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Objective: To investigate the complex interplay between fertility treatment, multiple gestations, and prematurity.
Design: Retrospective cohort study linking the national Center for Disease Control and Prevention infant birth and death data from
2014 to 2018.
Setting: National database from Center of Disease Control and Prevention.
Patients: In total, 19,454,155 live-born infants with gestational ages 22–44 weeks, 114,645 infants born using non IVF fertility
treatment (NIFT), and 179,960 via assisted reproductive technology (ART).
Intervention: Noninvasive fertility treatment or ART vs. spontaneously conceived pregnancies.
Main Outcome Measures: The main outcome assessed was prematurity. Formal mediation analysis was conducted to calculate the
percentage mediated by multiple gestations.
Results: Newborns born using NIFT or ART compared with those with no fertility treatment had a higher incidence of multiple gesta-
tion (no fertility treatment ¼ 3.0%; NIFT ¼ 24.7%; ART ¼ 32.7%; P< .001) and prematurity (no fertility treatment ¼ 11.2%; NIFT ¼
23.4%; ART¼ 28.4%; P< .001). Mediation analysis demonstrates that 76.8% (95% confidence interval [CI], 75.2%–78.1%) of the effect
of NIFT on prematurity was mediated through multiple gestations. Similarly, 71.2% (95% CI, 70.8%–72.7%) of the effect of ART on
prematurity is mediated through multiple gestation. However, the direct effect of NIFT on prematurity is 20.4% (95% CI, 19.0%–

22.0%). The direct effect of ART was 24.7% (95% CI, 23.7%–25.6%).
Conclusion: A significant proportion of prematurity associated with fertility treatment is mediated by the treatment itself, independent
of multiple gestations. (Fertil Steril Rep� 2023;4:313–20. �2023 by American Society for Reproductive Medicine.)
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P reterm delivery is the most
important predictor of neonatal
morbidity and mortality world-

wide, and accounts for up to 10% of
all births (1–4). Risk factors for
preterm birth are numerous and
include multiple maternal conditions
and multiple gestational pregnancies
(5–8). The use of assisted reproductive
technology (ART), which includes
in vitro fertilization (IVF) and
intracytoplasmic sperm injection
(ICSI), continues to increase annually,
accounting for approximately 2% of
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live births in the US in 2018 (>73,000
live births) (9). The use of non IVF
fertility treatment (NIFT), which
includes the use of ovarian
stimulating drugs, accounts for
approximately 3%–7% of births (10).
Although most children conceived
using ART or NIFT are healthy and
develop normally, reports of adverse
neonatal outcomes are concerning,
most notably the two- and threefold
increase in preterm births (6, 11–16).
In fact, ART accounted for 5.1% of all
preterm births in the US in 2018 (9).
pted May 31, 2023.
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Several factors associated with
ART are known to predispose to pre-
term birth, such as the high incidence
of multiple gestational pregnancies
and maternal comorbidities that
include gestational diabetes and hyper-
tensive disorders of pregnancy (2, 6,
17–19). It has been postulated that
these maternal conditions are an
expression of an adverse maternal-
fetal environment (AMFE) (20–23).
Although it has been shown that the
increasing adoption of single embryo
transfer led to a decrease in multiple
gestation, the effect of multiple
gestation and AMFE on the increased
rates of prematurity in neonates
conceived with the help of NIFT or
ART has never been quantified.

We performed the largest
population-based study in the US to
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date to investigate the interplay between ART and NIFT and
preterm birth, with particular focus on multiple gestation and
AMFE as mediators. We hypothesized that multiple gestation
and AMFE largely explain the increased rates of prematurity
in neonates conceived with the help of ART or NIFT.
MATERIAL AND METHODS
The Center for Disease Control and Prevention (CDC) provides
yearly linked birth and infant death public use files. These da-
tasets contain all live births in the US from a given year, with
birth certificate data linked to death certificates during the
first year of life. In 2014, the universal adoption of the revised
birth certificate (introduced initially in 2003) became manda-
tory for all states. Thus, for this study, we compiled data files
for the years 2014–2018. The revised birth certificate includes
several changes important to this investigation, including a
notation for NIFT and ART. A link to download the data files
and detailed documentation of each item collected on the
birth and death certificates is available at https://www.cdc.
gov/nchs/data_access/vitalstatsonline.htm.

Included in the study cohort were all live-born infants
with gestational age (GA) at birth >22 and <44 weeks. We
excluded infants when their birth certificates did not include
information on fertility treatment.

