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Abstract: The lactate dehydrogenases (LDHs) in hagfish have been estimated to be the 
prototype of those in higher vertebrates. The effects of high hydrostatic pressure from 0.1 to 
100 MPa on LDH activities from three hagfishes were examined. The LDH activities of 
Eptatretus burgeri, living at 45–60 m, were completely lost at 5 MPa. In contrast, LDH-A 
and -B in Eptatretus okinoseanus maintained 70% of their activities even at 100 MPa. These 
results show that the deeper the habitat, the higher the tolerance to pressure. To elucidate the 
molecular mechanisms for adaptation to high pressure, we compared the amino acid 
sequences and three-dimensional structures of LDHs in these hagfish. There were 
differences in six amino acids (6, 10, 20, 156, 269, and 341). These amino acidresidues are 
likely to contribute to the stability of the E. okinoseanus LDH under high-pressure 
conditions. The amino acids responsible for the pressure tolerance of hagfish are the same in 
both human and hagfish LDHs, and one substitution that occurred as an adaptation during 
evolution is coincident with that observed in a human disease. Mutation of these amino acids 
can cause anomalies that may be implicated in the development of human diseases. 
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1. Introduction  

The deep sea is characterized by low temperature (1–4 °C), extremely high hydrostatic pressure, lack 
of sunlight, and relatively low influx of utilizable organic material derived from primary production in 
surface waters. Among such environmental factors, hydrostatic pressure is thought to have the greatest 
influence on the vertical distribution of organisms and speciation in the deep seas [1–3] and on the 
formation of protein complexes, e.g., enzyme–substrate or protein–protein interactions [4]. Many 
previous studies reported proteins from deep-sea fishes that function at high pressure [4–6], and 
hypothetical models of protein adaptation to deep-sea pressure have been proposed [4]. However, the 
primary structures of those proteins have not been determined in detail [3]. The effects of pressure on the 
Km values of many enzymes from shallow- and deep-dwelling marine invertebrates and fishes were 
studied [5]. Malate dehydrogenase from organisms adapted to pressure of 0.1 MPa increased with 
additional pressure, resulting in a concomitant increase in the Km values for nicotinamide adenine 
dinucleotide (NADH) [7]. The α-skeletal actin cDNA from Coryphaenoides sp. was cloned and 
sequenced, and the specific amino acid substitutions responsible for the adaptation of α-actin to high 
pressure were elucidated [3]. The kinetic properties and amino acid sequences of lactate dehydrogenase 
(LDH) expressed in skeletal muscle [L-LDH: NAD oxidoreductase, EC 1.1.1.27; (LDH-A4)] were 
compared among orthologs from congeners of Pacific damselfish, and temperature-adaptive changes in 
LDH-A4 structure and function were found [8]. When the kinetic properties and amino acid sequences of 
LDH in heart muscle (LDH-B4) from two cod species were compared, pressure-adaptive changes in 
LDH-B4 structure and function were observed. The results of circular dichroism spectroscopic analysis 
pointed to protein unfolding as the cause of inactivation [9]. In those studies, however, the amino acids 
responsible for the adaptation were not identified. 

We previously reported the kinetic properties and amino acid sequences of LDH-A4 from three 
hagfishes inhabiting different depths [10]. The activity of LDH-A from the shallow-sea hagfish 
Eptatretus burgeri was almost completely lost when subjected to pressure of 50 MPa for three minutes, 
while that from the deep-sea hagfish Eptatretus okinoseanus did not change when subjected to the same 
conditions, and thus a pressure-dependent change in LDH-A4 structure was proposed [11]. In this study, 
we investigated the pressure-adaptive mechanism of LDHs from hagfish and considered the 
relationship between this mechanism and human disease. 

