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Background
Intra-tumor heterogeneity is formed by the dynamic interactions of different tumor cell 
populations (or subclones), infiltrating immune cells, and stromal cells in the tumor 
microenvironment [1–4]. Studies have shown that intra-tumor heterogeneity is closely 
related to clinical prognoses such as tumor growth, metastasis, recurrence, and drug 
resistance [5]. The tumor heterogeneity can be measured by the number of cell popula-
tions in tumor tissues, their molecular profiles, and their proportions. Specifically, cell 
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type proportion prediction is an important task for multi-omic data analysis or clini-
cal studies. For example, accounting for cell type proportions is proven to be helpful 
for Epigenome-Wide Association Study (EWAS) [6], and the composition of infiltrat-
ing immune cells in tumor tissues is predictive of the response to checkpoint inhibitor 
immunotherapy [7].

Currently, experimental techniques including flow cytometry and single-cell tech-
niques such as Drop-seq [8], 10X Genomics, and sci-RNA-seq [9] have been used to 
study cellular components in complex tissues, but they are costly [10] and sensitive to 
technical changes during cell isolation. Thus, in recent years, computational estimation 
of cellular components using gene expression or DNA methylation data has become a 
hot topic in computational biology [10–27]. Compared to gene expression, DNA meth-
ylation has the advantage of being more stable [28], highly cell-type specific [29], and 
easier to measure in formalin-fixed paraffin-embedded (FFPE) tissues [30]. As a result, 
DNA methylation is more suitable for studying cellular components. Currently, the 
methods based on DNA methylation can be broadly classified into two categories: refer-
ence-based methods and reference-free methods. Among the reference-based methods, 
Houseman et al. [11] proposed a linear regression method (QP) based on DNA meth-
ylation, which uses quadratic programming to ensure that the regression coefficients 
are non-negative. Teschendorff et  al. [16] developed EpiDISH, which uses non-con-
strained weighted linear regression rather than linear regression to reduce the weights 
of data points with large residuals. Altboum et al. proposed DCQ [13], which modifies 
the deconvolution approach into a regularized regression model to reduce the number 
of model parameters. Inspired by the success of CIBERSORT [14] in gene expression 
decomposition, Chakravarthy et al. [10] analyzed the cell type composition of complex 
mixtures using support vector regression based on DNA methylation data and obtained 
more accurate estimates. The latest reference method based on DNA methylation is 
Emeth [21], which uses a mixture distribution based on ICeD-T [20] to identify CpG 
sites whose DNA methylation in tumor samples is inconsistent with the reference meth-
ylation profiles and to reduce the contribution of these aberrant sites in cell type abun-
dance estimation.

The general limitation of the above reference methods is that they require DNA meth-
ylation profiles of specific cell types as input, but in practice, it is difficult to obtain DNA 
methylation profiles of all cellular components in tumor tissues [31]. To overcome this 
limitation, many researchers have developed reference-free methods. For example, 
James et al. [22] proposed a combination (FAST-LMM-eWasher) of linear mixed mod-
els and principal components to correct the composition of cell types automatically. 
Houseman et  al. [23] applied an iterative quadratic programming framework (RF) to 
DNA methylation for cell type analysis. Motivated by previous research, Lutsik et al. [26] 
developed MeDeCom by combining constrained non-negative matrix factorization with 
a new biologically relevant regularization function. Such methods do not rely on ref-
erence information and aim to estimate molecular profiles and proportions of all cell 
types simultaneously, unfortunately, their prediction accuracies are far from satisfactory. 
However, in real clinical practice, gene expression or DNA methylation is often available 
for only a small fraction of cell types, and reference information for the remaining cell 
types is unknown. To overcome these limitations, easily available data for a portion of 
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cell types in a tumor mixture can be used as a reference to deconvolute the entire tumor 
mixture.

