reduced bioavailability of NO, a well-known vasodilator, is con-
sidered a hallmark of endothelial dysfunction [40]. The endothelial NO synthase (NOS)-
derived NO is responsible for vasodilation in the cardiovascular system. Prior work
indicated that high-fat-diet-induced endothelial dysfunction accompanying by reduced
eNOS-derived NO [36]. High-fat diet can also increase asymmetric dimethylarginine
(ADMA), an endogenous NOS inhibitor [41]. ADMA can uncouple NOS isoenzymes to
form superoxide, contributing to endothelial dysfunction [42]. Together, high-fat diet dis-
turbs vascular tone via regulating vasodilators and vasoconstrictors and causes vascular
dysfunction, arterial stiffness, atherosclerosis, and vascular remodeling as well [43], all of
which contribute to the development of hypertension.

3.2. Central Nervous System

The central nervous system (CNS) organizes regional sympathetic outflow to target or-
gans (e.g., the kidneys and heart) through the integration of autonomic brainstem networks,
reflex influences, and input from circulating factors [44]. Overexcitation of the sympathetic
nervous system has a crucial role in the pathogenesis of hypertension [44]. Similar to
the cardiovascular system, oxidative stress in the CNS is involved in the development of
hypertension [45]. ROS increase sympathoexcitatory inputs to rostral ventrolateral medulla
(RVLM) neurons, while iNOS-mediated NO production stimulates sympathoinhibition [46].
As a result, an imbalance of ROS and NO in the RVLM increases sympathetic tone, resulting
in hypertension [45,46]. Conversely, interventions that reduce brain oxidative stress have
been reported to prevent neurogenic hypertension [47].

Although mounting evidence supports that HFD promotes oxidative stress in the
brain [48], so far only few reports demonstrated the impact of HFD on hypertension
induced by brain oxidative stress [49,50].

3.3. Renal System

Several lines of evidence clearly indicate that the kidneys contribute to HFD-induced
hypertension. The first are data from spontaneously hypertensive rat (SHR), a commonly
used hypertension rat model. High-fat diet causes hypertension and coincides with in-
creased intrarenal lipid concentrations, oxidative stress, renal inflammation, and activation
of renal RAS [51]. Secondly, dysregulated sodium transport in the kidneys leads to hyperten-
sion [52]. High-fat diets have been found to induce hypertension accompanying by impair-
ing several sodium transporters in the kidneys, like Na+/Cl− cotransporter (NCC), sodium
hydrogen exchanger type 3 (NHE3), and Na-K-2Cl cotransporter (NKCC2) [30,53,54]. An-
other line of evidence comes from the activation of the renal RAS in high-fat-diet-induced
hypertension and kidney injury [30,55,56]. It is well known that the kidney is a principal
target for the various components of the RAS that are implicated in hypertension and
kidney disease [57]. Accordingly, it is suggested that the intrarenal RAS activation plays
an important role in hypertension induced by high-fat diet.

Although these organ systems have shown their potential roles in high-fat-diet-
induced hypertension, little is known regarding programming effects of maternal HFD in
the brain, heart, kidneys, and vessels in hypertension of developmental origins.
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4. Hypertension of Developmental Origins: The Impact of Maternal High-Fat Diet
4.1. Animal Models of Maternal HFD-Induced Offspring Hypertension

A growing number of animal models have been generated to study hypertension
of developmental origins, as reviewed elsewhere [14,58]. Imbalanced maternal nutrition
can program the fetus resulting in hypertension in later life. Table 1 summarizes animal
studies documenting offspring hypertension in animal models of high-fat diet, restricting
the exposure to critical periods during early development [21,59–71]. In this review, we
only considered studies reporting offspring outcomes starting from childhood.

Table 1. Programming effects of maternal high-fat diet on offspring hypertension.

Energy
Percent from

Fat in
Maternal
High-Fat

Diet

Species/Sex Intervention Period Offspring
Obesity Programming Effects Age at Measure Ref.