2. Results and Discussion  

The phylogenies of hagfish and lampreys in the Cyclostomata are not yet clear-cut. In this study, we 
compared their isozymes using electrophoresis. Figure 1 shows the electrophoretic patterns of LDH 
isozymes from the skeletal muscle and heart of two hagfishes, E. okinoseanus and Paramyxine atami, 
and a lamprey, Entosphenus japonica. Lampreys are also jawless fish, and their evolutionary 
relationship with hagfish is under debate. The skeletal muscle of the three species had the A4 isozyme 
(Figure 1, lanes 2, 4, and 6). The B4 isozyme was expressed in the hearts of the two hagfish (lanes 3 and 
5), but not in the lamprey (lane 1). Whereas human serum LDH had heteroisozymes (lane 7), such as 
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A1B3, A2B2, and A3B1, hagfish LDHs did not. Figure 1 indicates that hagfish diverged after lampreys in 
the evolution of vertebrates.  

Figure 1. Patterns of the Cyclostomata LDH isozymes. LDH-A4 bands are detected in 
skeletal muscle from all cyclostomata examined and in the E. japonica heart, whereas B4 
bands are expressed only in hearts from hagfish. Note that labels (A4, A3B1, A2B2, A1B3, and 
B4) indicate five human tetrameric isozymes and do not correspond to Cyclostomata LDH 
isozymes. Reproduced with permission from the Zoological Society of Japan [10]. 

 
 

As shown in Figure 2, the thermal stability of LDH activity was examined in the reaction from 
pyruvic acid to lactic acid at temperatures ranging from 10 to 60 °C during 30-min incubation. At 60 °C, 
the activity of LDH from E. okinoseanus and E. burgeri decreased to about 40% of the original value.  

The activity of E. burgeri remained constant with heat treatment in the range from 10 °C to 55 °C, 
whereas that of E. okinoseanus gradually decreased. Thus, the heat stability of LDH-A4 from the hagfish 
differs depending on the depth of their habitats. The reason why LDHs from the hagfish show these 
thermophilic properties is not yet clear. Johns and Somero reported that the heat stability of Pacific 
damselfish LDH was achieved by amino acid substitution of residue 219 from Thr to Ala [8]. In the three 
hagfish LDHs examined in this study, amino acid 219 was Leu and not relevant to the differences in heat 
stability among them. None of the additional region that is specific and common to hagfish LDHs 
(amino acids 220–227), is responsible for heat stability.  
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Figure 2. Thermal stability of LDH from hagfish. ■: E. okinoseanus LDH-A4, ●: E. burgeri 
LDH-A4. 

 
 
The effects of high hydrostatic pressure from 0.1–100 MPa on LDH activities from the three 

hagfishes were examined using high-pressure photometry at the Japan Agency for Marine-Earth Science 
and Technology. Figure 3 shows the effects of hydrostatic pressure on LDH activities. LDH-A and -B 
from E. okinoseanus, living at a depth of 1000 m, were highly active at high pressure of 100 MPa, 
maintaining 70% of that observed at 0.1 MPa. In contrast, the activities of LDH-A and -B from P. atami, 
living at 250–400 m, decreased to 55% at 15 MPa, and those from E. burgeri, living at 45–60 m, were 
completely lost at 5 MPa. These results show that the deeper the habitat, the greater the tolerance  
to pressure.  

Figure 3. Effects of hydrostatic pressure on LDHs from hagfish E. okinoseanus, E. burgeri 
and P. atami. 
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We compared the electrophoretic patterns of the LDH-As from E. okinoseanus and E. burgeri under 
high-pressure conditions. The tetrameric structure of LDH-As from E. okinoseanus did not change at 
50 MPa. In contrast, almost all LDH tetramers from E. burgeri dissociated to dimmers and monomers 
at 50 MPa but reverted to tetramers at 0.1 MPa. These results show that the dissociation of tetramers 
caused the inactivation of E. burgeri LDH. The mechanism of the slight gradual inactivation of E. 
okinoseanus LDH at high pressure differs and is probably due to the metamorphosis of its inner 
structures [12]. The results will be published elsewhere. 

To elucidate the molecular mechanisms of the adaptation to high pressure, we compared the amino 
acid sequences (Figure 4) and three-dimensional structures (Figure 5) of LDHs in these hagfish. There 
were differences in six amino acid residues (6, 10, 20, 156, 269, and 341) in LDHs of the hagfishes, and 
additional regions specific to hagfish LDHs were found.  

