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ABSTRACT

Certain amino acid residues in a protein, when
mutated, change the protein’s function. We present
an improved method of finding these specificity-
determining positions that uses all the protein
sequence data available for a family of homologous
proteins. We study in detail two families of euka-
ryotic transcription factors, basic leucine zippers
and nuclear receptors, because of the large amount
of sequences and experimental data available. These
protein families also have a clear definition of
functional specificity: DNA-binding specificity. We
compare our results to three other methods, including
the evolutionary trace algorithm and a method that
depends on orthology relationships. All of the predic-
tions are compared to the available mutational and
crystallographic data. We find that our method pro-
vides superior predictions of the known specificity-
determining residues and also predicts residue
positions within these families that deserve further
study for their roles in functional specificity.

INTRODUCTION

Not all residue positions in a protein are equally important for
the protein’s function. When some residues are mutated, the
protein can no longer carry out its function. Other residues,
termed specificity-determining positions, when mutated can
cause the protein to carry out a modified function. For example,
if a certain residue in C/EBP is mutated from asparagine
to arginine, the mutant will specifically bind a different
DNA site (1). Finding these specificity-determining positions
is our primary interest here.

Experimental studies can tell us a great deal about which
positions are specificity-determining. For example, one could
try the other 19 amino acids at every position in the DNA-
binding region of C/EBP and measure their DNA binding to a

wide range of DNA sequences. The problem is that even in
this straightforward case where function is clearly defined
(specificity for a particular DNA sequence), these experiments
are expensive and time consuming.

There is a way in which protein sequence analysis can help.
Instead of exhaustively testing all possible mutant proteins
for potential functions, one can consider the extensive experi-
mentation that has taken place within the living cells. An
enormous amount of protein sequence data is now available
for a wide variety of organisms. We would like to use these
data to predict which positions are specificity-determining.

Others have used some of the available sequence data in the
past. These methods depend on a certain feature of specificity-
determining positions across proteins within the same family
of homologous sequences. Because mutations at specificity-
determining positions change the function of the protein,
they are generally conserved between proteins with the same
function, but tend to be distinct for proteins with different
functions.

Three previous methods typify the techniques that have
been used to consider the problem. First, some methods, such
as that of Tian et al. (2), attempt to find discriminating,
as opposed to specificity-determining residues. That is, they
search for a pattern of highly conserved residues that are
unique to proteins of a given function, yet also conserved
by homologous proteins. While these positions may corres-
pond to specificity-determining positions in some cases, the
goal of these methods is different and only treats function in a
binary way: proteins either have the correct function or they
do not.

Second, the evolutionary trace (3) method looks for
specificity-determining residues by using a gene tree to organ-
ize protein sequences. Beginning at the root, it then proceeds
through different levels of the tree, looking at the conservation
within each subtree. Proteins within a subtree are assumed to
have the same function so conservation of residues within all
subtrees may imply that they are important or specificity-
determining. This method has been very successful in finding
important residues and protein surfaces. The predictions, how-
ever, do not specify which residues are specificity-determining
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and which is important (e.g. for folding or stability) but not
specificity-determining. In one paper (4), the authors do par-
tition residues into important and specificity-determining
groups. No general method for doing the partitioning, how-
ever, is described in that work; a certain number of residues
closest to the root are described as important, while the next set
of residues further from the root are taken to be specificity-
determining.

Third, Mirny and Gelfand (5) presented, and others have
further used (6–8), a different, statistically based method that
searches specifically for specificity-determining residues. By
considering the mutual information between the overall dis-
tribution and the different orthologous groupings, each of
which is assumed to have a distinct function, they are able
to find specificity-determining positions in several bacterial
transcription factors. But this method has certain difficulties,
especially when large eukaryotic families are considered.
First, in many large protein families, particularly in euka-
ryotes, the orthology relationships are especially hard to define.
There are often a large number of homologous sequences in
each organism, making it hard to determine which protein in
an organism is orthologous to a protein in another organism.
Second, paralogs sometimes have the same general function,
such as DNA-binding specificity, though they differ in other
ways such as time of expression, location of expression or
inclusion of other protein domains. Third, because the rela-
tionships are hard to define, the original method is limited to
sequences where orthology relationships are well understood.
This limitation removes useful sequence information from the
dataset. For these reasons, we developed an alternative method.

Ideally, we would organize all proteins into groups based
on experimental functional information. All of the methods
presented in some way try to organize the proteins by their
functions, using orthology or gene tree position to approximate
a functional grouping. But since our experimental knowledge
of the detailed function of these proteins is limited to only a
small subset of known proteins, we would like to use a method
that can group proteins into functional groups based on the
information we do have, protein sequences.

In previous work, we developed a successful procedure for
functionally grouping all known protein sequences in a protein
family. The groups matched well with the experimentally
known functions of several eukaryotic transcription factor
families. Building off the statistical method of Mirny and
Gelfand (5), we will use the larger functional groupings that
our method provides, allowing us to consider all the available
sequence information.