13.4% Rabbit/M+F Pregnancy and
Lactation No Increased central leptin signaling

and sympathetic responsivity 20 weeks [21]

18.7% SD rat/M Pregnancy No
Increased leptin expression and

leptin promoter hypomethylation
in adipose tissues

1 year [59]

24% Wistar rat/M Lactation Yes
Decreased plasma and mesenteric
arteries antioxidant activities, and

decreased NO
22 weeks [60]

25.7% SD rat/M+F Lactation Yes in
females Endothelial dysfunction 25 weeks [61]

25.7% SD rat/F Pregnancy and
Lactation Yes Endothelial dysfunction 180 days [62]

31% Wistar rat/M+F Pregnancy and
Lactation ND

Reduced SOD activity and
increased lipid peroxidation in

the kidneys
90 days [63]

31% Wistar rat/M Pregnancy and
Lactation ND Increased oxidative stress in

the kidneys 100 days [64]

45% SD rat/M Pregnancy and
Lactation Yes Endothelial dysfunction and

reduced NO 130 days [65]

45% C57BL6J mice/M Pregnancy and
Lactation Yes

Endothelial dysfunction, increased
ROS, and reduced NO in

femoral artery
30 weeks [66]

58% SD rat/M Pregnancy and
Lactation No Increased renal AT1R expression

and shifts in gut microbiota 16 weeks [67]

58% SD rat/M Pregnancy and
Lactation No

Increased renal oxidative stress,
decreased urinary NO level, and
decreased renal Ang-(1–7) level

16 weeks [68]

58% SD rat/M Pregnancy and
Lactation No Increased renal oxidative stress

and decreased urinary NO level 16 weeks [69]

58% SD rat/M Pregnancy and
Lactation Yes

Dysregulated H2S-generating
pathway and shifts in

gut microbiota
16 weeks [70]

58% SD rat/M Pregnancy and
Lactation No

Dysregulated nutrient-sensing
signals and shifts in

gut microbiota
16 weeks [71]

Studies tabulated according to energy percent from fat in maternal diet, species, and age at measure. SD = Sprague
Dawley; M = male; F = female; ND = Not determined; NO = nitric oxide; ROS = reactive oxygen species;
SOD = superoxide dismutase; AT1R = angiotensin II type 1 receptor; H2S = hydrogen sulfide.

Rats are the most frequently used animals. Other species such as rabbits [21] and
mice [66] have also been used to study hypertension of developmental origins programmed
by maternal HFD. In view of the fact that each month of the adult life of a rat corresponds
to 3 human years [72], Table 1 shows the timing of developing hypertension in rats ranging
from 12 weeks to 1 year of age, which corresponds to humans from childhood to adulthood.
In rodents, different maternal HFDs with fat fractions ranged from 18.7% to 58% energy as
fat, which were close to previous studies [7,8]. Notably, maternal HFD-induced responses
of offspring BP could be increased [21,59–71] but also unaltered [30,61], mainly depending
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on sex, age, species, and varied fatty acid compositions. In Table 1, most BP data were
obtained from the tail cuff method, except some studies using direct arterial catheter [21] or
telemetry method [61,62]. Though BP data detected from the tail cuff method have been re-
ported to correlate well with findings of direct arterial catheter and telemetry methods [73],
part of the increased BP in offspring may be related to an increase in sympathetic nerve
activity [74].

Additionally, maternal HFD-induced offspring hypertension is associated with de-
velopmental programming in several organs, including the kidneys [63,64,67–71], ves-
sels [60–62,65,66], and brain [21]. Notably, offspring hypertension does not essentially
correspond to obesity in response to maternal HFD. Offspring obesity may or may not
appear in these maternal HFD-induced hypertension models. What is absent in the litera-
ture is animal models used for studying maternal HFD-induced hypertension target organ
damage. Although maternal HFD induced programming effects in various organs, the
contributions of organ-specific programming on damage in target organs have not been yet
extensively studied in the above-mentioned animal models.

Of note is that the development of hypertension may follow the two-hit model. Recent
evidence suggests a “two-hit” hypothesis that illuminates the developmental programming
of adult diseases [75]. Hypertension can develop with two sequential hits, the first hit
being the response to a prenatal insult, followed by the second hit in response to ongoing
programming induced by the first hit. Since the first hit alone may not be sufficient to
alter the adult phenotype, another insult may act as a second hit to amplify the underlying
defects culminating in a disease state. A number of two-hit models, hence, have been used
to evaluate whether two distinct hits affect offspring outcomes synergistically or differently
when combined as compared with either hit alone.

