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Abstract: Atherosclerosis is a chronic inflammatory condition of the arterial wall that leads to
the formation of vessel-occluding plaques within the subintimal space of middle-sized and larger
arteries. While traditionally understood as a myeloid-driven lipid-storage disease, growing evidence
suggests that the accumulation of low-density lipoprotein cholesterol (LDL-C) ignites an autoimmune
response with CD4+ T-helper (TH) cells that recognize self-peptides from Apolipoprotein B (ApoB),
the core protein of LDL-C. These autoreactive CD4+ T cells home to the atherosclerotic plaque,
clonally expand, instruct other cells in the plaque, and induce clinical plaque instability. Recent
developments in detecting antigen-specific cells at the single cell level have demonstrated that
ApoB-reactive CD4+ T cells exist in humans and mice. Their phenotypes and functions deviate from
classical immunological concepts of distinct and terminally differentiated TH immunity. Instead,
ApoB-specific CD4+ T cells have a highly plastic phenotype, can acquire several, partially opposing
and mixed transcriptional programs simultaneously, and transit from one TH subset into another
over time. In this review, we highlight adaptive immune mechanisms in atherosclerosis with a focus
on CD4+ T cells, introduce novel technologies to detect ApoB-specific CD4+ T cells at the single cell
level, and discuss the potential impact of ApoB-driven autoimmunity in atherosclerosis.
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1. Atherosclerosis Is an Immune-Driven, Chronic Inflammatory Disease

Atherosclerosis is a chronic inflammatory disease that is characterized by the build-
up of vessel-occluding plaques in the intimal layer of middle- to large-sized arteries [1].
Atherosclerosis precipitates myocardial infarction (MI) and stroke and represents the lead-
ing cause of death worldwide [2]. Epidemiologic studies have demonstrated that besides
the traditional risk factors of smoking, hypertension, obesity, diabetes, and other environ-
mental factors [3,4], low-density lipoprotein cholesterol (LDL-C) [5,6] is one of the driving
factors of developing and progressing atherosclerotic disease. While atherosclerosis was
originally perceived as a lipid-storage disease of the arterial wall [7], it is now established
that the continuous deposition of LDL-C in the subintimal space is accompanied by a local
and systemic low-grade inflammatory and immune response [8]. In the plaque, LDL-C is
modified by oxidative processes (oxLDL) and taken up by tissue-resident macrophages.
The continuous intracellular accumulation of lipids eventually exceeds the macrophage’s
cholesterol storage capacity and intracellular lipid droplets form “foam cells” [9]. Foam
cell formation and the per se pro-inflammatory properties of oxLDL [10] initiate a myeloid-
dominated immune response with an increasing recruitment of monocytes from the blood
circulation [11], a partially self-expanding population of plaque macrophages, and the
secretion of proinflammatory cytokines, such as interleukin (IL)-1β by myeloid cells [12].

Cells 2021, 10, 446. https://doi.org/10.3390/cells10020446 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-5758-4348
https://doi.org/10.3390/cells10020446
https://doi.org/10.3390/cells10020446
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10020446
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/2/446?type=check_update&version=2


Cells 2021, 10, 446 2 of 25

In addition, a variety of cell types of lymphocytic origin, including B and T cells, accumu-
late within the plaque and in the surrounding adventitia rendering the cellular architecture
of atherosclerotic plaques almost as diverse as that of lymphatic tissue [13]. The continu-
ous secretion of inflammatory mediators from myeloid and lymphoid cells is understood
as a self-amplifying inflammatory cascade that ultimately promotes an unstable plaque
phenotype, plaque erosion and rupture, and the formation of occlusive arterial thrombi
that restrict blood flow and cause critical tissue ischemia in MI and stroke [14]. Of all
risk factors, LDL-C provides the strongest causal link between clinical risk and cellular
pathology: LDL-C lowering strategies attenuate plaque inflammation, promote plaque
regression [15], and have been proven effective in reducing cardiovascular mortality in
humans [16]. Likewise, anti-inflammatory treatments targeting the pro-inflammatory
cytokine IL-1β [17] and by colchicine [18,19] prevent the progression of cardiovascular
disease. A growing body of evidence suggests that the inflammatory milieu in the plaque is
accompanied by a powerful autoimmune response [20,21] involving auto-reactive CD4+ T
cells [22] and autoantibodies secreted by B cells [23]. While additional autoantigens cannot
be excluded, overwhelming evidence shows that LDL-C represents the main culprit of this
autoimmune response: While most auto-antibodies are directed against oxidation-specific
epitopes in the lipid surface of LDL [23,24], autoreactive T cells recognize peptides from
Apolipoprotein B (ApoB) [20], the core protein of LDL-C. Atherosclerosis can therefore
be understood as chronic inflammatory disease of the cardiovascular system with a sig-
nificant autoimmune component [21]. Here, we focus on the role of autoreactive CD4+

T-helper cells and comment on necessary developments to successfully translate novel
immunomodulatory strategies into clinical practice.

2. Frequencies, Immune Phenotypes, and Roles of T-Helper Cells in Atherosclerosis

T cells represent the largest and most heterogeneous leukocyte population in human
atherosclerotic plaques [25]. In immunohistochemistry (IHC), CD4+ T-helper and CD8+

cytotoxic T cells are detected in the shoulder region, the fibrous cap, and the intima of the
plaque as well as in adventitial tissue [26]. In human plaques, T cells account for more than
50% of all lesional leukocytes with the highest T cell density in the shoulder region, while
T cells account for less than 15% in the macrophage-dominated necrotic core [13,25–27].
In single cell RNA-sequencing (scRNAseq) and mass cytometry by time of flight (CyTOF)
of human atherosclerotic plaques, T cells outnumber other hematopoietic lineages and
reach a frequency of up to 65% of all leukocytes [28,29]. In atherosclerotic plaques from
mice, T cell are less frequent and—depending on the underlying genetic model—range
between 6% and 25% of all leukocytes [13,30,31]. In contrast to IHC, protocols employing
tissue digestion and cell isolation are at the risk of overestimating non-myeloid cells
due to a potential loss of macrophages during tissue digestion [13,25]. Notably, healthy
arterial tissue contains CD8+ T cells in small frequencies [13]. Among T cells, CD4+ and
CD8+ T cells are found in similar frequencies in atherosclerotic mouse aortas and human
atherosclerotic plaques [25,28].