Figure 4. Differences in amino acid sequences of LDH-A4 from E. okinoseanus, P. atami, 
and E. burgeri. There were differences in six amino acid residues (6, 10, 20, 156, 269, and 
341) when comparing the LDHs of the three hagfishes. a: Deep-sea type (E. okinoseans), b: 
shallow-sea type (E. burgeri). Reproduced with permission from the Springer Japan [11]. 

 
 

Two of the amino acids (156 and 269) are in the neighborhood of the active sites, and thus may 
control enzymatic activity. The other four amino acids (6, 10, 20, and 341) may be assigned to the part 
that combines four monomers into a tetramer.  
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Figure 5. Prediction of the three-dimensional structure of hagfish LDH-A4. A: Functional 
sites of amino acid residues common to the three hagfish LDHs (a, b, c). B: Amino acid 
residues that vary with LDHs of the three hagfishes (6, 10, 20, 156, 269, and 341) and the 
region specific to LDHs of hagfish (220–227). 

 

The differences in the amino acid at position of the hagfish LDHs could affect their pressure 
resistance. Those amino acids, Asp in E. burgeri LDH-A4 and Glu in E. okinoseanus LDH-A4, have 
isoelectric points of 2.77 and 3.22, respectively. The deeper the habitat of the hagfish, the weaker the 
negative charge of the 6th amino acid. The core structures of hagfish LDHs inhabiting deeper water are 
only slightly affected by water. The differences in the 10th amino acid of the hagfish LDHs could affect 
their pressure resistance. Those amino acids are Asn in E. burgeri LDH-A4 and Lys in E. okinoseanus 
LDH-A4. The Lys of E. okinoseanus LDH-A4 is more hydrophilic than the Asn in E. burgeri LDH-A4, 
and thus the combination of four monomers into a tetramer in E. okinoseanus LDH-A4 may be tight. 
The N-terminal 20 residues that extend from the main body of the subunit are important in the 
interaction between subunits [13]. As the other amino acids (20 and 341) that are also located at the 
binding position in the tetramer have almost the same properties, they may not affect pressure 
resistance. The differences in the 269th amino acid residue of the hagfish LDHs, located in part of the 
core structure, could be related to the tolerance to hydrostatic pressure. The amino acids Thr in E. 
burgeri LDH-A4 and Ala in E. okinoseanus LDH-A4 have molecular weights of 119 and 89, 
respectively. The core structure of E. okinoseanus LDH is barely affected by hydrostatic pressure, 
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because Ala is smaller than Thr. It can take in both pyruvate and reduced NADH, even when water 
enters the pocket under high hydrostatic pressure, whereas that of fish dwelling in shallow habitats 
cannot. The larger pocket structure would be vulnerable to high pressure. 

The amino acid sequences of hagfish LDHs were deduced from the nucleotide sequences obtained. 
The amino acid sequences of 341 residues in the skeletal muscle LDHs in the three hagfishes were 
compared with those of previously reported LDHs. As seen in Figure 6, the hagfish LDH-As had a 
specific insertion of ten amino acids (221–230). There are ten regions (C1–C10) common to LDHs from 
the vertebrates examined, and two Cyclostomata-specific regions (S1 and S2) have high homogeny 
(89–100%). Three regions (IGS1, IGS2, and IGS3) altered their structures during the differentiation of 
LDH isozymes, and those regions remain in vertebrate LDH-B with 67–86% homology.  

Figure 6. Analysis of amino acid sequences of LDH. C1–C10: Common regions, S1, S2: 
Cyclostomata-specific regions, IGS1-IGS3: isozyme (LDH-B) group-specific regions. 
Reproduced with permission from the Zoological Society of Japan [10]. 
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The phylogenetic tree of Cyclostomata LDH genes inferred from the present results suggests that 
LDH-A of hagfish diverged just after that of lampreys (Figure 7). Although they probably evolved from 
a single ancestral gene, the genes encoding LDH isoenzymes are now quite distinct. The mechanism of 
evolution of LDH-A to LDH-B may be clarified through further investigation of the most prototypical 
LDH-B in hagfish. 