In some studies, maternal HFD was applied as the first hit. Maternal HFD causes
morphological functional changes of fetal organs, which alone might not be sufficient to
alter the adult phenotype. The second hit could amplify ongoing programming processes
triggered by maternal HFD, culminating in a disease state. So far, some two-hit models have
been used to evaluate whether two distinct hits affect offspring hypertension synergistically
or differently when combined as compared with maternal HFD alone. For example, models
of a maternal plus post-weaning HFD [68,71] and combined maternal HFD and bisphenol
A exposure [69] have been established to study hypertension of developmental origins. To
sum up, animal models with various maternal HFDs during different fetal developmental
stages generate the same outcome—hypertension in adult life. These findings suggest there
might be major basic mechanisms behind hypertension of developmental origins.

4.2. Proposed Mechanisms Underlying Maternal HFD-Induced Offspring Hypertension

To date, several main mechanisms underlying hypertension of developmental origins
have been proposed, such as oxidative stress, NO deficiency, aberrant activation of the
RAS, dysregulated nutrient-sensing signals, epigenetic regulation, gut microbiota dysbio-
sis, etc. [14,57,58,76–79]. Among them, some are interconnected with maternal HFD and
will be discussed in turn (Figure 2).
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4.2.1. Oxidative Stress

Oxidative stress, a disturbance in pro-oxidant/antioxidant balance, has been impli-
cated in the pathophysiology of compromised pregnancy and adverse fetal outcomes [80].
During fetal development, the existence of excessive ROS under adverse intrauterine condi-
tions prevails over the antioxidant defense system and causes fetal programming, leading
to oxidative stress-related hypertension in adult offspring [81]. Prior reviews revealed that
there are a number of maternal insult stimuli connected to oxidative stress in mediating
offspring [14,81].

Several mechanisms accompanying by oxidative stress behind hypertension of de-
velopmental origins have been reported, including upregulation of ROS-producing en-
zymes [82], excessive ROS generation [69,83], increases in lipid peroxidation [84], elevated
oxidative DNA damage [85], increased peroxynitrite formation [86], and decreased antioxi-
dant capacity [63].

Table 1 shows that increased oxidative stress in the vessels [60,66] and kidneys [63,64,68,69]
is associated with maternal HFD-induced hypertension in adult offspring. A commonly
used marker of lipid peroxidation, malondialdehyde (MDA), has been used to detect oxida-
tive damage and shown increased in the offspring kidneys in maternal HFD models [63,64].
Additionally, 8-hydroxydeoxyguanosine (8-OHdG), an oxidized nucleoside of DNA, is the
most frequently detected DNA lesion [87], whose staining was significantly increased in the
kidneys of adult rat offspring born to dams received HFD [68,69]. These findings provide
the connections between maternal HFD and oxidative stress that underlie the hypertension
of developmental origins.
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4.2.2. NO Deficiency

NO depletion in pregnancy can cause fetal programming, leading to programmed
hypertension in adult offspring [76,88,89]. Prior work revealed that maternal NO deficiency
alters a wide range of signaling pathways using the transcriptomic analysis [77]. Among
them, several redox-sensitive signaling pathways contribute to the development of hyper-
tension [90]. Additionally, NO deficiency in embryonic kidneys induced by ADMA can
impair nephrogenesis and alter several genes related to hypertension of developmental
origins [91]. Conversely, early interventions targeting the NO pathway could be used for
reprogramming hypertension in different models of developmental programming [76,89].

As shown in Table 1, reduced NO in the vessels [60,65,66] and kidneys [63,68,69]
is related to maternal HFD-induced offspring hypertension. Former work reveals that
ADMA-related ROS–NO imbalance in early life causes hypertension in adult life [76]. In
a combined maternal HFD and bisphenol A exposure [69], adult offspring develop hy-
pertension coinciding with increased ADMA. However, maternal HFD alone increased
offspring BP but has a negligible effect on ADMA level. A previous study reported that
atorvastatin can reduce ADMA by increasing its metabolism to protect adult rats against
high-fat diet-induced endothelial dysfunction [41]. As many currently used drugs have
ADMA-lowering properties that can restore ADMA-NO balance [92], a deeper understand-
ing of the reprogramming effects of NO-targeted intervention in HFD-induced programmed
hypertension is warranted.