T cells develop from T cell precursors in the thymus. They transit through different
developmental stages, including CD4+CD8+ double-positive (DP) T cells, and turn into
either cytotoxic CD8+CD4− or helper CD4+CD8− T cells [32]. All T cells express CD3 and
a unique T cell receptor (TCR) that binds antigenic peptides loaded on major histocompati-
bility complex (MHC): CD8+ T cells recognize peptides from intracellular proteins that are
degraded by cytosolic and nuclear proteasomes and loaded on MHC-I, which is expressed
in all nucleated cells [33]; CD4+ T cells recognize peptides from extracellular proteins that
are taken-up via several pathways, degraded in the endosome, and loaded on MHC-II,
which is primarily expressed in antigen presenting cells (APCs), such as dendritic cells
(DCs) or plaque macrophages [33]. After the MHC-peptide complex is bound by their
TCR, T cells are activated and develop into effector T cells (Teff). Antigen-recognition and
co-stimulation are central processes for the differentiation and activation of CD4+ T-helper
cells (TH) [34]. Teff develop into functionally and phenotypically distinct types of TH immu-
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nity that are characterized by the expression of canonical intracellular transcription factors
(TF) and cytokines. Solid evidence, mostly from preclinical mouse studies, has established
a distinct, but often controversial, role for many known TH-lineages in atherosclerosis.

2.1. TH1 Cells

Studies of CD4+ T cells in human plaques have suggested that—depending on cy-
tokine secretion patterns—30–70% of all CD4+ T cells share features with TH1 cells [35,36].
TH1 cells express the TF T-bet [37], and secrete Interferon (INF)-γ, IL-2, IL-3, Tumor necro-
sis factor (TNF), and lymphotoxin [20,35,37]. In general immunity, TH1 CD4+ T cells are
critical for developing an immune response against pathogens by enhancing the micro-
bicidal activity of macrophages through enhanced IFN-γ production [38]. T cells from
atherosclerosis-prone Apolipoprotein E deficient (Apoe−/−) mice secrete IFN-γ [39,40].
A genetic deficiency of IFN-γ [41,42], its receptor [43], and of T-bet [44] protects from
atherosclerosis. Consistently, IFN-γ administration aggravates atherosclerosis in mice [45].
C-C chemokine receptor (CCR)-5 serves as homing receptor for TH1 cells [37] and is upregu-
lated in plaque T-helper cells [28]. A genetic deficiency of CCR5 protects from T cell homing
into the plaque in mice [40]. Therefore, TH1 cells are generally regarded as pro-atherogenic
cells [20].

2.2. T Regulatory Cells

T-regulatory cells (Treg) are defined by the expression of the transcription factor
FoxP3 and IL-2 receptor (CD25). Tregs are required to maintain self-tolerance and dampen
immunity by secreting the immunosuppressive cytokine IL-10, Transforming growth
factor (TGF)-β, and by direct contact-inhibition of Teff cells [46,47]. Tregs are found in
human atherosclerotic lesions at a frequency of 1.2–3.9% of all CD3+ T cells [48]. In the
mouse, 5% to 10% of CD4+ T cells express the Treg-lineage defining TF FoxP3 suggestive of
Tregs [49,50]. Tregs express high levels of CTLA4, GITR, and lack expression of CD127 in
humans, which enables the detection and cell sorting of viable Tregs [47,51–53]. In mouse
atherosclerosis, Tregs are generally regarded as protective [54,55] and expand in regressing
plaques [56]. Accordingly, IL-10 deficiency promotes atherosclerosis in mice [46]. Clinically,
blood Treg numbers and IL-10 plasma levels are lower in patients with MI compared
with healthy individuals [57]. A low fraction of Treg among all CD4+ T cells predicts
MI [58]. However, the regulation and function of FoxP3+ Tregs in atherosclerosis remains
controversial: In humans, one report has suggested higher frequencies of circulating Tregs
in patients with stable atherosclerosis compared with healthy controls [49]. In mice, the
population of Tregs in the spleen [59,60] and the liver [61] of Apoe−/− and Ldlr−/− mice
increases in the context of hypercholesterolemia. These associative findings argue against
a solely protective role of Tregs and may be partially explained by the appearance of
Treg-like CD4+ T cells that express FoxP3 and pro-inflammatory cytokines in advanced
atherosclerosis [37,40,49]. The function of these abnormal Tregs will be discussed below.

2.3. TH17 Cells

TH17 cells express the TF RORγT and secrete IL-17 [62]. TH17 CD4+ T cells are gate-
keepers of mucosal immunity and have been associated with several autoimmune diseases.
They are activated by IL-23 and secrete the cytokines IL-17A and -F [63]. Numerous studies
have revealed a highly controversial role of TH17 cells in mouse and human atheroscle-
rosis: Some studies showed proatherogenic effects [64–67] in mice and higher plasma
IL-17 levels in humans with unstable angina or MI [68,69]. These findings are consistent
with an overall proatherogenic role of TH17 immunity [27]. Other studies demonstrated
atheroprotective and plaque-stabilizing properties in mice [70–74] and lower plasma levels
of IL-17 in patients with acute MI [75] suggestive of an overall atheroprotective role [41].
In addition, some studies have found no role for TH17 cells in mice [76], which is in accord
with unchanged IL-17 plasma levels in humans with or without coronary artery disease
(CAD) [77].



Cells 2021, 10, 446 4 of 25

2.4. TH2 Cells

TH2 cells are involved in the immune response against parasites, in asthma, and other
allergic diseases [78]. They express the TF Gata3 and secrete IL-4, IL-5, IL-10, and IL-13 [13].
Their role in atherosclerosis is unclear. Pro-atherogenic and atheroprotective functions
have been proposed in mice [79–82]. In humans, low TH2 cell numbers and weak IL-4
secretion from CD4+ T cells predict myocardial infarction [83]. In addition, low plasma
concentrations of IL-5 associate with subclinical carotid atherosclerosis [84]. Both studies
argue for a protective role of TH2 immunity in progressing and de novo atherosclerosis.
Likewise, IL-33 administration reduces murine atherosclerosis by increasing levels of IL-4,
IL-5, IL-13, and INF-γ in the plasma [85].

2.5. Follicular-Helper T Cells (TFH)

T-follicular helper cells (TFH) provide help for B cells and are required for the antibody
isotype switch in germinal center B cells [86]. They express the TF Bcl-6 and the chemokine
receptor CXCR5 [86]. Dyslipidemia in Apoe−/− and Ldlr−/− mice induces TFH cells and
IgG2c production [87]. Depletion of TFH cells protects from atherosclerosis [50]. TFH cells
have been suggested to orchestrate a pro-atherogenic B cell response in mouse atherosclero-
sis [88]. Ageing increases the number of TFH cells in Apoe−/− mice [89]. TFH cells are found
more frequently in advanced atherosclerosis [90]. It has been suggested that TFH cells are
at least partially derived from Treg cells [50] and from ApoB-specific CD4+ T cells [91].