In this paper, we proposed a method for partially–reference cell type decomposition 
using DNA methylation data (PRMeth). PRMeth used an iteratively optimized non-neg-
ative matrix factorization framework, which took DNA methylation profiles of a portion 
of the cell types in the tissue mixtures (including blood and solid tumors) as input to 
estimate the proportions of all cell types as well as the methylation profiles of unknown 
cell types simultaneously. Based on three benchmark datasets, we compared PRMeth 
with five different methods (i.e., Reference-Free (RF) [23], Quadratic Programming (QP) 
[11], CIBERSORT (CBS) [14], Digital cell quantification (DCQ) [13], and Epigenetic Dis-
section of Intra-Sample Heterogeneity (EpiDISH) [16]). The results showed that PRMeth 
outperformed the other five methods. PRMeth was then applied to four types of tumors 
from The Cancer Genome Atlas (TCGA) [32] database, i.e., skin cutaneous melanoma 
(SKCM), invasive breast carcinoma (BRCA), acute myeloid leukemia (LAML), and thy-
moma (THYM). The experimental results revealed that immune cell proportions esti-
mated by PRMeth were in good agreement with previous studies and PRMeth could 
provide new insights into tumor heterogeneity and immunotherapy.

Methods
Simulation data

The simulation dataset was constructed from five immune cells (including neutrophils, 
CD4 + T cells, CD8 + T cells, natural killer cells (NK), CD19 + B cells) (GSE88824), 
one non-small cell lung cancer cell (A549), and one normal human bronchial epithe-
lial cell (NHBEC) (GSE92843) available from the Gene Expression Omnibus (GEO) [33]. 
To obtain the methylation profiles of the cell types, we loaded their respective IDAT 
files using the champ.load (ChAMP package in R) and filtered out 79,818 probes with 
a detection p value > 0.01, a beadcount < 3 in at least 5% of samples, non-CPGs, SNPs, 
MultiHit, and locating on X, Y chromosome. Then, the filtered data were normalized 
by the champ.norm and their batch effects were eliminated by the champ.runCombat. 
Finally, we were able to obtain the methylation profiles for seven different cell types 
(recorded as base profiles).

Next, the base profiles were employed to generate the methylation profiles of non-
small cell lung cancer (NSCLC) samples with different cell type proportions and levels 
of noise. In the first step, we randomly generated the proportions of all cell types for 
each NSCLC sample based on the Dirichlet distribution. In detail, the proportions of 
A549 cell, NHBEC, and immune cells are 60%, 10%, and 30%, respectively. These pro-
portions are in accordance with the true proportions of the cell types found in NSCLC 
samples [25]. In the second step, we generated methylation profiles of the cell types with 
different levels of noise from an independent beta distribution with mean and variance 
inferred from the base profiles (see Results for details). In the third step, the methylation 
profiles of the cell types with different noise levels were linearly combined according to 
the above ratios as the methylation profiles of NSCLC samples. In the end, the methyla-
tion profiles of 100 NSCLC samples were obtained. We used the Dirichlet distribution 
to generate proportions of cell types 20 times randomly and then obtained 20 simulation 
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datasets at each noise level. The 20 simulation datasets are used to validate the perfor-
mance of the proposed method PRMeth.

Real data obtained from experiments

Besides the simulation dataset, we also applied our method to the following three data-
sets. In the first dataset, the methylation profiles of 100 mixture samples, the methyl-
ation profiles of seven types of immune cells (including CD4 + T cells, CD8 + T cells, 
monocytes, B cells, NK cells, neutrophils, and T regulatory cells) constituting mixture 
samples, and the proportions of all cell types for each sample were provided by Zhang 
et al. [21]. This dataset is referred to as the Zhang dataset in this paper.

In the second dataset, the methylation profiles of six whole blood samples and their 
constitutional cell types (including CD4 + T cells, CD8 + T cells, monocytes, B cells, NK 
cells, neutrophils, and eosinophils) were obtained from Chakravarthy et al. [10] via the 
GEO accession number GSE35069, and the proportions of each cell type were measured 
by flow cytometry as provided by the authors [34].

In the third dataset, the methylation profiles of skin cutaneous melanoma (SKCM), 
invasive breast carcinoma (BRCA), acute myeloid leukemia (LAML), and thymoma 
(THYM) samples were downloaded from the TCGA database. To facilitate the compari-
son, 100 tumor samples were randomly selected for each cancer type. As the reference 
for deconvolution, the methylation profiles of seven immune cells (including mono-
cytes, dendritic cells, macrophages, eosinophils, naive T cells, CD8 + T cells, and NK 
cells) were obtained from Arneson et al. [35] via the GEO accession numbers GSE35069, 
GSE59250, and GSE71837. Meanwhile, the batch effects between the methylation pro-
files of tumor samples and those of immune cell types were eliminated by the ComBat 
function in sva package of R.