4.2.3. Aberrant Activation of the RAS

The RAS, a major regulatory network of BP, is tightly connected with hypertension
of developmental origins [57]. The RAS consists of several angiotensin (Ang) peptides
that regulate BP through distinct receptors [93]. The classic RAS can be defined as the
angiotensin-converting enzyme (ACE)/angiotensin (ANG) II/angiotensin II type 1 receptor
(AT1R) axis. Activation of the classic RAS elicits vasoconstriction, oxidative stress, and in-
flammation, resulting in hypertension [94]. Maternal HFD-induced offspring hypertension
is related to the aberrant activation of the classic RAS, represented by increases in increased
renal mRNA expression of Agt and Ace and protein level of AT1R [67].

Conversely, the non-classic RAS, composed by the ACE2/Ang-(1–7)/Mas receptor,
can counterbalance the adverse effects of ANG II [93]. Another study reported that renal
Ang-(1–7) level was decreased in 16-week-old male offspring born to dams that received
HDF [68]. Prior research indicated there is a transient biphasic response with downregula-
tion of classic RAS axis in neonatal stage that becomes normalized with age [94]. Maternal
HFD may disturb this normalization; hence, the classic RAS axis is aberrant activation,
resulting in the rising BP in adult offspring.

Given the fact that only few studies addressed the impact of RAS in maternal HFD-
induced hypertension, there is need for further investigation of this research gap. Consid-
ering maternal HFD increased offspring’s BP coinciding with aberrant activation of the
classic RAS, more work is required to explore whether blockade of the RAS can be used as
reprogramming interventions for maternal HFD-induced programmed hypertension.

4.2.4. Dysregulated Nutrient-Sensing Signals

During gestation, nutrient-sensing signals regulate fetal metabolism in response to
maternal nutritional status [95]. Different signaling pathways that detect intracellular and
extracellular levels of specific nutrients, such as fats, are coordinated at the organismal
level via hormonal signals [96]. Accordingly, maternal nutritional imbalance resulting
in dysregulation of nutrient-sensing signals cause a crucial impact on hypertension of
developmental origins [14,93].

Maternal HFD-induced offspring hypertension is correlated to inhibitory AMP-activated
protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-
1α (PGC-1α) pathway in offspring kidneys [68]. AMPK can phosphorylate PGC-1α. PGC-
1α binds to PPARγ and coactivates PPARγ to facilitate the expression of specific sets



Int. J. Mol. Sci. 2022, 23, 8179 9 of 17

of PPAR target genes participating in hypertension [97]. A growing body of evidence
indicates that downregulation of nutrient-sensing signals, such as AMPK and PGC-1α,
is related to hypertension of developmental origins, while AMPK activation can serve as
a reprogramming strategy to protect offspring against adverse programmed processes [98].
Although a potential link between nutrient-sensing signals and maternal HFD underlying
hypertension of developmental origins exists, whether these signals impact maternal HFD-
induced adverse offspring outcomes in an organ-specific manner remains unclear.

4.2.5. Epigenetic Regulation

During pregnancy, epigenetic mechanisms are involved in programming gene expres-
sion for fetal development [99]. Recent studies suggest that DNA methylation, histone mod-
ification, and noncoding RNAs may be one of the epigenetic mechanisms that program the
effects of early-life habits on later-life risk of adult diseases, including hypertension [78,100].

Using next-generation RNA sequencing (NGS) analysis, our prior work reported
maternal HFD significantly altered renal transcriptome in 1-week-old female offspring [30].
In total, 251 differential expressed genes (DEGs) (154 up- and 97 downregulated genes)
were identified. Among them, several genes were related to regulation of BP, such as Agtr1b
and Ace belonging to the RAS, Ddah1 in the NO signaling pathway, and sodium transporter
Slc12a3. Notably, a maternal HFD also induces differential alterations of gene expression in
the placenta [100], brain [101], and heart [102] in offspring. These data demonstrate that
epigenetic regulation may participate the developmental programming of adult diseases in
an organ-specific manner.

As well, maternal HFD leads to offspring hypertension and was relevant to increased
leptin promoter hypomethylation and leptin expression in adipose tissues of HFD-exposed
rat offspring [59]. Similarly, another study demonstrated that maternal HFD may program
sympatho-excitatory capacity to induce hypertension in adult rabbit offspring attributed
to increased leptin receptor [58]. Hypothalamic leptin signaling can activate specific
melanocortin receptors located on sympathetic neurons and consequently result in sympa-
thetic activation of the heart and kidneys and, finally, elevated BP [103]. Thus, maternal
HFD can regulated certain genes involved in the regulation of BP. However, the underlying
epigenetic mechanisms await further clarification.