Because of the experimental difficulty in finding specificity-
determining positions and in order to give the best test of the
available methods, we decided to study in detail two well
characterized families with a large amount of experimental
information, basic leucine zippers and nuclear receptors. Many
mutational studies have been carried out on these families,
and several crystal structures for each family are known. In
addition, the nuclear receptor family has been previously con-
sidered by evolutionary trace (3,4), allowing a direct compar-
ison with our technique. Finally, we found that our method
correctly predicts the specificity-determining positions for
these two families. It outperforms the other available methods
and allows us to make new predictions of other specificity-
determining residues in these families.

MATERIALS AND METHODS

The methods used in this paper come chiefly from two sources
which describes the respective algorithms more in detail (5,9).
These methods are described briefly below. We also discuss
the other methods used in this work.

Mutual information analysis

The maximum likelihood estimator (MLE) method, model 1 in
Mirny and Gelfand’s paper (5), was used for all of the different
methods described below, except evolutionary trace, which
was calculated elsewhere (4). The MLE method ranks each
residue position by how much it shows the conservation pat-
tern of a specificity-determining residue. It asks the question:
Is the residue conserved within each subgroup but different
between different subgroups? It does so by calculating, at a
particular position in the multiple sequence alignment, the
mutual information of the amino acid composition in each
subgroup at that position with the overall amino acid com-
position at that position. The mutual information is then
summed over all the subgroups.

Because mutual information can be biased for various reas-
ons, the statistical significance is determined by comparing the
mutual information to that found when the residues at a given
position are shuffled vertically. Since proteins in each group
are more similar to each other than the other groups, the
shuffled mutual information will generally be lower than
the calculated mutual information. To correct this, the expec-
ted mutual information is calculated based on fitting the
shuffled scores to the actual mutual information by minimiz-
ing the sum of the squares of the Z-scores. These Z-scores are
then used to measure the significance of each position as
specificity-determining.

Only positions with <30% gaps in the alignment were used
to ignore less important positions. For the main analysis and
Figures 1 and 2, we shuffled the columns 105 times. For
Figures 3 and 4, the columns were shuffled 104 times. Only
minor differences are observed between the Z-scores produced
by shuffling 104 or 105 times.

Three methods of grouping proteins

We use the MLE method described above on three different
groups of protein sequences for each family. In the ideal case,
we would group all known sequences into groups based on
their known function. For example, all basic leucine zippers
that bind to TGACGTCA would be in one group while those
binding to TGACTCA and [G/C]TCAY would be in different
groups.

The problem is that the DNA-binding specificity is not
known experimentally for the vast majority of known protein
sequences. There are at least three ways of grouping the pro-
teins given many sequences and a limited amount of experi-
mental data. The most obvious method, which we call the
‘functional grouping method,’ groups the proteins based on
their known binding specificities and discards the remaining
protein sequences. Proteins are put in the same group if they
share the same function (DNA-binding specificity), but differ-
ent groups if they have different functions. While this may be
an excellent way of grouping proteins, discarding the vast
majority of sequences removes much of the information
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that could be used to determine whether a position is
specificity-determining or not.

The other two methods described uses the sequences them-
selves to approximate which proteins share the same function.
The ‘orthology method’ groups proteins by inferred orthology
relationships based on their amino acid sequences and the
organism in which it is found. Orthologs are expected to share
the same function. Therefore, calculating the MLE method
using this orthologous grouping might also find specificity-
determining residues. In fact, this is the technique that Mirny
and Gelfand (5) introduced in their paper. Because of the strict
requirements of defining orthologs and the challenges of doing
so in eukaryotes, the number of sequences that are used by this
method is also much smaller than the total number of
sequences. Again, much useful information is lost.

As a third alternative, our method uses the entire dataset of
known sequences. The proteins are grouped by sequence sim-
ilarity based on the giant component (described below and in

our previous work). Because we do not discard any of the
known homologous sequences, we do not lose the information
that the other methods do.

Clustering based on giant component

We grouped the protein subsequences using single-linkage
clustering by global sequence identity (9,10). Because differ-
ent families have different levels of sequence identity between
homologous sequences, we developed a method of estimating
the sequence identity cutoff that would best group proteins
of the same function together. The cutoff was chosen by
considering the size of the largest cluster (termed the giant
component in graph theory). As one scans across sequence
identity cutoffs, the giant component transitions from contain-
ing all proteins under consideration (if 0% sequence identity is
required) to only a single protein (if 100% sequence identity is

Figure 1. Plot of score for basic leucine zipper DNA base specificity-
determining residues versus the number of predictions considered. The vertical
lines represent the number of the last prediction with a Z-score >3.0.

Figure 2. Plot of score for nuclear receptor DNA base specificity-determining
residues versus the number of predictions considered. The vertical lines
represent the number of the last prediction with a Z-score >3.0.

Figure 4. Plot of giant component size and score for nuclear receptor DNA base
specificity-determining residues predicted using the top ten predictions for
all possible different sequence identity cutoffs.