Figure 7. Phylogenetic tree of Cyclostomata LDHs. The tree topology and branch lengths 
were obtained using the neighbor-joining algorithm. The outgroup for this analysis was 
lamprey LDH. In this case, 1000 bootstrap pseudoreplications were analyzed, and the 
number near the node indicates the percentage of optimal trees in which this node 
appeared; values <50% are not shown. The scale at the bottom of this figure indicates 
branch length in substitutions per site. Reproduced with permission from the Zoological 
Society of Japan [10]. 

 
 

Figure 8. Three-dimensional structures of LDH. Reproduced with permission from the 
Zoological Society of Japan [10].  
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During the evolution from Bacteria to Cyclostomata, residues 1–22 at the N-terminus were added. 
IGS2 varies from a loop structure to a β-sheet structure. At the same time, IGS3 changed from a loop 
structure into a β-sheet, and it changed again to a loop structure during the evolution to dogfish LDH-A. 
The β-sheet structure remains in LDH-B. Fifty-seven percent of the amino acids of cyclostomata IGS3, 
43% of dogfish LDH-A, 86% of dogfish LDH-B, and 14% of human LDH-A are in a β-sheet, while all 
(100%) of human LDH-B amino acids are postulated to be in a β-sheet. The three-dimensional structures 
presented in Figure 8 suggest that Cyclostomata IGS3 has properties intermediate between those of A 
and B before it differentiates into the A and B types. This tendency was similar in IGS1 and IGS2. 

3. Experimental Section  

3.1. Materials 

E. okinoseanus and P. atami were collected from Suruga Bay off Shizuoka, Japan. The sampling 
locations were at 34–35' N, 138–139' E, at a depth of approximately 700–1000 m for E. okinoseanus 
(ambient seawater temperature 5–8 °C) and at a depth of approximately 250–400 m for P. atami 
(ambient seawater temperature 10 °C). E. burgeri was collected in an inlet off Misaki in Kanagawa, 
Japan. The sampling location was 35.8' N, 139.37' E, at a depth of approximately 45–60 m (ambient 
seawater temperature 10 °C). E. japonicus was collected in the Shiribetu River in Hokkaido, Japan. The 
sampling location was 42.5' N, 140.35' E. Skeletal muscles and hearts of the Cyclostomata were washed 
with PBS buffer (137 mM NaCl, 8.10 mM Na2HPO4, 2.68 mM KCl, 1.47 mM KH2PO4, pH 7.4) 
pretreated with diethylpyrocarbonate to remove RNase and were frozen immediately at –80 °C. 

3.2. Methods 

mRNAs were isolated from homogenates of skeletal muscle following the method of Loening [14]. 
Total cDNA was subjected to PCR with the following eight primers:  

F1, GTGACAATAGTTGGAATCGG; F2, GTGGTTTGTGCTTCACACGA;  
F3, TGAACCTTGTACAGAGGAAC; R1, CCACTCCATACAGGCAC;  
R2, AGCAGGATTTCCTCCCACTAC; R3, GTTCCTCTGTACAAGGTTCA;  
R4, CTTCCTGTTGTCTAACTCCA; and R5, CCGATTCCAACTATTGTCAC.  

The primers were based on the nucleotide sequences of active sites of human, pig, mouse, and frog 
LDHs. PCR amplification of the coding sequence with primer pairs F1-R1 and F2-R2 was performed. A 
typical thermal cycling profile consisted of 40 cycles of the following three steps: denaturation at 94 °C 
for 0.5 min; annealing at 50 °C for 0.5 min; and extension at 72 °C for 1 min. The cycling steps were 
preceded by a 2-min denaturation at 94 °C and followed by a 7-min extension at 72 °C. The remaining 
portions of the coding sequence and the 5' and 3' untranslated regions were amplified using the 5'- and 
3'-rapid amplification of cDNA ends (RACE) procedures. In 5'-RACE, primer R3 was used for reverse 
transcription, and primers R4 and R5 served as the gene-specific primers for PCR amplification. Primer 
F3 was used for 3'-RACE. The PCR products were purified with 2% agarose gel electrophoresis and 
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subcloned into the pTZ19R vector. After the transformation of these recombinants into XL1-Blue using 
the calcium chloride method, plasmid DNA was recovered and their nucleotide sequences were 
determined using a DNA Sequencer (Model 4000, LI-COR Inc., Lincoln, NE, USA). 