2.6. CD4+ Cytotoxic Lymphocytes (CTL)

Lymphocytes with a cytotoxic potential include natural killer (NK) cells, CD8+ T cells,
NK T cells, γ/δ T cells, and a subset of human CD4+ T cells that is characterized by a
down-regulation of the co-stimulatory molecule CD28 (CD4+CD28null T cells) [92]. CD4+

CTLs represent a highly differentiated subset of memory T cells [93], secrete perforin,
granzyme A and B, and TNF-α and IFN-γ [94] and express high levels of the exhaustion
marker OX-40 [95]. They have not been detected in mice [96] and are found in human
vulnerable atherosclerotic lesions [97–99]. Their distinct function in atherosclerosis has not
been tested so far [94]. It may be that CD4+ CTLs do not represent a distinct T-helper cell
lineage, but instead the fraction of antigen-specific [100,101], terminally differentiated, and
exhausted CD4+ T cells that acquire cytotoxic functions [28,102].

2.7. Other Types of T Cell Immunity

TH9 are characterized by the expression of IL-9 in response to TGF-β and IL-4. Their
generation is inhibited by INF-γ [103] and depends on several TF, including FoxO1, BATF,
and IRF4 [104]. Clinically, IL-9 plasma levels are higher in patients with atherosclerosis [105]
and with an acute coronary syndrome, while the count of TH9 cells was unchanged in
another study [106]. IL-9 administration seems to promote atherosclerosis in Apoe−/−

mice [107], but the overall role of TH9 cells remains unknown. TH22 cells express IL-22
and the TF aryl hydrocarbon receptor (AHR) [108]. Based on one report, TH22 immunity
may be pro-atherogenic [109]. TH22 cells in the blood [106,110] and plasma levels of IL-22
are increased in patients with an acute coronary syndrome [106,110]. Other T cell subsets
described in atherosclerosis include innate-like NK T cells that express restricted pairs of
TCR α- and β- chains and recognize self and foreign lipid antigens presented on the MHC-I
like molecules CD1d [111]. NK T cells secrete TH1, TH2, and TH17 cytokines as well as
perforin and granzyme B. NKT cells are found in rupture-prone human atherosclerotic
plaques [112], but their role in atherosclerosis remains controversial [94,113]. CD8+ T cells
represent the main cytotoxic T cell subset that participates in the immune defense against
intracellular pathogens and in tumor surveillance [114]. In atherosclerosis, CD8+ T cells
have been attributed to a multitude of both pro- and anti-inflammatory roles. CD8+ T cells
may suppress inflammation, control macrophage accumulation, and partially by direct
cytotoxic effects on lesional macrophages, contribute to endothelial cell surveillance and
damage, and exhibit direct effects on myelopoiesis. Whether CD8+ T cells are antigen-
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specific is a matter of debate. The roles of CD8+ T cells has been extensively reviewed [115]
and is beyond the scope of the present review.

2.8. Multi-TH Committed CD4+ T Cells in the Atherosclerotic Plaque

Traditionally, TH-types in CD4+ T cells represent a unidirectional and terminal path
of differentiation that is inflexible and irreversible. This concept has been challenged by
growing evidence that TH-cells can reprogram towards mixed phenotypes of TH cells or
re-differentiate into alternative TH types of cells [116]. Tregs and TH17 cells seem to be
particularly prone to such TH cell plasticity [117]: Tregs can acquire features of TH1 (TH1-
Tregs) or TH17 cells (TH17-Tregs), or switch into TFH cells [37,40,118–123]. Mechanistically,
it has been demonstrated that initially immunosuppressive FoxP3+ Tregs downregulate
FoxP3 protein expression in direct lineage tracing experiments and give rise to exTregs
that express alternative TFs [49,50]. In the atherosclerotic plaque, a considerable frac-
tion of CD4+ T cells express low levels of FoxP3 as well as of IFN-γ, and T-bet [37,40].
These cells promote atherosclerosis after an adoptive transfer, have lost their immunosup-
pressive properties, and act as effector T cells [40]. Consistently, recent scRNAseq of T
cells from mouse atherosclerotic plaques demonstrated CD4+ T cell clusters with mixed
TH1/TH2/Treg and TH1/TH17 transcriptomes that account for approximately 50% of all
lesional T cells [49]. The co-expression of genes suggestive of TH1- and TH17-phenotypes
has also been demonstrated in CD4+ T cells isolated from human carotid plaques [28].
In single cell gene module enrichment analysis, core genes of these mixed phenotypes
were enriched in tetramer-selected ApoB-specific CD4+ T cells [49], proposing that Treg
lineage instability occurs frequently in antigen-specific T cells in the plaque. In addition
to multi-TH committed CD4+ T cells in atherosclerotic plaques, the existence of IL-17 or
RORγT expressing Tregs has also been suggested in the blood of patients with cardiovas-
cular disease (CVD) [49,50]. These findings indicate that the generation of CD4+ T cells
with features reminiscent of several TH-types is a systemic, rather than a local event in
atherosclerosis. Together, these findings question whether traditional TH lineages reflect
the actual functional heterogeneity of T-helper cells in the atherosclerotic plaque (Table 1).
Whether such high plasticity is driven by antigen-specificity as suggested by other disease
models beyond atherosclerosis [124–126] will be discussed below.

Table 1. CD4+ T cell subsets and functions in atherosclerosis.

Lineage TF Effector Cytokines Role in Mouse
Atherosclerosis Regulation in Human Atherosclerosis

TH1 T-bet INF-γ, IL-2, IL-3, IL-6,
TNF-α, lymphotoxin Pro-atherogenic [37,39–44]

TH1 dominance in atherosclerotic lesions
[35,36], higher IFN-γ plasma levels in

patients with CAD [127], higher IL-6 and
TNF-α plasma levels in patients with

MI [128].

TH2 GATA3 IL-4, IL-5, IL-10, IL-13
Pro-atherogenic [79,82]
Atheroprotective [80]

No effect [81]

Lower TH2 cell numbers and decreased IL-4
secretion by CD4+ in patients with MI [83],
lower IL-5 plasma levels in patients with

subclinical atherosclerosis [84]

TH9 FoxO1, BATF,
IRF4 IL-9 Pro-atherogenic [107]

Higher IL-9 plasma levels in patients with
atherosclerosis and ACS [105]

Unchanged TH9 numbers in patients with
ACS [106]

TH17 RORγT IL-17A, IL-17-F, IL-21,
IL-22

Pro-atherogenic [64–67]
Atheroprotective [70–74]

No effect [76]

Higher IL-17 plasma levels in patients with
unstable angina or MI [68,69], lower IL-17

plasma levels in patients with MI [75],
unchanged IL-17 plasma levels patients in

patients with CAD [77]
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Table 1. Cont.