Figure 3. Plot of giant component size and score for basic leucine zipper DNA
base specificity-determining residues predicted using the top eight predictions
for all possible different sequence identity cutoffs.
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required). In previous work (9), we found that the midpoint of
the transition, when the transition is sharp, provides an excel-
lent estimate of the best sequence identity cutoff. Likewise
Figures 3 and 4 shows that, the most correct specificity-
determining residues are predicted at the transition in the
giant component for both families. For our analysis we will
use the sequence identity cutoff at the midpoint of the giant
component transition (where 50% of the sequences are in the
giant component).

Bernoulli estimator

Following the method used by Kalinina et al. (7), we calculate
the number of positions that are significant using a Bernoulli
estimator. The estimator calculates the most likely number of
significant Z-scores from a distribution of Z-scores, assuming a
Gaussian distribution.

For basic leucine zippers our method and the functional
grouping method predicted eight positions while the orthology
method predicted four positions. For the nuclear receptor
family, the methods predicted 11, 9 and 46 positions, respect-
ively. In order to compare the results meaningfully, we used a
uniform number of predictions for each method within a fam-
ily, set at eight for basic leucine zippers and ten for nuclear
receptors.

Score

To compare the different methods, we primarily use a simple
scoring metric defined as:

Score ¼ TP

TP þ FN þ FP
‚

where TP is the number of true positives (DNA specificity-
determining residues predicted), FN is the number of false
negatives (DNA specificity-determining residues not pre-
dicted) and FP is the number of false positives (residues
not known to be specificity-determining predicted). Only resi-
dues that have been shown experimentally to change DNA
base specificity are considered true specificity-determining
residues; all other residues are considered as false positives,
if predicted by a method. Because of the less important and
less clear role in binding specificity, we do not consider as
specificity-determining positions where mutations have been
shown only to increase or decrease specificity, to change half-
site spacing specificity or to affect orientational specificity.
Since only a few positions have been exhaustively mutated,
and these only for a single protein, there are likely to be
other residue positions that are specificity-determining.
The scores presented should therefore be considered a
lower bound. This overly strict definition of specificity-
determining residues allows us to compare the methods
despite limited mutational data.

Because of the differences in the methods, particularly the
much larger Z-scores for our method, we compared the meth-
ods in two different ways. First, we considered the top eight or
ten predictions based on the results of the Bernoulli estimators.
Second, we considered all residues above a certain level of
significance, 3.0, to understand how statistical significance
affects the methods’ abilities to predict true specificity-
determining residues. Tables showing all positions with
Z-scores >3.0 are given in Supplementary Tables 1 and 2.

In Supplementary Figures 3 and 4, we also present the results
of the Matthew’s correlation coefficient (11). The coefficient
ranges from �1 to 1, with 1 signifying the best predictive
power. The Matthew’s coefficient provides very similar results
to the simple score described above. The coefficient is defined
as follows:

MCC ¼ TP · TN�FP · FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þ

p :

Sequence selection

Following our previous work, we used protein family profiles
and patterns from PROSITE (12) to select proteins from the
NCBI non-redundant protein database, April 24, 2004 edition
(13). The subsequence of each protein selected by the profile
or pattern for the conserved domain was then used. Using only
subsequences instead of whole protein sequences reduces the
noise in the alignment and focuses the analysis in the most
highly conserved part of the protein where the specificity-
determining positions are most likely to occur.

For basic leucine zippers, the pfscan program (14) uses the
PROSITE profile (PS50217) to select the basic region, hinge
and leucine zipper region. The nuclear receptor pattern of
PROSITE (PS00031) selects the N-terminal finger of the
region; we extended this pattern to include the next 75 residues
because experiments have shown that this region is also
conserved and important for the proper functioning of the
protein (15). 1255 basic leucine zippers and 1379 nuclear
receptors were found. In our method we use these full
sequence sets.

The functional grouping method limits the dataset to those
proteins with known binding specificities, reducing the dataset
to 139 basic leucine zippers and 209 nuclear receptors. The
groupings were determined by an extensive literature search,
described more in detail in our previous work (9). The sub-
sequences were also taken from the non-redundant protein
database dataset so that no small differences in protein
sequence would affect the results. Because our functional
data is for proteins listed in SWISSPROT (16), the sub-
sequences were chosen by comparing the SWISSPROT sub-
sequence to the full dataset using a BLAST search (blastall
version 2.2.9) (17). The correct protein was then chosen by
searching the highest hits for the protein that contained the
correct protein name and organism. One basic leucine zipper
was not found in the non-redundant dataset (TGA2_ARATH)
and so was left out of this dataset.

Finally, for the orthology method, we used the KOG data-
base of eukaryotic orthologous groups (18) to organize the
proteins into orthologous groups. The same PROSITE search
methods were used to find the proteins that contained basic
leucine zipper or nuclear receptor motifs. This resulted in 101
basic leucine zippers and 140 nuclear receptors.