PRMeth model construction

The framework of PRMeth is illustrated in Fig.  1. It is assumed that the methylation 
profiles of tumor tissues are mixture signals from their constitutional cell types, where 
only a part of them have available methylation profiles. We proposed a non-negative 
matrix factorization scheme (Fig.  1A) and an iterative algorithm (Fig.  1B) to estimate 
the proportions of all cell types and the methylation profiles of unknown cell types 
simultaneously.

We denote Y ∈ Rm×n
+  as the methylation profiles of m CpG sites in n tumor mixtures. 

Suppose that the tumor mixtures are made up of K  cell types with a certain proportion. 
According to the deconvolution model:

where W1 ∈ R
m×K1
+  , W2 ∈ R

m×K2
+  denote the methylation profiles of K1 known cell types 

and K2 unknown cell types ( K = K1 + K2 ), H1 ∈ R
K1×n
+  and H2 ∈ R

K2×n
+  denote the pro-

portions of known and unknown cell types, respectively. ε is an m× n error matrix. 
Observing that yij ∈ Y  , w1(ij) ∈ W1 and w2(ij) ∈ W2 represent the DNA methylation level 
(i.e., beta value) of a CpG site, then 0 ≤ yij , h1(ij), h2(ij) ≤ 1 . And the proportions 

(1)Y = W1,W 2

H1

H2

+ ε
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h1(ij), h2(ij) of K  cell types in a mixture satisfy 0 ≤ h1(ij), h2(ij) ≤ 1 and ∑K1

i=1 h1(ij) +
∑K2

i=K1+1 h2(ij) = 1.
In this model, the methylation profiles Y  of the mixtures and the methylation profiles 

W1 of the partial cell types were known, and we aimed to estimate the proportions 
(
H1

H2

)
 

of all cell types and the methylation profiles W2 of unknown cell types, which could be 
obtained by solving for the minimization error sum of squares, thus transforming Eq. (1) 
into:

where || · ||2F denotes the Frobenius norm.

(
Ŵ2, Ĥ1, Ĥ2

)
= argminW2,H1,H2

�Y −
(
W1,W 2

)(H1

H2

)
�

2

F

(2)= argminW2,H1,H2
�Y −W1H1 −W2H2�

2
F

(3)s.t.0 ≤ w2(ij), h1(ij), h2(ij) ≤ 1

(4)
K1∑

i=1

h1(ij) +

K2∑

i=K1+1

h2(ij) = 1

Fig. 1 The framework of the PRMeth model. A The non-negative matrix factorization scheme of the PRMeth 
model. B The iterative algorithm of the PRMeth model
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Next, an iterative algorithm was used to estimate 
(
H1

H2

)
 and W2 . As shown in Fig. 1B, 

we fixed the obtained partial reference data W1 and iterated the values of  
(
H1

H2

)
 and W2 

continuously by Eq. (2) to calculate their final results. The detailed algorithm flow is as 
follows:

where t is the number of iterations. In step a, we employed the RPMM [36] algorithm 
to initialize the methylation profiles W2 of unknown cell types. In detail, RPMM is a clus-
tering algorithm that clusters the methylation profiles Y  of tumor samples into K2 clus-
ters by the binary distance formula and takes the clustering centers as the initial value 
of W2 . Furthermore, we compared RPMM with six initialization approaches including 
five different clustering algorithms (i.e., canberra, euclidean, manhattan, maximum, and 
minkowski) and a random generation algorithm (random). As shown in Additional file 1: 
Figure S1, there were no significant differences between the seven methods, but RPMM 
outperformed the other approaches in estimating proportions on the simulation dataset.

For PRMeth, if profiles of all constitutional cell types are available (i.e., K1 = K  ), 
it is actually the QP method. On the contrary, if none of the constitutional cell types 
is known ( i.e.,K1 = 0 ), the PRMeth method turns to the RF method. Therefore, the 
PRMeth method is a more general framework that includes the reference-based and ref-
erence-free methods as two special cases.

CpG site selection

The total number of CpG sites in the human genome is very huge. To reduce the poten-
tial noise and improve the computational efficiency, we selected CpG sites with high 
methylation variation in tumor samples by the coefficient of variation ( cv ) as follows:

where σ and µ denote the standard deviation and mean of a CpG site in Y  , respectively. 
We sorted these sites according to cv and then selected the top n with the highest cv val-
ues as input features.