Lineage TF Effector Cytokines Role in Mouse
Atherosclerosis Regulation in Human Atherosclerosis

TH22 AHR IL-22 Pro-atherogenic [109] Higher TH22 cell counts and IL-22 plasma
level in patient with an ACS [106,110]

Treg FoxP3, CD25 IL-10, TGF-β Atheroprotective [54–56]

Lower Treg numbers in blood from patients
with MI [57] and ACS [68,69], low Treg
numbers predict MI [58], higher Treg

numbers in blood of patients with CAD [49]

TFH Bcl6 IL-21 Pro-atherogenic [50,87,88] Higher TFH count in patients with
advanced atherosclerosis [90]

CD4+

CTL
TNF-α, INF-γ, perforin,

granzyme A, B Not present in mice

Higher numbers in blood from patients
with ACS [95] and with end-stage renal

disease and atherosclerosis [129],
enrichment in unstable atherosclerotic

lesions [97–99]

NK T
cells

Multiple, including
perforin and
granzymes

Controversial [113] Accumulation of NKT cells in
rupture-prone atherosclerotic plaques [112].

TF, transcription factor; TH, T-helper; Treg, T regulatory cell; TFH, T follicular helper cell; AHR, aryl hydrocarbon receptor; MI, Myocardial
Infarction; ACS, Acute Coronary Syndrome; CAD, Coronary Artery Disease; CTL, cytotoxic lymphocyte; NK, natural killer.

3. Evidence for Autoimmunity in Atherosclerosis

Autoimmune disease is defined as an abnormal response of the immune system
against endogenous proteins and other components of the body (autoreactivity). This
immune response can lead to the damage, destruction, or functional loss of involved
tissues [130]. Naturally occurring Tregs prevent autoimmunity against self-peptides and
-antigens [47]. As outlined above, the accumulation of T cells in the plaque and the appear-
ance of circulating autoantibodies in patients with atherosclerosis has inspired the idea of
an autoimmune component in addition to antigen-independent inflammation [131]. Sev-
eral observations support this hypothesis: First, T cells in the plaque of mice and humans
exhibit an unexpected strong memory phenotype with hallmarks of chronic stimulation
and T cell exhaustion as evidenced by a high proportion of CD4+CD45RAlowCCR7low TEM
and of CD4+ T cells expressing high levels of the activation markers CD69 and CD38 [28]
and of cytotoxic factors [29]. These findings suggest the presence of antigen-specific T cells
that have built up a T cell memory against antigens that are likely present in the plaque
or the draining lymphatics [28,60]. The expression of programmed cell death protein 1
(PD-1), a known exhaustion marker, and of several genes associated with exhaustive T cell
signaling, such as EOMES and LAG3, in human plaques further argues for chronic antigen
recognition by CD4+ T cells in the plaque [28]. T cell exhaustion is understood as a nega-
tive regulator and checkpoint of chronic T cell stimulation and -antigen recognition [132].
Inhibition of PD-1, which dampens subsequent cellular activation, results in aggravated
atherosclerotic disease in mice [133]. This finding is consistent with the hypothesis that
antigen-specific and pathogenic CD4+ T cells in the advanced plaque become resistant to
the ongoing recognition of their cognate antigens by exhaustive transcriptional programs.
A therapeutic checkpoint inhibition, as performed in several malignancies, could therefore
re-activate plaque T cells, and provoke complicated atherosclerosis [28,134]. Second, T cells
frequently interact with plaque-resident APCs in live cell imaging in mice, in particular
when APCs and T cells originate from atherosclerotic and hypercholesterolemic Apoe−/−

mice. As result of this physical interaction, T cells secrete pro-atherogenic cytokines such
as IFN-γ [39]. Notably, pro-inflammatory cytokine secretion in this model requires the
presence of atherosclerosis-related antigens and is not observed when unrelated model
antigens are used as control. Likewise, human and mouse T cells from atherosclerotic
plaques secrete cytokines and proliferate when restimulated with LDL or peptides from
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ApoB [22,49,135]. Third, T cell activation is a result of antigen-recognition and promotes the
proliferation of antigen-specific T cells with the same TCR to build oligoclonal populations.
In mouse plaques, T cell proliferation is evident in histological analysis [39,136] and in
scRNAseq, where clusters of proliferating cells contained T cell signatures [13,137]. Le-
sional T cells seem to be clonally enriched in TCR-sequencing [138] in mice. In vitro cloned
T cell lines reactive against ApoB show a preferential usage of the V-chain segment 31
(TCRBV-31) [135]. Consistently, MHC-II tetramer selected T cells expressed an oligoclonal
TCR-repertoire [49]. In humans, T cell clonality in the plaque [97,139] and in coronary
thrombi [140] are restricted in TCR-usage. Only one report has suggested a non-restricted
repertoire in atherosclerotic aortas [141]. Whether CD8+ or CD4+ T cells or both are the
cause of such TCR-restriction is not known, but a recent report has demonstrated a corre-
lation between T cell exhaustion in lesional CD8+ T cells and TCR-clonality [28]. Fourth,
several autoantigens have been derived from direct vaccination experiments: LDL-C/ApoB
(discussed below), heat shock proteins (HSPs) [142,143], and β2-Glycoprotein I (β2GPI).
HSPs are intracellular, highly species-conserved chaperones that protect against stress
and physical irritation such as temperature, UV light, and changes in the pH [144]. In
humans, antibodies directed against HSP60 correlate with cardiovascular disease [145,146].
In addition, immunization using HSP60/65 and peptides thereof as antigens modulates
atherosclerosis [147–156]. Interestingly, it was proposed that bacteria derived HSP65 in-
duces an autoreactive response against human HSP60. Both molecules express similar
immunodominant B cell epitopes [157], which may explain a cross-reactivity between
infection-derived epitopes and self-epitopes as recently shown for the cross-reactivity
between Streptoccocus pneuomniae and oxidation-specific epitopes in mice [158]. β2GPI is
the target of anti-cardiolipin antibodies [159] that cause the anti-phospholipid syndrome,
a state of hyper-coagulation in systemic lupus erythematosus patients [160]. β2GPI has
been found in human atherosclerotic lesions [161] but direct vaccination experiments using
β2GPI have yielded inconsistent results [162–166]. In addition to the aforementioned
autoantigens, several targets of IgM- and IgG-autoantibodies, mostly oxidation-specific
epitopes of LDL, have been suggested [23,24,167]. It has also been discussed that a fraction
of antigen-specific T cells in the atherosclerotic plaque recognizes infectious peptides from
bacteria or viruses. This hypothesis is based on numerous observations, foremost the
clinical association of infectious disease and atherosclerosis: For instance, observational
studies have established that an infection with Varicella Zoster Virus (VZV) and Influenza
Virus increases the risk for MI and stroke [168,169]. Vaccination against Influenza is now
recommended for secondary prevention of patients with heart disease [170] and improves
the cardiovascular outcomes [171–173]. Human Cytomegalovirus (HCMV), Herpes Sim-
plex (HSV), Epstein Barr Virus (EBV), VZV, and Influenza Virus were suspected of causing
an infection of the arterial vessel wall [174–176]. However, only in rare cases, viral particles
have been detected within atherosclerotic lesions [176–178] and a potential interference of
infection and atherosclerosis may be explained by increased inflammatory signaling cas-
cades, local tissue injury, and enhanced thrombotic pathways [176,179] rather than a direct
pathogenicity of virus-specific T cells in the atherosclerotic plaque. Such indirect effects also
seem to trigger some of the cardiovascular complications of SARS-CoV2 [180]. In addition,
it cannot be excluded that some autoreactive T cells in the plaque are cross-reactive to
exogenous infection with a structural similarity (molecular mimicry) to autoantigens as
shown for S. pneumoniae which induces antibodies that bind oxLDL [158,181,182]. Whether
pneumococcal vaccination is beneficial in targeting auto-antigens in the plaque remains
controversial [183–185]. Of all proposed atherosclerosis-related (auto-) antigens, LDL-C
and ApoB provide the strongest causal link between autoimmunity and the pathogenesis
of atherosclerosis. We will therefore focus on the role of ApoB-specific CD4+ T-helper cells
in the following sections.
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4. ApoB-Specific CD4+ T Cells in Mice and Humans
4.1. Mechanisms of CD4+ T Cell Activation