We primarily use the KOG database of orthologous groups
because it is a consistent method of finding orthologs based
on the success of the COG database (18,19). Because of the
complexity of orthologous relationships in eukaryotes, we also
present for a comparison an alternative method of grouping
sequences by orthology. The results of this method are presen-
ted in Supplementary Figures 1 and 2 and Supplementary
Tables 1 and 2. In the alternative method we used
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the PROSITE websites (12) (April 4, 2005 edition) to organize
the proteins into orthologous groups based on their protein
names. Proteins were grouped together if they had the same
SWISSPROT (16) protein name but come from different
organisms. Two proteins were not found in the non-
redundant dataset for basic leucine zippers (FCR3_CANAL
and TGA2_ARATH) and four for nuclear receptors
(ERR3_PONPY, ERR3_RAT, THA_NECMA and THB_
CAIMO) and so were left out of the dataset.

Numbering

There are different possible ways of numbering the proteins.
For the basic leucine zippers, an alternative method is to
count back from the first leucine of the leucine zipper. For
the nuclear receptors, a standard numbering system has been
developed for the DNA-binding domain. These numbering
systems are presented in the supplementary material, along
with the full protein numbering of a representative protein
used in the text: yeast GCN4 for basic leucine zippers and
rat glucocorticoid receptor for nuclear receptors.

Alignments

The alignments used for calculating mutual information were
created with CLUSTALW (20), using the default parameters.
The alignments used for our method are also shown in the
Supplementary Materials.

RESULTS

We present the results of our method for two different protein
families: basic leucine zippers and nuclear receptors. In order
to test the validity of the predictions of our method, we com-
pare the results to the large amount of experimental informa-
tion, both mutational and structural, that is available for the
DNA-binding domains for these proteins. While not every
position in the proteins has been studied extensively, there
is a large amount of information available. The known muta-
tional data also allows us to compare the different methods
with a simple scoring metric.

As described in Materials and Methods, there are several
possible ways of grouping proteins that could be used with
Mirny and Gelfand’s mutual information method. Our method
uses sequence information to group all known proteins. For
comparison, we also present the results of three other methods,
each of which limits the size of the dataset because of the
information it needs to group the proteins. The functional
grouping method groups proteins with known DNA-binding
specificity. The orthology method limits the dataset to those
proteins for which an orthology relationship can be determined
and groups orthologs in the same group and paralogs in dif-
ferent groups. Finally, the evolutionary trace method uses a
different method of finding specificity-determining residues
but is presented for the nuclear receptor family for comparison.

Basic leucine zippers

The basic leucine zipper domain is an extended helix. The
N-terminal end binds the DNA and is basic. The C-terminal
end is used for dimerization and is amphipathic (21). Because
a commonly studied basic leucine zipper is the yeast protein
GCN4, we will use its full protein numbering to identify

the residues. A different numbering scheme is shown in the
Supplementary Materials.

Based on the Bernoulli estimator of Kalinina et al. (7)
(Materials and Methods), we will focus particularly on the
top eight predicted residues. Figure 5 shows the residues pre-
dicted by our method, all of which are found in the N-terminal
DNA-binding region.

Agreement with mutational studies. Position 236 scores most
highly with our method and is also found experimentally to be
very important for determining specificity. A mutation at this
position converts the DNA half-site binding specificities from
C/EBP to TAF-1 (1) or from GCN4 to C/EBP (22). A double
mutant, at this position and at position 238, converts GCN4
specificity to that of TAF-1 (1). In addition, an alanine scan-
ning experiment found that this positions also plays a role in
CREB determination of the correct spacer length between
DNA half-sites (23). The experimental data at position 236
matches its selection by our algorithm as the most statistically
significant position.

The second ranked position, 238, also has experimental data
supporting its role in determining specificity. While no role
in distinguishing between two plant basic leucine zipper sites
was found (24), as mentioned above a double mutation invol-
ving this position converts GCN4 to TAF-1 DNA-binding
specificity (1). Also, a mutation not found in known bzip
proteins at this position broadens the specificity of GCN4 at
the ±3 position of the binding site (25).

Figure 5. Crystal structure of GCN4 bound to DNA (pdb:1YSA) (62). The
eight predicted residues for the basic leucine zipper family are shown in VDW
representation. The top ranked residue is colored red and the eighth is colored
blue, with the colors shifted stepwise from red to blue for residues two through
seven. The protein is shown in ribbon representation (colored black) and the
DNA in lines representation (black). Figure made using VMD (63).
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The third ranked position is 239. A mutation here has been
found to change the specificity at the ±2 position of the binding
site for GCN4 (25). A second mutation at position 242, the
eighth ranked position, enhances this change in specificity. A
triple mutant of positions 236, 238 and 239 has been shown
to convert GCN4 specificity to that of C/EBP (1). A systematic
mutational study of this position in GCN4 (26) has also shown
that several mutants bind specifically to different half-site
sequences. Also, another study showed that a mutation of
this position in C/EBPb affects the strength of DNA target
specificity (27).