Cell type number prediction

In our method, the number K  of cell types in tumor mixtures needs to be specified. The 
Bayesian information criterion (BIC) [37] is an important measure of model superior-
ity that can give the optimal number of parameters in the model. Therefore, BIC was 
selected to identify K  in the tumor mixtures. Furthermore, in order to weaken the pen-
alty, a penalty factor wasintroduced . �_BIC is defined by the formula:

(5)cv =
σ

µ
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where N  denotes the sample size, P denotes the number of model parameters, SSR 
denotes the residual sum of squares between the true and estimated methylation profiles 
of the tumor mixtures, and � denotes the penalty factor, whose size is restricted to (0, 1) . 
In the PRMeth model, N = n×m as well as P = K (n+m)− nK 1 , where n , m , K  and 
K1 denote the number of tumor mixtures, the number of CpG sites, the total number 
of cell types, and the number of known cell types, respectively. Different K  values cor-
respond to different �_BIC values, and the K  value corresponding to the smallest �_BIC 
value is the optimal number of cell types for the tumor mixtures.

Results
Research design

The five methods, i.e., QP, DCQ, EpiDISH, RF, and CBS, are state-of-the-art methods 
for the DNA methylation deconvolution task. Among them, RF, QP, DCQ, and EpiDISH 
used the linear model and CBS used the most popular non-linear model (support vec-
tor regression). The two models were also adopted by the other deconvolution methods 
introduced in the Background section, so we compared PRMeth with the five methods.

1. RF [23], a reference-free method for solving cell type proportions and cell type meth-
ylation profiles using iterative quadratic programming;

2. QP [11], a reference-based method for solving cell type proportions using quadratic 
programming;

3. CBS [14], a reference-based method for inferring the proportions of tumor-infiltrat-
ing immune cells using support vector regression;

4. DCQ [13], a reference-based method for inferring the global dynamics of the num-
ber of immune cells in complex tissues using elastic net regularization.

5. EpiDISH [16], a reference-based method for estimating cell type proportions using 
non-constrained weighted linear regression.

The mean absolute error (MAE) and Pearson correlation coefficient (PCC) were used 
to evaluate the performance of different methods. In detail, MAE measures the mean 
absolute error between the estimated and true values of cell type proportions or cell type 
methylation profiles, and PCC quantifies the correlation coefficient between the esti-
mated and true values of cell type proportions or cell type methylation profiles, with 
values ranging from [−1, 1].

Determination of the number of cell types

The number of cell types should be specified first for PRMeth. However, it is not a trivial 
task since we are infeasible to know the exact number without a single-cell sequencing 
experiment. We here determined the number K  of cell types in mixture samples using 
�_BIC , a modified Bayesian information criterion (see Methods for details). Assuming 
that the methylation profiles Y  of tumor mixtures and the methylation profiles W1 of 
K1 cell types are known, penalty factor � is taken as 0.1, 0.2, . . . , 0.9 , and K  is chosen as 
K1 + 1,K1 + 2, . . . ,K1 + k , where k ≤ 30 . All � and K  were traversed to calculate their 

(6)�_BIC = Nln

(
SSR

N

)
+ �Pln(N )
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corresponding �_BIC values. The optimal number of cell types was determined as the K  
with the smallest �_BIC value.
�_BIC was tested on the Zhang dataset with in total 7 cell types by setting K1 as 2, 3, 

4, and 5, respectively. It was observed that the smallest �_BIC values corresponded to 
� = 0.3, 0.4, 0.4, 0.5 , and K = 7 for all K1 . When � was fixed as 0.3, 0.4, 0.4, or 0.5 , we plot-
ted the �_BIC values with K  as shown in Fig. 2. As expected, all �_BIC values decreased 
first and then increased with the increase of K  , and PRMeth could successfully predict 
the correct number ( K = 7 ) of cell types in all scenarios.