The activation and transition from naïve to effector/memory T cells (TEM) is a process
that encompasses two signals: The presentation of the antigen by an APC (Signal 1) and
additional co-stimulatory signals (Signal 2). DCs and macrophages are found in healthy
arteries and atherosclerotic plaques [8,131,186] and serve as APCs at different stages of
the disease [187]. Cellular, sub-cellular, or molecular antigens are taken up by the APC by
phagocytosis or endocytosis and processed in the endosome. Antigen-derived peptides
may then bind to an MHC in the Golgi apparatus depending on the binding affinity
between the MHC and the peptide. The complex of peptide and MHC is next translocated
to the cell surface [188]. In the presence of a suited antigen-specific T cell, the MHC-peptide
complex is bound by a unique TCR. The bond between TCR and MHC-peptide is stable for
several hours [189]. TCR signal-transduction in the T cell is mediated by the complex of
CD3, CD4, and the TCR [190], and by down-stream signaling molecules like zeta-chain-
associated protein kinase 70 (ZAP-70) and SH2 Domain-containing Leukocyte Protein of
76 KDa (SLP-76) [191]. These signaling events result in the transcription and translation of
proteins necessary for the differentiation and proliferation of the activated T cell [192,193].
“Signal 2” describes the additional signaling by a total of 38 possible combinations of co-
stimulatory and co-inhibitory ligands and receptors [194]: Co-stimulatory pairs of ligands
and receptors, such as CD28/CD80, promote activation whereas others, such as CTLA4 and
CD80, prevent subsequent TCR-signaling and cell activation [195–197]. TFs and signaling
pathways in APCs that induce a tolerogenic response in T cells include IL-10, TGF-β,
Flt3-, and Myd88-dependent signaling events [198–201], while cholesterol accumulation
and IRF-8-dependent signaling promote an immunogenic response [202,203]. Further
differentiation signals are provided by pro- or anti-inflammatory cytokines secreted by
APCs [186,204–206]: The anti-inflammatory signals IL-10 and TGF-β induce tolerogenic
responses and predispose to Treg differentiation, while IL-6 prompts a TH17, and IL-12 a
TH1 response. A firm cellular bond between the APC and the T cell requires the interaction
of additional cell–cell adhesion molecules, such as LFA-1/ICAM [207]. The physical
interaction site of the T cell and the APC that exhibits a high density of cell adhesion
molecules, co-stimulatory molecules, and peptide-loaded MHC/TCR complexes is often
referred to as the immunological synapse [208]. Several assays have been designed to
identify antigen-specific T cells, including single cell detection by MHC-II multimers,
functional restimulation, and cloning of T cell lines [209–211].

4.2. Detection of ApoB-Specific CD4+ T Cells in Humans by Functional Restimulation

We have recently introduced an in vitro restimulation assay for the detection of ApoB-
specific CD4+ T cells in humans [49] (Figure 1A). In this assay, human PBMCs including
APCs and T cells are co-incubated in vitro with a mix of antigenic peptides from ApoB-100.
To limit all possible ApoB-100 peptides to the ones that could potentially be loaded on
MHC-II, an in-silico screening of human ApoB-100 and direct MHC-II-peptide affinity
measurements was performed. This screening strategy generated a pool of ApoB-100
candidate peptides with a high affinity for several human MHC-II alleles, thereby covering
80% of a Caucasian population with unknown MHC-II variants [49]. The upregulation
and detection of T cell activation markers as a result of peptide-recognition by T cells
serves as marker for peptide-specific CD4+ T cells. In vitro culturing itself is known to
decrease cell viability and interferes with T cell differentiation pathways, TF expression,
and cytokine secretion. Therefore, the time of restimulation has to be kept to a minimum.
Accordingly, the kinetics of cell surface marker expression used for the identification of
activated CD4+ T cells needs to be carefully considered. CD25, CD69, CD154 (CD40L),
and OX40 are established CD4+ T cell activation markers [212] and are highly expressed in
human unstable atherosclerotic plaques [213]. CD25 is the receptor for IL-2 (IL-2R) and
peaks 72 h after CD4+ T cell stimulation. CD25 is therefore not suited as an immediate
activation marker [214]. OX40 shows similar dynamics and peaks between one and five
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days after stimulation [215]. Contrastingly, CD69 is upregulated already 30 to 60 min
after stimulation with a sharp decrease in expression after 4 to 6 h. Comparative studies
have shown that frequencies of antigen specific T cells found after short time stimulation
using CD69 and CD40L were similar compared with a stimulation for 8 h using CD25 and
OX40 as activation markers [216]. Although its expression profile seems most favorable
for in vitro activation assays, CD69 is expressed on naïve and memory T cell subsets and
responds to unspecific cellular activation, such as by calcium ionophores. Contrastingly,
CD40L has been shown to serve as an immediate activation marker with a high speci-
ficity for TCR-signaling events [217], making it an ideal candidate for antigen-specific
restimulation assays. A downside of using CD40L remains its transient extracellular ex-
pression [218]: After translocation to the cell surface, CD40L is quickly degraded, likely
by matrix-metalloproteinases [219], and internalized [220]. We have validated an in vitro
assay for the identification of human ApoB-100 specific T-cells employing intracellular
CD40L as immediate activation marker in a restimulation assay for 6 h [49]. Using this
assay, we were able to show that T cells specific for ApoB-100 peptides exist in the blood
circulation of patients with CAD, but not in healthy individuals. In this assay, patients with
CAD expressed higher levels of TNF-α, IFN-γ, and IL-17. Contrastingly, the expression
of IL-10 decreased in patients with CAD compared to healthy individuals. The findings
demonstrate that T-helper cells specific for several ApoB self-peptides exist in humans with
atherosclerotic disease.