The primary outcome for this study was preterm birth,
defined as GA <37 weeks. For the revised birth certificate,
GA is determined with the use of a combination of the best
clinical and obstetric estimates (24); it had been imputed in
1.4% of all cases in the data files. Our primary predictors
were the 2 different forms of fertility treatment: NIFT and
ART. We classified each pregnancy into one of 3 groups using
fertility treatment status (NIFT, ART, and no fertility treat-
ment). We defined AMFE as any of the following: gestational
diabetes, gestational hypertension, preeclampsia, or
eclampsia present on the birth certificate. For the small num-
ber of patients for whom these conditions were not collected,
they were considered absent (n ¼ 17,276).

First, descriptive statistics were calculated for baseline
characteristics among the 3 groups: NIFT, ART, and no
fertility treatment (controls). Chi square was used to compare
percentages, and analysis of variance was used to compare
means.

We identified covariates that were potential confounders
in the relationship between fertility treatment and preterm
birth: maternal race and ethnicity, maternal education, insur-
ance status, pregestational diabetes or hypertension, maternal
obesity, smoking, and maternal age. We adjusted for these
confounders in the following 2 analyses: first, to assess a po-
tential interaction between fertility treatment and multiple
gestation for the outcome of preterm birth, we calculated
adjusted risk ratios (ARRs) for the proportion of neonates
born at different GAs in each of the 3 exposure groups (no
fertility treatment, NIFT, and ART). Gestational age was cate-
gorized according to convention into <32 weeks (extremely
preterm neonates), 32–33 weeks (moderately preterm neo-
nates), 34–36 weeks (late preterm neonates), 37–38 weeks
(early term neonates), and R39 weeks (full-term neonates).
We used full-term neonates (GAR39 weeks) as the reference
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category, and we stratified this analysis using single and mul-
tiple gestations. Second, temporal trends across the years
2014–2018 for multiple gestation and prematurity were as-
sessed for each of the 3 groups by calculating adjusted abso-
lute risk reduction (ARD).

On the basis of current evidence, we developed a directed
cyclic graph (DAG) a priori to depict the presumed relation-
ship between fertility treatment, multiple gestation, AMFE,
and prematurity. Multiple gestation and AMFE were candi-
date mediators in the relationship between fertility treatment
and prematurity. For a variable to be considered a mediator,
the following conditions need to be met: first, the mediator
needs to be associated with the primary predictor (i.e., NIFT
or ART, respectively); second, the candidate mediator needs
to be associated with the outcome (i.e., prematurity). The first
condition was shown using descriptive statistics (chi square
test). To assess the second condition, we used univariable lo-
gistic regression. We also present traditional multivariable lo-
gistic regression for the association of NIFT, ART, and
prematurity, adjusting for the above-mentioned confounders.
Results are reported as odds ratios (ORs) with 95% confidence
intervals (CIs).

For the mediation analysis, we used structural equation
modeling (SEM). To streamline the complicated mathematical
model, we matched the groups on the basis of the above-
mentioned confounders rather than adjusting for them in
the SEM model. We selected 2 controls without fertility treat-
ment for each case with fertility treatment (NIFT or ART) on
the basis of all confounders. Structural equation modeling
was then used to quantify the contribution of each pathway
in the DAG. Structural equation modeling is a multivariate
statistical framework that is used to model complex relation-
ships between multiple variables. It involves simultaneously
solving systems of linear equations and has been used to
perform mediation analyses (25). We calculated the propor-
tion mediated, which is the contribution of each mediation
pathway in the DAG as a proportion of the total effect of
the relationship between the predictor and outcome of interest
(prematurity). The total effect, then, is the sum of all the
possible pathways between the specific fertility treatment
and the outcome of prematurity, including any direct effect
of fertility treatment on the outcome. We used bootstrapping
with 500 iterations to obtain bias corrected estimates and CIs.

A P value of < .05 was considered significant for all ana-
lyses. All analyses were performedwith the use of Stata version
16.1 (Stata Statistical Software: Release 16, StataCorp LP, Col-
lege Station, TX). Given the publicly available database, the
study was exempt from the institutional reviewing board.
RESULTS
We included 19,454,155 live-born infants between 22 and 44
weeks of GAs during 2014–2018. After exclusion of those
without fertility treatment data (n¼ 1,628,499), we identified
17,528,196 born without fertility treatment, 114,645 born af-
ter NIFT, and 179,960 born after ART (Supplemental Fig. 1,
available online).