Evaluation of different methods using simulation data

After successfully determining the total number of cell types, we next evaluated the esti-
mation accuracy of PRMeth on the simulation dataset. First, the top 1000 CpG sites with 
the highest coefficient of variation ( cv ) were selected as the input for six methods. Then, 
we calculated the mean absolute error (MAE) between the true and predicted propor-
tions of available cell types for each method at different noise levels. Here, the random 
noise was generated by a beta distribution whose mean is the methylation level of each 
site for each cell type in the base profiles and whose variance is a certain percentage of 
the maximum variance (i.e., mean ∗ (1−mean) ) calculated by the above mean. In detail, 
we took 10%, 20%, 30%, and 40% of the maximum variance when processing lung can-
cer cell types and 5%, 10%, 15%, and 20% for normal cell types. As shown in Fig. 3A, the 
MAE of all six methods increased with the increase of the noise level. Compared to other 
methods, PRMeth consistently obtained the lowest bias and relatively stable results at 
all noise levels. When the noise level was (0.1, 0.05), we evaluated the performance of 
PRMeth in estimating the proportions of cell types at different numbers ( K2 = 2, 3, 4, 5 ) 
of unknown cell types. It is shown that PRMeth always obtained the lowest and most 
stable bias, however, the MAE of the remaining methods all gradually increased with the 
increasing number of unknown cell types (Fig. 3B). For the three remaining noise levels 
(0.2, 0.1), (0.3, 0.15), and (0.4, 0.2), PRMeth performed similarly well (Additional file 1: 
Figure S2).

Fig. 2 Accuracy of �_BIC in predicting the total number of cell types. �_BIC values when the true total 
number of cell types is seven, but only 2, 3, 4, or 5 cell types are known and their corresponding penalty 
factor is 0.3, 0.4, 0.4, or 0.5
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In addition to proportion prediction, PRMeth (as well as RF) can also infer the meth-
ylation profiles of cell types. Figure 3C–F show the MAE and Pearson correlation coef-
ficient (PCC) between the true and predicted cell type methylation profiles calculated 
by the two methods at different noise levels or different numbers of unknown cell types. 
At all noise levels, PRMeth achieved consistently higher accuracy (Fig. 3C) and correla-
tion (Fig.  3E) compared to RF. Furthermore, when the noise level was (0.1, 0.05), the 
MAE of PRMeth gradually increased but remained lower than RF (Fig. 3D) and its PCC 
decreased gradually but remained higher than RF (Fig. 3F) with the increasing number 
of unknown cell types. PRMeth exhibited the same results as Fig. 3D, F compared to the 
reference-free method at the three remaining noise levels (Additional file 1: Figure S3).

We also evaluated the computational performance of these six methods. As shown in 
Additional file 1: Table S1, executing 20 times at 100 samples and 1000 CpG sites, both 
the running time and memory usage of PRMeth is a little higher than the other meth-
ods. This is because many iterations are required to reach the optimal solution. In addi-
tion, we analyzed the running time and memory usage of PRMeth when the number of 
samples and features gradually increased. This reveals that the running time of PRMeth 
increased as the number of samples and features gradually increased, but there was no 
clear pattern in its memory usage (Additional file 1: Table S2).

Evaluation of different methods using Zhang data

We then evaluated different methods on the Zhang dataset from three aspects, i.e., 
the accuracies of six methods in estimating the proportions of known cell types, the 
accuracies of PRMeth and RF in estimating the proportions of all cell types, and the 
overall performance of proportion estimates at different numbers of unknown cell 

Fig. 3 Accuracy of cell type proportions and cell type methylation profiles estimated by different methods. 
A, B The mean absolute error between the true and predicted cell type proportions obtained by six methods 
from the simulation dataset with different noise levels (A) or different unknown cell type numbers (B). C–F 
The mean absolute errors (C, D) and Pearson correlation coefficients (E, F) between true and predicted cell 
type methylation profiles obtained by PRMeth and RF at different noise levels or different unknown cell type 
numbers. All simulations were repeated 20 times



Page 10 of 16He et al. BMC Bioinformatics          (2022) 23:355 

types. First, by setting K1 as 4, we calculated the MAE between the true and pre-
dicted proportions of each of the four cell types using the six methods. Figure  4A, 
B demonstrate that PRMeth had the lowest MAE at both CD4 + T cells and mono-
cytes compared to other methods. Figure  4C shows that RF had the lowest bias 
( MAERF = 0.0631 ) at CD8 + T cells, followed by PRMeth ( MAEPRMeth = 0.0775 ). 
About the MAE of B cells, PRMeth  ranked fourth, which was slightly higher than 
EpiDISH, CBS, and QP (Fig. 4D). In general, PRMeth had better results for the pro-
portion estimates of a single cell type compared to other methods. A similar perfor-
mance was obtained by PRMeth when K1 = 2, 3, 5 (Additional file  1: Figures  S4, S5 
and S6). Second, we obtained the MAE between the true and predicted proportions 
for each of all cell types using PRMeth and RF when K1 = 3 . Except for CD8 + T cells, 
the MAE of PRMeth was lower than RF for the remaining six cell types (Fig.  4E). 
Overall, our method had higher accuracy in predicting the proportions of each cell 
type compared to RF when K1 = 2, 3, 4, 5 (Fig.  4E and Additional file  1: Figure S7). 
Finally, the PCC between the true and predicted proportions of known cell types 
obtained by the six methods at different numbers of unknown cell types is shown in 
Fig.  4F. As the number of unknown cell types increased, the PCC of both PRMeth 
and reference-based methods decreased. An exception is RF, which does not require 
reference data as input. It is clear that the PCC of PRMeth was always the highest and 
that of the reference-free method was always the lowest. When calculating the MAE 
between the true and predicted proportions of known cell types using the six meth-
ods at different numbers of unknown cell types, it is found that PRMeth consistently 
showed superiority over other methods (Additional file 1: Figure S8).