Position 246 is the fourth ranked position. Johnson did not
find a role for this residue in the specificity difference between
GCN4 and C/EBP when he considered a triple mutant (22).
However, a mutation at this position, in combination with a
different mutation at position 242, does change the specificity
of GCN4 at the ±2 position of the binding site (25). Both
mutations are necessary for this specificity change.

The fifth and sixth ranked positions, numbers 234 and 232,
have not been studied extensively for a role in determining
specificity. To our knowledge, the only mutational studies at
these positions were carried out in an alanine scanning experi-
ment (23). A replacement with alanine at position 234 in the
CREB basic leucine zipper decreases specificity for the correct
spacer length between DNA half-sites. Only two mutations
had this behavior. The other residue was position 236, which is
very important for determining DNA-binding specificity (see
above). Therefore, we expect that residue 234 is also important
for specificity.

Montclare et al. (23) also replaced the hydrophobic CREB
residue (a leucine) at position 232 with alanine and found
no major effect. For most basic leucine zippers, this residue
is basic. Mutations to a basic residue at this position may
have an important effect, especially since this residue is
found to contact phosphate groups (28). More experimental
study is needed to determine the role of this protein in DNA
binding.

A particularly interesting specificity-determining residue
is the seventh ranked residue, position 235. This position is
highly conserved in natural bzip proteins, but two groups
(29,30) found that mutating this residue changes the specificity
of the protein. When GCN4 is bound to DNA with a two base
pair spacer between the half-sites, an asparigine to tryptophan
mutation alters specificity at the ±3 position of the binding site
(29). When GCN4 is bound to DNA with a one base pair
spacer, the same mutation alters specificity at the ±4 position
of the binding site and discriminates much more strongly
against a binding site mutation (30).

A small group of basic leucine zippers typified by the
protein gadd153/Chop10 also do not have the conserved
asparagine at this position; the proteins have a conserved
glycine. A gadd153/Chop10-C/EBP dimer binds a DNA
sequence unique to basic leucine zippers (31) and also inhibit
certain other basic leucine zippers by forming an inactive
heterodimer (32). Like the mutational data, this points to
an important functional specificity-determining role for this
residue.

Finally, position 242 is the last predicted specificity-
determining residue. This position broadens the specificity
of GCN4 when the native serine is mutated to cysteine,
phenylalanine, histidine or tryptophan (33). As noted above,

position 242 is also a part of double mutants with residue 239
and residue 246 that were found to cause half-site specificity
changes (25).

The predicted residues, except for the relatively unstudied
position 232, have all experimental data supporting their role
as specificity-determining residues.

Agreement with structural studies. We also considered the
crystal structure (28) of the commonly mutated bzip protein,
GCN4 (Figure 5). The first three predicted positions, 236, 238
and 239, directly contact the DNA bases, as well as the seventh
ranked position, 235. The fourth ranked position, 246, contacts
a base through a water mediated contact. Finally, the remain-
ing three significant positions (232, 234 and 242) contact the
phosphate backbone.

Other methods. We next predicted specificity-determining
residues using groups based on, (i) the limited set of known
protein function (here DNA-binding specificity), and, (ii)
known orthology relationships, closely following Mirny and
Gelfand (5) (Materials and Methods). Table 1 shows the pre-
dictions of these methods more in detail, with residue positions
shown to modify half-site base specificity underlined. Also
shown are the Z-scores, which correspond to the predicted
significance of the prediction.

The functional grouping method ranks position 245 first,
while the orthology method ranks position 241 in the seventh.
Haas et al. (34) have shown that a double mutation of these
two position in the basic leucine zipper VBP broadens the
number of different sequences that are bound, but does not
change the high affinity binding site consensus. Therefore,
these positions appear not to be as important as several
other positions, underlined in Table 1. With its final significant
prediction, the functional method did predict one additional
position that the other methods did not rank highly position
247, which affects spacer preference for GCN4 (25). This
position does not change the actual DNA base specificity
and so it also appears to play a less important role than
some of the other residues, such as 235, which was not pre-
dicted by either the orthology or functional grouping methods.

The orthology method also predicts one residue, position
228, that enhances the 236–239 double mutation described
above. However, it makes only an insignificant change in
specificity as a single mutation (22). An alternative method
of grouping proteins by orthology based on the protein names

Table 1. Basic leucine zipper results

Rank Clustering Function Orthology

1 236 (10.4) 245 (6.35) 236 (6.79)
2 238 (9.54) 238 (5.04) 232 (6.50)
3 239 (8.40) 232 (3.94) 234 (6.42)
4 246 (7.59) 236 (3.64) 238 (6.32)
5 234 (7.09) 246 (3.23) 242 (5.37)
6 232 (6.68) 234 (2.94) 228 (4.43)
7 235 (6.28) 239 (2.92) 241 (4.07)
8 242 (6.24) 247 (2.90) 233 (3.56)

Our method is labeled as ‘Clustering’, the functional grouping method is labeled
as ‘Function,’ and the orthology based method is labeled as ‘Orthology.’
Residues that are experimentally known to play a role in DNA half-site speci-
ficity are underlined. Z-scores for the different methods are represented in
parenthesis.
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(Materials and Methods) was also used (Supplementary
Figure 1 and Supplementary Table 1) and it was likewise
unable to predict many of the half-site base specificity-
determining residues.