4.2.6. Gut Microbiota Dysbiosis

Within the gut reside various microbes coexisting with the host in a mutually beneficial
relationship, and thus gut microbiota has potential to affect human health and disease [104].
During pregnancy and lactation, the mothers share gut microbiota and derived metabolites
with their offspring, which illuminate the impact of maternal influences in the development
of offspring’s gut microbiota [105].

A meta-analysis including 15 studies indicated that intake of high saturated fat may
negatively affect microbiota richness and diversity [106]. Maternal HFD was reported to
reduce α-diversity in offspring’ microbiota [107]. Loss of α-diversity appears as the most
constant finding of gut microbiota dysbiosis, leading to many human diseases [108]. Addi-
tionally, a maternal HFD programs offspring’s hypertension coincides with an increased
Firmicutes to Bacteroidetes (F/B) ratio. This was tied well with hypertension models show-
ing the F/B ratio was increased and served as a microbial marker of hypertension [109].
Additionally, reduction of beneficial microbes was also a hallmark of gut microbiota dys-
biosis [104]. The abundance of both beneficial bacterial strains Lactobacillus and Akkerman-
sia [110,111], were reduced in the maternal HFD model [67,71].

Moreover, maternal HFD increased offspring’s BP accompanying by alterations of
gut microbiota-derived metabolites [67,71]. Microbial metabolites such as short-chain
fatty acids (SCFAs), trimethylamine (TMA), and trimethylamine N-oxide (TMAO) are
involved in BP regulation [112–114]. Maternal HFD was reported to reduce fecal propionate
level in 3-week-old offspring [71]. As propionate has vasodilatory action via mediating
SCFA receptors [112], this finding suggests reduced SCFA might be a possible reason
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contributing to maternal HFD-induced hypertension. Maternal HFD also caused the
increases of TMA levels and decreases of TMAO-to-TMA ratio in adult rat offspring [71].
As microbiota-derived metabolites TMA and TMAO are risk factors for cardiovascular
disease [113,114], whether HFD-induced programmed hypertension can be prevented by
reducing accumulation of TMA and TMAO warrants further investigation.

4.2.7. Others

With regard to the multiple negative aspects of maternal HFD on offspring outcomes,
other possible mechanisms might be involved, for example, dysregulation of H2S or sex
differences. Hydrogen sulfide (H2S), the third gasotransmitter, has emerged as an important
regulator of BP [115]. Increasing evidence supports the use of H2S-based interventions as
a reprogramming approach to protect offspring against hypertension of developmental
origins [116]. One previous study revealed maternal HFD caused decreases of plasma H2S
levels and renal H2S-releasing activity in male rat offspring [70]. These findings suggest
that a link between HFD and H2S might be behind hypertension of developmental origins,
although this remains speculative. Sex-dependent differences exist in hypertension of
developmental origins [117,118]. It has been noted that male offspring are more susceptible
to be hypertension than female offspring [117,118]. This difference has led many researchers
to work on predominately male animal research, as listed in Table 1. However, one study
reported that maternal HFD programs hypertension in female but not male offspring [61].
Another study revealed there is no difference of maternal HFD on the development of
hypertension in each sex [30]. More research on sex differences is required as they may
become a potential mechanism in hypertension programmed by maternal HFD.

5. Reprogramming Strategies

With a deeper understanding of the mechanisms underlying maternal HFD-programmed
hypertension, the development of mechanism-targeted strategies holds potential for repro-
gramming. So far, early-life interventions to offset mechanisms governing hypertension
of developmental origins that have been evaluated range from avoidance of risk factors,
nutritional interventions, pharmacological therapies, to lifestyle modification [14,58,81].

Animal models have been essential in providing potential reprogramming strate-
gies. As described in Table 1, several interventions have been used as reprogramming
strategies to prevent hypertension in offspring exposed to maternal HFD, including grape
skin extract [60], Limosilactobacillus fermentum [64], conjugated linoleic acid [65], long chain
inulin [67], Lactobacillus casei [67], resveratrol [68,69], and garlic oil [70]. A schematic summa-
rizing the potential reprogramming interventions for maternal HFD-induced hypertension
of developmental origins is presented in Figure 3.