In addition, we estimated the methylation profiles of cell types using PRMeth and 
RF. We found that the accuracy and correlation of the methylation profiles obtained 

Fig. 4 Accuracy of cell type proportions estimated by different methods. A–D The MAE between the true 
and predicted proportions of CD4 + T cells (A), monocytes (B), CD8 + T cells (C), or B cells (D) by the six 
methods when the number of known cell types is 4. E The MAE between the true and predicted proportions 
of each of all cell types by PRMeth and RF when the number of known cell types is 3. F The PCC between the 
true and predicted proportions of known cell types by the six methods at different numbers of unknown cell 
types
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by PRMeth at different numbers of unknown cell types were higher than RF (Addi-
tional file 1: Figure S9).

Evaluation of different methods using whole blood data

Next, we further validated our method on whole blood samples. We calculated MAE 
between the true and estimated proportions of known cell types by the six methods at 
K1 = 2, 3, 4, 5 . As shown in Fig. 5A–C, and Additional file 1: Figure S10, PRMeth showed 
the lowest bias at all values of K1 . We then compared all cell type proportions predicted 
by PRMeth with the true proportions measured by flow cytometry. This reveals that the 
estimation accuracy of PRMeth increased with increasing K1 (Additional file 1: Figure 
S11 and Fig.  5D) and only a few predictions deviated from the true values at K1 = 5 
(Fig. 5D).

Similarly, we also estimated the cell type methylation profiles and found that the accu-
racy and correlation of PRMeth were consistently higher than RF (Additional file 1: Fig-
ure S12).

Fig. 5 Accuracy of the estimated cell type proportions at different numbers of known cell types. A–C The 
MAE between the true and predicted proportions of known cell types by the six methods from whole blood 
samples with K1 = 3(A), 4 (B), or 5 (C). D The estimation accuracy of the proportions of all cell types obtained 
by PRMeth at K1 = 5
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Application to TCGA data

Finally, we applied PRMeth to real tumor samples from TCGA. We selected seven types 
of immune cells (including monocytes, dendritic cells, macrophages, eosinophils, naive 
T cells, CD8 + T cells, and natural killer cells) as known partial reference data, and then 
deconvolved 400 tumor samples including 100 SKCM samples, 100 BRCA samples, 100 
LAML samples, and 100 THYM samples. We first determined the total number of cell 
types in the four types of tumor samples using �_BIC and the K  were 32, 29, 24, and 
22, respectively. Because tumor tissue is a mixture of different cell types with a  lami-
nated  structure  that contains multiple  cell  types with different morphologies in each 
layer [38], we combined some cell types and assumed that the total numbers of cell types 
were 18, 16, 12, and 11 for SKCM, BRCA, LAML, and THYM, respectively. We then 
estimated the proportions of all cell types in these tumor samples using PRMeth and 
converted the absolute proportions of immune cells into relative proportions  of  each 
immune cell  to all immune cells. As expected, different tumor samples showed differ-
ent infiltration patterns of immune cells (Fig.  6A). In invasive breast carcinoma sam-
ples, macrophages occupied the highest proportion among all immune cells, which was 
consistent with previous literature findings [39] that a hallmark of breast cancer is high 
infiltration of M2 tumor-associated macrophages. The high infiltration levels of CD8 + T 