4.3. Detection of ApoB-Specific CD4+ T Cells in Mice and Humans by Tetramers of MHC-II

Kimura et al. recently introduced multimers of MHC-II loaded with ApoB-specific
peptides to detect peptide-reactive CD4+ T cells at the single cell level [118]. These reagents
take advantage of the binding of recombinant MHC-II molecules with a pre-defined peptide
to a TCR solely specific for this MHC-II-peptide complex. Because the MHC-II-peptide–
TCR binding of monomeric MHC-II complexes is weak with a short half-life in the range of
seconds, the avidity of this interaction can be increased by coupling several MHC-II-peptide
complexes that engage more than one TCR, often as tetramers or dextramers [209–211].
The labeling of these reagents with classical fluorochromes for flow cytometry allows the
subsequent detection of T cells specifically binding this MHC-II-peptide complex, i.e., T
cells with a TCR specific for this (peptide) antigen (Figure 1B). Kimura et al. made use of a
combined in silico screening for the 28 most common human MHC-II (HLA-DR) alleles
and verification of affinities in competitive binding assays. Several peptide sequences
of human ApoB were identified and incorporated into corresponding tetramers. In a
sub-study of participants of the Women’s Interagency HIV Study (WIHS) expressing the
HLA-DRB1*07:01 allele, 0.17% of all CD4+ T cells were reactive against the peptide-epitope
p18 (SLFFSAQPFEITAST). More than half of all ApoB/p18-reactive T cells from donors
without atherosclerotic disease expressed FoxP3, which indicates the predominance of
an immunosuppressive phenotype. The remaining ApoB/p18-reactive T cells expressed
RORγt, Gata3, or T-bet. TF expression in ApoB:p18 specific T cells was not exclusive
and often occurred in combinations, indicating the existence of TH17-Tregs and TH1-Tregs.
Notably, the fraction of these multi-lineage committed cells increased, in particular the
co-expression of the TH1 TF T-bet, in donors with subclinical atherosclerosis, while the
fraction of single FoxP3 expressors decreased. These results therefore suggest that ApoB-
specific CD4+ T cells in humans shift towards a more inflammatory phenotype in the
context of atherosclerosis. In another study, we recently introduced a tetramer of mouse
MHC-II (I-Ab) to characterize mouse CD4+ T-helper cells recognizing the ApoB peptide
p6 (ApoB978–993) [49]. ApoB-reactive T cells isolated with this tetramer were detectable
in lymph nodes of healthy and atherosclerotic mice and showed a predominant Treg

and partially atheroprotective phenotype in healthy Apoe−/− mice. Notably, these cells
had formed a memory phenotype already in healthy mice in about 20% of all ApoB+

T cells. In the setting of hypercholesterolemia, ApoB+ T cells proliferated, expressed
pro-inflammatory genes, partially lost the Treg-defining TF FoxP3, and converted into
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pathogenic TH1 and TH17-like cells with an only residual Treg gene signature. Both studies
demonstrate that tetramers represent a feasible method to detect ApoB-specific CD4+ T
cells in human blood and in murine lymphoid tissue. It is noteworthy to point out that
tetramers with a single peptide specificity may underestimate other T cells clones binding
overlapping, adjacent sequences, and that TCR-binding to a given peptide sequence may
be less specific, as supposed in [181]. Together with our recent observation that ApoB-
specific T cells overlapped with a fraction of 50% of lesional T cells in atherosclerotic
aortas [49], it is highly plausible that T cells with more peptide specificities against ApoB
or other autoantigens exist in atherosclerotic plaques. Because TCR-clonality in the aorta
may directly link to a functional phenotype as recently suggested [221], combined TCR-
sequencing and single cell RNA-sequencing workflows may provide a valuable tool to
directly infer antigen-specificity from TCR-clonality in scRNAseq in future (Figure 1C).
Although in situ tetramer staining in tissue sections is technically possible [222], it has not
been tested on atherosclerotic plaques yet.
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Figure 1. Approaches to detect Apolipoprotein B (ApoB)-specific CD4+ T cells in mice and humans. Functional restimulation
with ApoB-peptides requires a peptide mapping of the entire ApoB-sequence and a selection of peptides with the highest
predicted and tested affinity towards the MHC-II complex. Antigen-presenting cells are loaded with selected peptides and
co-incubated with CD4+ T cells. Expression of activation markers is subsequently used to identify activated, ApoB-reactive
T cells (A) Design of tetramers of MHC-II loaded with the peptide of interest. Tetramers are labelled with fluorochromes
for the detection of tetramer-binding T cells in flow cytometry. (B) In simultaneous T cell receptor (TCR) and gene
expression RNA-sequencing, T cells with an oligoclonal repertoire of the TCR are detected on a single cell level, which
allows to selectively analyze gene expression in these cells. (C) Workflow for the generation of a TCR-transgenic mouse:
peptide-specific T cells are expanded in vivo by immunization with LDL or a self-peptide from ApoB, isolated, and further
expanded ex vivo by restimulation with LDL or peptide-loaded APC. Resulting clones undergo TCR-sequencing and the
most promising TCR-sequences are used as templates for the generation of a TCR-transgenic mouse (D).

4.4. Cloning of CD4+ T Cell Lines and TCR-Transgenic Mice

In the naïve organism, only a small fraction of T cells is expected to be specific for a
given (auto) antigen. The absolute size of a population of T cells specific for self or foreign
antigens differs considerably and ranges between 10 and 10,000 cells per mouse [181].
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Around ~1200 CD4+ T cells specific for the self-peptide p6 are found in Apoe−/− mice [49].
These numbers render it experimentally extremely difficult to assess the function of ApoB+

T cells in in vivo. Recently, Gistera et al. have reported the first TCR-transgenic mouse
recognizing human LDL/ApoB [91]. In a series of reports (Figure 1D), the authors first
isolated CD4+ T cells from transgenic mice expressing human ApoB100 that were im-
munized with human oxLDL. T cells from these mice were isolated, restimulated with
human oxLDL, native human LDL, or purified human ApoB-100, and reactive single cell
clones were identified by IL-2 expression in vitro. V-segments of the T α- and β-chains
of the TCR were determined by RT-PCR on IL-2 reactive clones. The TCR-β V-segment
31 was the only V-β segment uniformly expressed across all clones. In non-LDL-reactive
clones, V-segment usage was not restricted [135]. Antibodies against the predominating
V-chain segment TCRBV31 protected from atherosclerosis in vivo, likely by an elimination
of atherosclerosis-relevant T cell clones. In a second study [91], the TCR clone containing
the enriched β chain V-segment TRBV31 was used for a TCR-transgenic mouse, in which
90% of T cells expressed TRBV-31 and recognized LDL. In vivo, ApoB-specific CD4+ T
cells developed into TFH cells, activated B cells, stimulated the formation of germinal
centers, and induced the expansion of plasma cells expressing anti-LDL immunoglobulins.
Anti-LDL IgGs enhanced LDL clearance in the liver—a mechanism that led to decreasing
LDL-C plasma levels and significantly smaller atherosclerotic lesions than in controls.
Thus, ApoB-reactive T cells have the ability to serve as potent TFH. Whether the selection
procedure in vivo used in this series of reports predisposes for a specific TCR/phenotype
that does not predominate in TCR-WT mice is currently not known. Still, it remains an
interesting speculation that low and high affinities between a peptide loaded MHC-II and
the TCR induce distinct transcriptional programs in T cells, which may induce distinct TH
types as recently suggested [221].