Isozymes of LDH were detected as follows. After electrophoresis of the homogenized tissues 
(skeletal muscle and heart) on 1% agarose gels for 0.5 h at 250 volts, LDH activity bands were visualized 
using the following staining solution [15]: 28 mg NAD, 1.3 mg diaphorase, and 3.5 mg p-nitroblue 
tetrazolium chloride in 3 ml of 0.05 mol/l sodium lactate–0.14 mol/l Tris-citrate buffer (pH 8.6).  

The amino acid sequences of LDHs were deduced from the nucleotide sequences obtained. 
Homology search analysis was performed using the GENETYX software system (Software 
Development Co., Ltd., Tokyo, Japan). The phylogenetic tree was inferred using the neighbor-joining 
method [16]. Three-dimensional models were produced with the 3D-JIGSAW modeling program 
(Cancer Research UK, London, England) [17]. 

The skeletal muscles of the three hagfish species were homogenized in a 7-fold dilution of 0.25 M 
sucrose solution, and LDH was purified with DEAE-cellulose and 5'-AMP-Sepharose 4B after desalting 
with (NH4)2SO4 and dialysis as described by Brodelius et al. [18] with minor modifications. The sample 
obtained was confirmed to be a single peptide band upon disc gel electrophoresis [19] using 7% 
acrylamide gel stained with Coomassie Brilliant Blue [20]. The disc was dipped in the reaction mixture 
described below, and the LDH activity in the band was visualized based on the absorption change of 
formazan added to the solution following the method of Kuroda and Yoshida [15]. Protein 
concentrations were determined using the Bio-Rad (Hercules, CA, USA) protein assay kit Ι according to 
the manufacturer's instructions. Bovine serum albumin was used as a standard. 

The conversion of pyruvate to lactate by LDH was determined as described by Amador et al. [21] 
with a slight modification in the optimum pH and temperature for hagfish, i.e., pH 6.2 and 30 °C. Ten 
microliters of LDH solution (6.0 μg/ml) was added to the reaction mixture (0.83 mM pyruvate, 0.13 mM 
NADH, 0.1 M MES buffer, pH 6.2), and changes in the absorbance at 340 nm (A340) were monitored 
using a spectrophotometer (Shimadzu 1600PC, Kyoto, Japan) equipped with a high-pressure optical cell 
[22]. The activity was determined based on the absorption decrease at 340 nm within 3 min after the 
addition of LDH under various pressure conditions. The Hill unit is the amount of LDH which changes 
the optical density of NADH at 340 nm by 0.001 in 30 min [23]. The cDNA of LDHs was determined, 
and the DDBJ accession numbers of the hagfish LDHs from E. okinoseanus, P. atami, and E. burgeri 
are AB369246, AB369247, and AB369248, respectively. 

4. Conclusions  

The LDHs of the skeletal muscle from the three hagfishes E. burgeri, E. okinoseanus, and M. 
garmani, which are the lowest extant vertebrates, were purified and their properties were examined. 
The hagfish were revealed to have 10 specific additional amino acids, for a total of 341. The additional 
sequence (221–230) is located next to the hinge position (219) to introduce NAD and pyruvate. The 
additional sequence may cause less flexibility at the hinge position, resulting in the heat instability of 
hagfish LDHs. The optimal pH values (8.5–9.5) in the reaction from lactic acid to pyruvic acid of 
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hagfish LDHs were almost the same as those of human (8.8) and cod (9.0) LDHs, although the optimum 
pH values (6.0–6.2) in the reaction from pyruvic acid to lactate acid of hagfishes were more acidic than 
those of human (7.2) and cod (7.5) LDHs. Differences in the three hagfish LDHs were apparent in the 
direction of the reversible reactions.  