Score. In order to have a consistent method of comparing our
results, we selected the residues that have been shown through
mutational studies to be able to change the DNA half-site
bases specificity. We will use this overly strict definition of
specificity-determining residues so that we can be confident
that these positions should be predicted by any method. These
are positions 235, 236, 238, 239, 242 and 246, which are
described above.

Based on the selection of these residue positions as
specificity-determining, we define a simple scoring metric,
the number of true positives over the number of true positives,
false positives and false negatives (Materials and Methods).
The results are shown in Figure 1.

First, we look at the top eight predictions for our method
and the other methods described above. Mirny and Gelfand’s
orthology method (5) predicts one-half of the specificity-
determining positions in the top eight, while the functional
grouping method predicts two-third in its top eight predictions.
On the other hand, our method predicts all six.

Second, we considered only those predictions that are stat-
istically significant by a cutoff in Z-score instead of using the
Bernoulli estimator. For comparison purposes, we consider
those predictions that have a Z-score >3.0 to be statistically
significant. The vertical lines in Figure 1 show where the
different methods reach the 3.0 cutoff. Our method is able
to find all the specificity-determining residues, while both
the orthology and functional grouping methods finds only
one-half of these residues. It should also be noted that our
method gives the most statistically significant predictions,
probably because it includes a much larger number of
sequences. It appears that the Bernoulli estimator provides a
better estimate of the number of residues that are specificity-
determining than a fixed Z-score cutoff.

Nuclear receptors

The nuclear receptor family conserves a DNA-binding struc-
ture with two zinc fingers (15). The N-terminal finger and the
linker between these fingers are primarily responsible for DNA
binding. The C-terminal end does contact the DNA in certain
proteins and can extend the recognized DNA motif (35). This
finger is also believed to play a role in dimerization. Nuclear
receptors can dimerize in different orientations, termed head-
to-head or head-to-tail, and different spacer lengths, with
different dimerization partners. The different dimerization
choices lead to the recognition of different DNA sequences.
For this reason, the dimerization interface also plays an
important role in nuclear receptor DNA-binding specificity.
Rat glucocorticoid receptor is a commonly studied protein
of this family, and we will use its full protein numbering to
identify residue positions (Figure 6). Because the Bernoulli
estimator did not give the same number of predictions for the
different methods, we considered the top ten predictions for
each method (Materials and Methods).

Agreement with mutational studies. Nuclear receptors bind
only to two main core six base sequences: AGGTCA, typified

by the estrogen receptor, and AGAACA, typified by the glu-
cocorticoid receptor (15). For many years, three residue posi-
tions (458, 459 and 462) have been known to determine this
specificity (36,37). Our algorithm (Table 2) correctly chooses
these residues, ranking them first (462), second (459) and
seventh (458). In addition, a recent study (38) has determined
that two more residues (465 and 469) are important for the
distinct specificities of the vitamin D receptor (GGTCA) and
the glucocorticoid receptor. These positions were also chosen
by our method and ranked fifth and tenth.

Position 490, ranked fourth by our method, along with the
unselected position 488, has also been shown to play a role in
an important function of certain nuclear receptors, interference
with the NF-kB pathway by interaction with RelA. Mutation
of this position abolishes the ability of GCR to inhibit this
pathway (39). While not a part of nuclear receptor DNA bind-
ing, this pathway is of great importance to the cell (40).

Position 493 has been studied structurally in detail by others
(41,42). A mutation of the rat glucocorticoid receptor proline

Figure 6. Crystal structure of GCR bound to DNA (pdb:1R4R) (49). The ten
predicted residues for the nuclear receptor family are shown in VDW repre-
sentation. The top ranked residue is colored red and the tenth is colored blue,
with the colors shifted stepwise from red to blue for residues two through nine.
The protein is shown in ribbon representation (colored black) and the DNA in
lines representation (black). Figure made using VMD (63).

Table 2. Nuclear receptor results

Rank Clustering Function Orthology ET

1 462 (15.9) 513 (4.89) 465 (4.89) 458
2 459 (13.4) 459 (4.33) 506 (3.16) 459
3 493 (13.3) 467 (4.23) 468 (3.06) 462?
4 490 (11.7) 493 (3.75) 449 (3.02) 465
5 465 (10.3) 465 (3.11) 442 (2.88) 490
6 452 (9.86) 450 (2.96) 456 (2.84) 493
7 458 (8.68) 458 (2.73) 459 (2.60) 511
8 467 (8.31) 462 (2.61) 472 (2.54) 513
9 491 (8.16) 507 (1.75) 441 (2.42)

10 469 (7.97) 469 (1.65) 450 (2.11)

Our method is labeled as ‘Clustering’, the functional grouping method is labeled
as ‘Function,’ and the orthology based method is labeled as ‘Orthology.’ ‘ET’
stands for evolutionary trace; these are the predictions presented unranked
by Lichtarge et al. (4) and are listed sequentially here. The question mark
for evolutionary trace predicted positions 462 signified that this position was
not originally found by their algorithm but argued for because of improper
pruning. Residues that are experimentally known to play a role in DNA half-
site specificity are underlined.
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at this position to the arginine seen in other proteins causes the
protein to become transcriptionally active even when not spe-
cifically bound to DNA. It has been proposed that this muta-
tion causes a structural change that mimics the effect of
binding to the specific DNA target. Mutations at this position
affect the activation of these receptors, vital for the function of
many of these proteins.