5. Function of ApoB-Specific CD4+ T Cells

As stated above, LDL-C levels correlate with adverse clinical outcomes [1] and the
progression of coronary atherosclerosis [5] and represent one of the best established targets
for medical prevention of CVD [223]. Besides the plethora of innate-related inflammatory
mechanisms, LDL-C likely serves as autoantigen in the atherosclerotic plaque, which is best
demonstrated by the ability of human plaque T cells to secrete pro-inflammatory cytokines
and proliferate when restimulated with LDL preparations—an effect highly dependent on
MHC-II antigen presentation, suggesting specificity of these results [22,135]. In addition,
ApoB-specific TH cells have been detected in humans by MHC-II tetramers [118]. The
function of ApoB-specific CD4+ T cells in humans can currently only be inferred from their
differentiation into classical TH types of immunity. These findings suggest that in the pres-
ence of sub-clinical or clinical atherosclerosis, ApoB+ T cells in humans are more polarized
towards TH17 and TH1 cells, while only maintaining a residual Treg signature in healthy
individuals. It is therefore plausible that the compartment of ApoB-specific autoreactive
TH cells may have protective properties in health but switch into pro-inflammatory TH
types in disease. Whether this switch is causal for the pro-inflammatory environment in the
plaque or a result of the inflammatory response that accompanies atherosclerotic disease is
currently unknown.

Since 1959, when Gero et al. performed the first atheroprotective vaccination of rabbits
with LDL [224], numerous studies in rodents have demonstrated that vaccination with
either native, modified (oxidized) LDL, or (peptides from) ApoB has the potential to elicit
a T-cellular immune response that prevents atherosclerosis [225–234]. ApoB-100 and its
truncated version, ApoB-48, which is present in chylomicrons [235], contain several im-
munogenic T cell peptide epitopes. In contrast, B cell epitopes are mostly located on lipid
moieties of native and modified apolipoproteins [23]. Direct immunization with ApoB-
100 and ApoB-100 peptides protects from atherosclerosis, likely by the induction of IL-10
secreting protective Tregs [199,236–238]. The immunogenic peptide epitopes from human
or mouse ApoB that have been validated by vaccination of mice expressing the wildtype,
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mouse ApoB-100, or human transgenic ApoB-100 include the peptides p3, p6, p18, p101,
p102, p103, p210, p265, and p295 [49,239–241]. p18 is the only so far identified peptide
that is sequence-identical in mouse and human ApoB. The ApoB-peptide p6 (ApoB978–993,
sequence TGAYSNASSTESASY) has been most extensively characterized. p6 is located
in the surface region of ApoB-48 and ApoB-100 at the interface of the amphipathic core
region [240]. Vaccination with p6 induces an antigen-specific T cell response with cellular
proliferation and cytokine secretion [240]. Interestingly, ApoB p6-reactive T helper cells
isolated from immunized mice and transferred to donor mice promoted atherosclerosis in
abdominal aortas [242], while vaccination with p6 prevented atherosclerosis in Apoe−/−

mice in another report [240]. This finding is striking because most reports employing vacci-
nation with ApoB/LDL have suggested a primarily protective phenotype encompassing
Tregs in the atherosclerotic aorta and spleen as well as IL-10 secretion [240,243,244] or a
decrease of TH1 immunity [245]. Notably, some of these favorable effects were abolished by
a depletion of Tregs [245]. The functional dichotomy raised by vaccination studies using p6
was partially clarified in later studies that took use of a tetramer of MHC-II loaded with the
peptide p6. It was suggested that ApoB-specific CD4+ T cells stem from a Treg-like TH17
cell with a partially protective phenotype that was lost during progressing natural disease
and replaced by a TH1-like phenotype with several pro-inflammatory transcriptional pro-
grams including TNF-α, IL-6, and IFN-γ (Figure 2). These findings are consistent with the
phenotypes observed in human ApoB restimulation assays and suggest that ApoB-specific
CD4+ T cells per se are neither atheroprotective nor pro-atherogenic. Instead, phenotypes
of ApoB-reactive CD4+ T cells may be dictated by the microenvironment in the plaque
or systemic inflammation [49]. A protective role of antigen-specific CD4+ T cells can also
be derived from the observation that a genetic knock-out for MHC-II, which abrogates
antigen-recognition and -presentation, promotes de novo atherosclerosis [246,247]. Because
hypercholesterolemia (with elevated LDL-C levels) in mice favors the differentiation of
Tregs in the early stages of atherosclerosis [60,61] and enhances TCR-signaling events in
Tregs [59], it must be hypothesized that in healthy mice, a cellular Treg-driven protective
autoimmune response against LDL-C/ApoB exists [247]. It is therefore plausible, but re-
mains experimentally unproven, that early ApoB-reactive Tregs have the ability to prevent
atherosclerosis. It is also tempting to speculate how these cells are generated and why they
appear even in healthy individuals and mice. The general concept of autoimmunity states
that the immune system distinguishes between self and non-self [248]. Some CD4+ T cells
expressing a T cell receptor (TCR) that recognizes self-peptides loaded on MHC-II with a
high affinity are eliminated by negative selection [249,250]. However, negative selection is
not very efficient [251,252] as demonstrated by the existence of self-antigen specific CD4+ T
cells in a naïve organism [181]. A part of these surviving T cells develops into pathogenic
Teff, while these with a low to intermediate affinity turn into protective Tregs [253,254]. Thus,
autoimmunity is understood as a competition of protective and pathogenic CD4+ T cells
that both recognize (different) self-peptides from the same autoantigen. Indeed, several
reports have demonstrated the existence of autoreactive T-helper cells with a protective
Treg and a pathogenic Teff phenotype in autoimmune disease of the central nervous system,
graft-versus-host-disease, and in type 1 diabetes [124,126,255–258]. During development
of disease, this fine-tuned balance is thought to shift towards a relative overrepresenta-
tion of pathogenic, often TH1 T cell phenotypes. In atherosclerosis, autoreactive CD4+ T
cells with a predominant or partial Treg phenotype in the absence of atherosclerosis and a
pathogenic phenotype in established disease have been found in two studies employing
MHC-II tetramers in humans and mice [49,118]. Whether pathogenic Teff exclusively de-
velop from switching Tregs or independently and how the composition of autoreactive CD4+