In the Cyclostomata, E. japonica has been shown to have a single LDH subunit, while hagfish have 
two subunits, LDH-A and LDH-B. Thus, hagfish LDH-B is the most primitive form examined. During 
the evolution from bacteria to lampreys, residues 1–22 at the N-terminus were added. This region is the 
part where the subunits connect with each other and changes from hydrophobic to hydrophilic during 
evolution. It is assumed that changes in this part caused the diversification of the isozymes.  

The effects of high hydrostatic pressure on LDH activity were examined under pressures from 0.1 to 
100 MPa. The activity of LDH-A4 from E. burgeri (shallow-sea species) was lost at pressure greater than 
5 MPa. The activity of LDH-A4 from P. atami (inhabiting depths of ~400 m) was maintained at pressure 
of 10 MPa, but decreased to about 55% at 15 MPa and to about 15% at 20 MPa. Among the three 
hagfish, E. okinoseanus inhabits the deepest waters at around 800–1000 m. Its LDH-A4 appeared to be 
fully active at pressures up to 40 MPa and it maintained 70% of that activity even at 100 MPa. These 
results suggest that the LDH-A4 of E. okinoseanus is more adapted to high-pressure conditions than that 
of the other hagfishes.  

Three possible mechanisms can be proposed as the reason for the inactivation of hagfish LDHs at 
high hydrostatic pressure: (1) the dissociation of the LDHs into four monomers; (2) changes in the 
structures near active sites; and (3) an increase in the activation volumes of LDHs. Six amino acid 
substitutions between the three LDH primary structures were found. Among them, two amino acid 
residues are likely to be responsible for the high-pressure resistance of E. okinoseanus LDH. On the 
LDHs from both deep-sea and shallow living species, Corphaenoides armatus and Gadus morhua, the 
results of circular dichroism spectroscopic analysis were reported protein unfolding as the cause of 
inactivation at high pressure [9]. The differences in the 6th amino acid residue of the hagfish LDHs 
would affect their pressure resistance. The results of electrophoresis under high-pressure conditions 
show that the dissociation of tetramers caused the inactivation of E. burgeri LDH [12]. To confirm that 
the predicted effects of substitutions indeed occur, we are performing site-directed mutagenesis. This 
method is the replacement of Ala6 with Glu in E. okinoseanus LDH (now in progress). 

Although the cDNAs of the LDH-A of the three hagfishes were clarified in the genetic study, 
hagfish LDH-B, which diverged from the lamprey LDH and achieved molecular variety for the first 
time, has not been elucidated. Thus, the amino acid sequences of those LDH-B and their enzymatic 
properties should be examined. The phylogenetic tree of Cyclostomata LDH-A genes was 
demonstrated in this study, but the relationship between Cyclostomata LDH and those of the Bacteria 
is not yet completely understood. The LDH-As of both the Ascidians and the Amphioxus, which are 
located just before the Cyclostomata in the phylogenetic tree, would be key in the study of evolution. 
The compositions of LDH isozymes are reported to change in human diseases [24]. The relationship 
between the pressure tolerance of LDH and its isozyme composition is expected to contribute to the 
diagnosis of some human diseases. 
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Evolutionary medicine studies diseases from the viewpoint of evolution. We propose herein a new 
field, molecular evolutionary medicine, which focuses on genetic evolution [25]. We are comparing 
genetic variations in relation to human diseases. As an example, human and hagfish LDHs are related 
(Figure 9). When subjected to physical pressure, those LDHs exhibit new properties. The amino acids 
responsible for pressure tolerance are the same in both human and hagfish LDHs, and substitutions of 
these amino acids occurred as adaptations during evolution. Mutations in these amino acids can result 
in anomalies that may be implicated in the development of human diseases. We are developing a 
device that can measure LDH activity in the blood of the patient with 6th amino acid mutation at 
around three MPa, which is below the pressure causing the dissociation of rabbit LDH-As and pig 
LDH-Bs (data not shown). 

Figure 9. Three-dimensional structures of hagfish LDH-A and human LDH-A. Reproduced 
with permission from the Ogata Institute for Medical and Chemical Research [25]. 
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