The ninth ranked position, 491, has not been shown to play a
role in specificity through mutagenesis studies. The role of this
position can be better understood by considering the known
crystal structures.

Agreement with structural studies. Interestingly, position 491
is part of the dimer interface in all nuclear receptor dimer-
DNA crystal structures we considered (43–51). It is in contact
in the structures that form homodimers and heterodimers as
well as head-to-head and head-to-tail structures. This position
may play an important role in DNA specificity by modifying
the way in which the proteins dimerize. In support of this, one
mutational study (52) showed that changing this residue posi-
tion in human estrogen receptor a from serine to glutamic acid
does interfere with dimerization in the absence of estrogen.
Otherwise, the position has not been well studied experiment-
ally, particularly for its role in specificity of dimerization.

It is also interesting to note that none of the methods,
including evolutionary trace, predict there to be specificity-
determining residues in the D-box (37), involved in dimeriza-
tion, or the A-box, involved in binding to the DNA minor
groove in certain proteins (35).

Other methods. First, we consider the ability of the functional
grouping and orthology methods to predict the known
specificity-determining residues (Table 2). Again, our method
has the highest statistical significance of its predictions. The
functional grouping method is able to predict all of the known
DNA base specificity-determining positions in its first ten
predictions, though it ranks position 462 less highly. It also
highly ranks two positions, 507 and 513, in the T-box (35).
This box forms a third helix in the nuclear receptor RXRb that
is part of that protein’s dimerization interface. In addition,
both this method and the orthology method predict another
residue position, 450, that Moraitis et al. (53) have shown to
be one of the four positions involved in the comparative
dimerization of RevErbAa and RORa.

However, the orthologous group method of Mirny and
Gelfand (5) misses positions 458, 462 and 469. It also predicts
one position in the T-box, 506, as significant. The fourth
ranked position, 449, has been found to change the affinity
of DNA binding for androgen receptors (54) but not for glu-
cocorticoid receptors (55), and also affects androgen receptor
binding to SNURF (56). The sixth highest ranked position,
456, has been shown (53) not to play a role in the different
dimerizations of RevErbAa and RORa described above and
no other molecular functional information is known. No func-
tional information is available for several predicted positions,
numbers 441, 442 and 472. In addition, a mutation in position
429 has only been reported in androgen receptors, and it has
a very similar transactivation response to the wild-type (57).
Again, the alternative method of grouping proteins by ortho-
logy based on the protein names (Materials and Methods)
was also used (Supplementary Figure 2 and Supplementary

Table 2). It was likewise unable to predict many of the half-site
base specificity-determining residues.

Second, we are also able to consider our results against
those of the evolutionary trace algorithm which has studied
this family of proteins (4). Their method made six predictions
(Table 2). They argue that misclassification of the v-erbA
protein prevents them from predicting a seventh position,
462. Several of the predicted positions are not known to
play a role in DNA base specificity. Two of these, 511 and
513, are in the T-box. The other, 489, may play a role in
MAPK function (58), but no molecular evidence of its role
is available, to our knowledge.

The score for the evolutionary trace method, when position
462 is included, is 0.44. If position 462 is not included, the
score is 0.33. The score of our method when ten positions are
predicted is 0.5 (Figure 2).

Score. For the nuclear receptor family, we repeat the same
scoring technique that was used in the basic leucine zipper
case. For this family, positions 458, 459, 462, 465 and 469
were classified as specificity-determining residues by our strict
definition. Again, our method matches or outperforms the
other methods, using both the top 10 rankings and the number
of positions with Z-score >3.0 (Figure 2). As in the basic
leucine zipper case, the Bernoulli estimate for our method
and the functional grouping method (Materials and Methods)
provides a better choice of the number of positions to consider.

DISCUSSION

We briefly describe some of the results of the method on basic
leucine zippers and nuclear receptors more in detail. First we
will compare our method to the results of the two other group-
ing methods, then to the evolutionary trace method for the
nuclear receptor family. Our method outperforms each of the
other available methods. We believe that this is primarily due
to the fact that it is able to use approximately an order of
magnitude more sequences than the other methods. Finally,
we will present conclusions and future directions for this work.

Experimental evidence for predictions

All of the methods compared in this paper are able to find some
of the residues that affect the specificity of the protein. When
we compare the methods (below), our method, which uses all
available sequences for a given protein family, is able to pre-
dict the largest number of specificity-determining residues.
It also predicts the most important specificity-determining
residues highest.