T cells with Treg and Teff cells changes over time, is currently unknown. It also remains
unclear if the phenotypic switch of ApoB+ T cells to a more pathogenic phenotype is a cause
or a consequence of exaggerated inflammation in advanced atherosclerosis. Whether the re-
sulting TH1-like ApoB-reactive T cells are in fact pro-atherogenic has not been directly tested.
TF expression from human ApoB-reactive T cells suggests that FoxP3 protein-expressing
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Tregs dominate the phenotypic repertoire of ApoB-specific TH cells in healthy humans. In
healthy mice, only a minor fraction of ApoB-specific CD4+ T cells expresses FoxP3, while the
majority shows a transcriptional similarity to Tregs but does not express FoxP3 protein [49].
Lineage-tracing experiments have demonstrated that not all FoxP3neg ApoB-specific T cells
stem from initial FoxP3+ Tregs [49]. Therefore, Treg plasticity does not explain the gener-
ation of all pathogenic ApoB-specific Teff cells alone [20]. Notably, mouse ApoB+ T cells
demonstrate at least a partial TFH signature with Bcl6 and Cxcr5 transcripts [49], indicating
that the TFH phenotype observed in the ApoB-TCR-transgenic mouse may represent a natu-
ral occurring phenotype, albeit likely overrepresented in the experimental settings in the
transgenic mouse model [91]. Potential factors that cause ApoB-reactive T cells to transform
from protective (Treg-like) to pathogenic TH-types have not been explicitly investigated and
are currently unknown. However, it is plausible that factors that influence the stability of
Tregs—hypercholesterolemia, inflammatory cytokines, local hypoxia, and changes in cellular
metabolism [20,25,117]—partially overlap with those favoring the pathogenic conversion of
functionally protective FoxP3neg ApoB-specific CD4+ T cells.
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VLDL, and chylomicrons (CM) are taken up by antigen-presenting cells (APCs) by endocytosis. After their intracellular
processing, apolipoprotein-derived peptides are loaded on MHC-II molecules, before the entire MHC-II-peptide complex
is transposed to the cell membrane. There, MHC-II-peptide complexes can be recognized and bound by a specific T cell
receptor (TCR). In combination with sufficient co-stimulatory signaling events provided by the APC, a naïve CD4+ T cell is
activated and may differentiate into distinct, partially overlapping TH-types of immunity: Most ApoB-specific CD4+ T cells
(ApoB+) express transcriptomes and markers of TH17 and T-regulatory cells (Treg). They express CCR5 and CXCR6, two
known chemokine receptors (CCRs) required for aortic homing. Over time, ApoB+ cells acquire additional pro-inflammatory
transcriptional programs and express the TH1 transcription factor T-bet, as well as the CCRs CXCR5 and CCR6. The initially
detectable protective Treg signature is lost in this process. After vaccination, IL-10 secreting FoxP3+ApoB+ cells have been
described at the site of vaccination. In transgenic mice, only expressing a TCR that recognizes a specific ApoB-peptide,
a part of ApoB+ cells differentiates into TFH that promote plasma cells generation and the production of LDL-lowering
anti-LDL antibodies.
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6. Clinical Translation and Outlook

The fundamental role of inflammation in atherosclerosis has been increasingly ap-
preciated in the last decades [20,259]. Clinical landmark trials, such as the CANTOS and
COLCOT trials [17–19], have highlighted the potency of anti-inflammatory treatment
strategies in cardiovascular disease prevention. However, the limitations of unspecific
anti-inflammatory treatments remain considerable as evidenced by increased rates of in-
fection and missing experience on long-term treatments. By contrast, the development
of antigen-specific immunomodulation holds the promise of specific antigen-directed
therapies with only minimal side-effects [234]. The recent development of technologies
to detect ApoB-specific T cells at the single cell level, including MHC-class II tetramers,
has greatly widened our understanding of adaptive immune mechanisms in atheroscle-
rosis [25]. It is now clear that ApoB-specific TH cells exist in mice and humans. These
undergo dramatic transcriptional, numeric, and phenotypic changes throughout the nat-
ural course of atherosclerosis. While the predominant pro-atherogenic TH1 phenotype
of ApoB-reactive TH cells in the blood of patients with advanced atherosclerosis and in
atherosclerotic plaques is consistent with older findings, it is striking that ApoB-reactive T
cells in early disease are transcriptionally closer to immunosuppressive Tregs [49,118]. This
observation provides a reasonable explanation for enhanced numbers of ApoB-specific
Tregs in numerous mouse vaccination studies and suggests that autoimmunity per se is not
detrimental but required to restrain a pathogenic immune response in most healthy indi-
viduals [247]. Vaccination with tolerogenic adjuvants and immunogenic ApoB-peptides
may therefore have the potential to reinforce the protective limb of ApoB-specific immunity
even in patients with established atherosclerosis. The successful implementation of a
human atherosclerosis vaccine in clinical practice will depend on several developments
that have yet to be made: First, exact doses, routes of delivery, and adjuvants in a vaccine
need to be clarified. In addition, additional autoantigens beyond ApoB are likely to exist
and may be found in a screening of peptides that are naturally presented on MHC-II in
atherosclerotic plaques. Second, patients with an immune-mediated type of atherosclerosis
independent of an enhanced diabetes-, lipid-, inflammation-, or thrombosis-associated
risk [260] will have to be identified. Third, biomarkers will have to be developed that
are suitable for assessing the efficacy of vaccination. While antibody-titers are usually
employed to screen vaccination efficiency, it is not clear if ApoB-peptides located within
the inner core of LDL-C and other lipoprotein particles will elicit both cellular and humoral
immune responses. It is now evident that different types of atherosclerosis-associated risk
exist in humans. For instance, certain risk factors associate with different manifestations
of atherosclerotic disease, such as evidenced by smoking and the enhanced prevalence
for peripheral arterial disease (PAD) [261,262]. Under optimal lipid-lowering therapies, a
residual inflammatory risk remains [263] and even with lipid levels in the desired or below
target range and in the absence of residual inflammation, event-rates remain high. It may
therefore be speculated that a proportion of this excessive, currently not addressable risk is
related to autoimmune mechanisms. Notably, even with LDL-C levels at or below the rec-
ommend target range of 40 to 55mg/dL [223], LDL-C is not entirely depleted, and this low,
but chronic abundance of an autoantigen may suffice to induce pathogenic anti-LDL/ApoB
immunity. The possible existence of an independent atherosclerotic immune risk is also
justified by the clinical association of chronic immune and atherosclerotic disease [264] in
otherwise healthy individuals. Assays that allow the quantification of ApoB-specific T cells,
such as by restimulation or tetramers, will be of great use to quantify such immune-risk in
future clinical practice.
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