Fig. 6 Application of PRMeth on TCGA dataset. A Relative proportions of seven types of immune cells in 
BRCA, SKCM, LAML, or THYM. B Shannon index of the four tumors. C–J Kaplan–Meier survival curves for SKCM 
stratified by abundances of CD8 + T cells (C) and unknown cell type 4 (G), LAML stratified by abundances of 
NK cells (D) and unknown cell type 3 (H), THYM stratified by abundances of Macrophages (E) and unknown 
cell type 2 (I), and BRCA stratified by abundances of unknown cell type 3 (F) and unknown cell type 5 (J). 
Using the surv_cutpoint function in the survminer package of R to divide cancer patients into high- and 
low-infiltrating groups based on the proportions of specific cell types. p values are obtained by the Log-rank 
test
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cells and macrophages in skin cutaneous melanoma samples were consistent with the 
study [40]. Acute myeloid leukemia and thymoma samples had high proportions of 
monocytes [35] and naive T cells [41], respectively.

To investigate the relationship between cell type proportions and tumor types, we used 
the Shannon index [42] representing the diversity of biomes to describe the heterogene-
ity degree of tumor samples. As shown in Fig. 6B, the heterogeneity scores (i.e., 1.6807, 
1.6555, 1.3524, and 1.2401) of BRCA, SKCM, LAML, and THYM were significantly dif-
ferent, which illustrates the estimated proportions from PRMeth met the biological sig-
nificance. We also analyzed the impact of the predicted proportions of cell types on the 
survival of cancer patients. We first used the surv_cutpoint function in the survminer 
package of R to divide cancer patients into high- and low-infiltrating groups based on 
the proportions of specific cell types (including known immune cells and estimated 
unknown cells), and then used Cox proportional hazards regression to calculate the sur-
vival rates of these two groups. We found that SKCM patients with a high infiltration 
level of CD8 + T cells and THYM patients with a high infiltration level of macrophages 
both had good overall survival (p = 0.0022 and 0.02, Fig. 6C, E), which was consistent 
with previous findings by Ma et al. [40] and Yang et al. [43]. In contrast, LAML patients 
with a high infiltration level of NK cells had poorer overall survival than those with a low 
infiltration level (p = 0.0449, Fig. 6D), which was consistent with the study’s results [44] 
that the NK cells activated with high expression were associated with a poor prognosis. 
In addition, we also found that several unknown cell types had an impact on the survival 
of cancer patients (Fig. 6F–J).

Discussion
In this paper, we proposed a cell type decomposition model (PRMeth) based on partially 
available DNA methylation data, which employs a non-negative matrix factorization and 
an iterative optimization algorithm. Given reasonable parameter settings, PRMeth could 
infer the proportions of all cell types and recover the methylation profiles of unknown 
cell types effectively. The study on the TCGA dataset showed that the immune cell pro-
portions estimated by PRMeth were largely consistent with previous studies and met the 
biological significance. Compared to existing methods, the advantages of PRMeth are 
mainly reflected in the following points. First, PRMeth is applied to DNA methylation 
data that are relatively stable and easier to measure. Second, using partial DNA methyla-
tion data as a reference can reduce the difficulty of obtaining complete DNA methyla-
tion data. Third, PRMeth can infer not only the proportions of known cell types but also 
those of unknown cell types. Fourth, although the PRMeth method is driven by cancer 
research, it can be applied to other tissues, such as blood, to study the composition of 
cell types associated with other diseases, such as autoimmune diseases.

Despite its advantages, our study also suffers from the following limitations. First, our 
method requires the total number of cell types as input. The results on the Zhang data-
set show that our method could obtain the exact total number of cell types using �_BIC . 
However, the total number of cell types is often uncertain because all cells of a complex 
tumor tissue form a laminated structure. In other words, cells are grouped by similarities 
so the total number of cell types can be determined by different groupings. Therefore, we 
encourage users to conduct downstream association analysis by choosing a reasonable K  
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in their study. Second, PRMeth does not apply to the estimation of cell type proportions 
for a single sample. In the future, we will expand the applicability of PRMeth and explore 
the relationship between cell type proportions and tumor subtypes, which may help to 
determine the optimal treatment regimen for a specific patient and predict potential tar-
gets for cancer immunotherapy.

Conclusion
Different from the available reference-based and reference-free methods, the proposed 
method PRMeth is based on partial reference information, which is more in line with 
real clinical practice. It not only circumvents the difficulty of obtaining complete DNA 
methylation reference data but also obtains satisfactory deconvolution accuracy, which 
will be conducive to the reduction of medical costs, the analysis of tumor heterogeneity, 
and the exploration of new directions of cancer immunotherapy.
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