Correct overall predictions. We count only positions that
cause a change in specific DNA half-site specificity as
specificity-determining for the purposes of comparing the
methods (underlined in Tables 1 and 2). Using this definition
for the basic leucine zipper family, the clustering method is
able to predict the largest number of these DNA specificity-
determining positions, followed by the functional grouping
and finally the orthology method of Mirny and Gelfand (5).
According to our knowledge our method is able to predict
all the mutations that affect specificity for bases in the
DNA half-site. However, the functional grouping method
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misses one-third of the positions, and the orthology grouping
method to one-half.

For the nuclear receptor family, we classified the DNA
specificity-determining positions to be the five positions
that have been shown to affect core half-site DNA sequences
(36,37,59). Both our method and the functional grouping
methods predict all five positions in this case. The orthology
based grouping method, on the other hand, predicts only two-
fifth, while the ET method classifies three-fifth or four-fifth
while making a smaller total number of predictions.

Predicting the correct specificity-determining positions is
most important in order to determine the best positions to
study experimentally. Given that our method was best able
to find the correct specificity-determining residues, it would
also be helpful to rank these residues properly. That is, we
would like the residues that are most important for determining
specificity to be ranked highest.

Correct ranking. For the basic leucine zippers, the position
with the most experimental data pointing to its being important
for specificity is ranked first by our method and the orthology
method. The functional grouping method lists this position
fourth. Position 245 has been shown not to play a major
role in specificity in VBP and has not been shown to have
an important role in specificity for other proteins, but is ranked
first by the functional grouping method.

In the nuclear receptor family results, our method and the
functional grouping method both predict all five specificity-
determining residues, and give very similar rankings. Our
method does give a better ranking (first instead of eighth)
of the very important position 462, one of the first three posi-
tions found experimentally. For both families, our method is
better able to rank the correct specificity-determining residues.

Comparison to ET

ET is a very useful method for finding important residues
in a family of proteins. It is also able to predict specificity-
determining residues; although, a rigorous way of deciding
which positions are important for other reasons such as folding
and stability, and which are specificity-determining still needs
to be developed. The original method requires a careful prun-
ing of the sequences (60). For example, an online ET site (61)
is unable to predict any positions when the full set of
sequences used in this study was submitted. A recent paper
(60) has presented a method that removes the requirement of
pruning the sequence database, but it does not describe a way
of finding specificity-determining residues. In the future,
however, it may serve as a complimentary way of finding
specificity-determining residues because it searches for
these positions in a different way.

For the nuclear receptor family, the original evolutionary
trace algorithm (3,4) was able to predict most of the known
DNA specificity-determining residues. It originally misses one
(position 462) because of incorrect sequence removal, as they
discussed (4). This missed position is one of the most import-
ant positions (ranked first by our method). The method also
misses position 469, a DNA specificity-determining position,
and position 491, which may play an important role in
dimerization. While potentially useful, the evolutionary
trace method does not predict all of the known specificity-
determining residues, nor does it provide a ranking of the

positions it does predict. However, our method was successful
in both of these tests.

New predictions

Given the verification of the results for our method, the most
exciting next step is to be able to make new predictions. While
we tested our method here on two very well studied families of
proteins in order to provide the best benchmarks, we still are
able to make a few predictions of residues that may play an
important role in determining functional specificity of these
families. For the basic leucine zippers, position 232 has not
been well studied experimentally to our knowledge, but does
contact the phosphate backbone and may play an important
role in positioning the protein. For the nuclear receptor family,
the prediction of position 491 matches its occurance in dimer
interfaces, but, to our knowledge, an in-depth study of muta-
tional effects on dimerization has not been carried out.

CONCLUSIONS

We have presented a simple, consistent method to find
specificity-determining residues from a family of related pro-
tein sequences. The predicted residue positions closely match
the experimentally known specificity-determining positions.
New predictions are made for other residue positions that
may also play a role in functional specificity.

One of the primary benefits of our method is that it is able
to use all the available sequences from a particular protein
family. Other methods generally need to remove many of the
known sequences so that the algorithm works correctly, espe-
cially for large eukaryotic families. Typical ET, e.g. depends
on a complicated or manual pruning method (3,60). Methods
that depend on orthology can only use sequences where an
orthology relationship can be determined. Likewise, the func-
tional grouping method we present for comparison depends
on our limited experimental knowledge of many proteins’
functions. Since information is contained in every known pro-
tein sequence, methods that prune their dataset lose some
of this information. Our method’s superior results are likely
due at least in part to the fact that it uses all of the available
sequences. We expect that our method will be successful
wherever there is a wealth of sequence information, and
look forward to the results of studying other protein families.

Future directions

The method provides several directions for further study for
these and other protein families. First of all, the results predict
residues that can be tested for their roles in determining the
specific function of the proteins in a given family. Predicted
positions may also be used as a starting point for protein design
on a family that has yet to be studied experimentally. In the
future, we plan to provide a web server that will present
the results of this method for these and many other protein
families.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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