Interestingly, most reprogramming interventions used in maternal HFD models are
targeted on gut microbiota. Probiotics and prebiotics have long been known for their bene-
fits in human health [119,120], including treating hypertension [121], while less attention
has been paid to their preventive aspect on hypertension of developmental origins [58].
Probiotic treatment with Limosilactobacillus fermentum [64] or Lactobacillus casei [67] in preg-
nancy and lactation prevents the development of hypertension in adult offspring exposed
to maternal HFD. Additionally, long-chain inulin, a prebiotic, causes a beneficial protective
effect against maternal HFD-induced offspring hypertension [67]. Similarly, resveratrol
could be used to reprogram maternal HFD-induced hypertension due to its probiotic prop-
erties [68,69]. Another study showed that garlic oil, one of the prebiotic foods, protected
maternal HFD-induced hypertension in adult rat progeny [70]. Its beneficial effects in-
clude increased α-diversity, increased plasma SCFA levels, and increased proportions of
beneficial bacteria Bifidobacterium and Lactobacillus.
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Apart from probiotics and prebiotics, postbiotics are another gut microbiota-based
modality [122]. Postbiotics are bioactive compounds made from metabolic by-products of
live probiotic bacteria [122]. Conjugated linoleic acid is a gut microbiota-derived metabolite
from dietary polyunsaturated fatty acids. As a postbiotic, maternal conjugated linoleic acid
supplementation reversed maternal HFD-induced offspring hypertension [65].

Furthermore, former work reveals that specific nutrient intake can be advantageous
for protecting offspring from hypertension of developmental origins in various animal
models [123,124]. One of them is polyphenol [124]. One previous study showed that
supplementation with grape skin polyphenols during gestation and lactation protects
against hypertension induced by a maternal HFD [60].

To summarize, current evidence from animal models supports that early-life interven-
tions such as gut microbiota-targeted therapies may be able to prevent the development of
hypertension programmed by maternal HFD in a desired favorable direction.

6. Conclusions and Perspectives

Previous research has shown that maternal HFD causes a variety of adverse offspring
outcomes later in life. In this review, we outlined recent advances supporting the influence
of maternal HFD on offspring hypertension. Reflecting current knowledge of animal
models, our review also shed light on prevention of maternal HFD-induced hypertension
via innovative reprogramming strategies. Unfortunately, animal models of maternal HFD
are not without limitations. There is no one-size-fits-all model to induce the same adverse
offspring outcomes (e.g., hypertension or obesity) in response to maternal HFD. Part of
the issue is limited not simply to practical issues regarding study design (compositions of
fats, duration, and age at measure) but also to the confounding effects of genetic variation
(sex, animal species, and background). Future work could point to improve comparability
across studies using “identical” maternal HFD models.

To move the field forward, some unsolved aspects toward clinical translation need to
be considered. Although several core mechanisms were addressed in the current review,
we may not completely understand the full picture of mechanisms behind maternal HFD-
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induced offspring hypertension. Considering maternal HFD can program various organs
resulting different phenotypes in adult offspring, it is imperative that additional studies
simultaneously evaluate organ-specific programming effects in an experiment. What
is absent from the literature is a deeper understanding of whether maternal HFD can
program offspring hypertension leading to damage of target organs, such as the brain,
heart, and kidneys.

Studies to date have found that gut microbiota-targeted therapies can reprogram
maternal HFD-induced hypertension. Nevertheless, none of them have been translated
in human studies. Despite results from human studies revealing probiotics and prebiotics
in the treatment of maternal conditions during pregnancy being beneficial, currently their
effectiveness in protecting offspring against hypertension remain largely unclear. Future
work in large trials is required to better identify appropriate probiotic species and prebiotics
for pregnant women consuming HFD for preventing hypertension in their children.

In summary, the growing body of knowledge suggests maternal dietary habits with
excessive fat intake during gestation and lactation should be avoided to minimize offspring
risk for developing hypertension in later life. After a greater understanding of maternal
HFD-induced offspring hypertension and a remarkable growth achieved in reprogramming
strategies, we believe that translating animal results into clinical application is a valuable
approach that could curtail the global pandemic of hypertension.
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