Supplemental Table 1 (available online) shows the base-
line characteristics of the 3 groups: no fertility treatment,
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FIGURE 1

A

B

C

Proportion of all infants (A), singletons (B), and multiples (C) born across different gestational age groups for each fertility treatment group.
ART ¼ assisted reproductive technology; NIFT ¼ non IVF fertility treatment.
Fineman. Fertility treatment and multiple gestations. Fertil Steril Rep 2023.
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FIGURE 2

A B

Incidence of multiple gestation (A) and preterm birth (B) in 3 fertility treatment groups over the 5-year study period (2014–2018).
ART ¼ assisted reproductive technology; NIFT ¼ non IVF fertility treatment.
Fineman. Fertility treatment and multiple gestations. Fertil Steril Rep 2023.
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NIFT, and ART. Several important differences in maternal
characteristics are noted. For example, mothers who used
NIFT or ART were more likely to be non-Hispanic White;
they were older, nonsmokers, had private insurance, and at-
tained a higher degree of education (P< .001 for each charac-
teristic; Supplemental Table 1). Importantly, newborns born
after NIFT or ART compared with those with no fertility treat-
ment had a higher incidence of prematurity (11.2%, 23.4%,
and 28.4% for no fertility treatment, NIFT, and ART, respec-
tively; P< .001), multiple gestation (3.0%, 24.7%, and
32.7%; P< .001), and AMFE (22.8%, 30.9%, and 29.0%;
P< .001). In addition, newborns in the NIFT or ART groups
had a higher incidence of intrauterine growth restriction
(IUGR, P< .001).

To assess for an interaction between fertility treatment
and multiple gestation, we calculated the proportion of neo-
nates born within different GA groups in each of the 3 treat-
ment groups, stratified using single and multiple gestation
(Fig. 1). In comparing data for all infants (Fig. 2A), relatively
more infants are born prematurely in the 2 fertility treatment
groups than in the no fertility treatment group. This relation-
ship holds across all preterm GA groups. For example, the
ARR for birth <32 weeks compared with the reference group
of R39 weeks is 3.3 (95% CI, 3.3–3.4) in the NIFT group
compared with the no fertility treatment group and 3.8
(95% CI, 3.7–3.9) for the ART group (Supplemental Table 2,
available online). These differences are attenuated when eval-
uated among singletons (Fig. 2B) or multiple gestations
(Fig. 2C) only. Among singletons, there is a shift toward older
GAs in all 3 groups, and for multiple gestations, there is a shift
toward lower GAs in all groups. The ARR for singletons born
<32 weeks decreased to 1.7 (95% CI, 1.6–1.8) in the NIFT
group and to 2.1 (95% CI, 2.0–2.2) in the ART group compared
with no fertility treatment (Supplemental Table 2). Similarly,
the ARR for multiples born <32 weeks decreased to 1.4 (95%
CI, 1.2–1.3) in the NIFT group and to 1.3 (95% CI, 1.3–1.4) in
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the ART group compared with the no fertility treatment
group. These results are consistent with an interaction be-
tween GAs and multiple gestations in both the NIFT and
ART groups. Thus, the increased proportion of premature in-
fants in the NIFT and ART groups is driven to some extent by
multiple gestations.

We next examined the incidence of multiple gestation
and preterm birth in the 3 treatment groups over the 5-year
study period. The incidence of multiple gestations in the no
fertility group remained stable at 3%. However, the incidence
in the NIFT group decreased from 27.3% in 2014 to 20.8% in
2018, corresponding to an adjusted ARD of 6.7% (95% CI,
6.0%–7.4%). Similarly, the incidence in the ART group
decreased from 41.9% in 2014 to 24.8% in 2018, correspond-
ing to an adjusted ARD of 17.4% (95% CI, 16.8%–18%).
(Fig. 2A and Supplemental Table 3, available online). The
incidence of prematurity in the no fertility group increased
minimally from 11.0% to 11.4% over the 5-year study period,
although the incidence in the NIFT cohort decreased from
24.0% to 21.8%; this decrease corresponded to an adjusted
ARD of 2.7% (95% CI, 2.0%–3.4%). The incidence of prema-
turity in the ART cohort decreased from 32.7% in 2014 to
24.7% in 2018; the adjusted ARD was 8.5% (95% CI, 7.9%–

9.1%) (Fig. 2B and Supplemental Table 3).
On the basis of our DAG, we considered multiple gesta-

tion and AMFE as potential mediators in the relationship be-
tween NIFT or ART and prematurity. Supplemental Table 1
shows that both factors are associated with NIFT and ART
meeting condition 1 for a mediator. Table 1 shows that both
mediators meet condition 2: multiple gestation and AFME
are associated with prematurity in crude and multivariable
models.

Figure 3 presents the results of the mediation analysis us-
ing SEM in the matched cohort with multiple gestations and
AMFE acting as mediators between NIFT (Fig. 3A) or ART
(Fig. 3B) and prematurity. The effect of each arrow is shown
VOL. 4 NO. 3 / SEPTEMBER 2023



TABLE 1

Multivariable analysis for prematurity.

Predictor Crude OR (95% CI) Adjusted OR* (95% CI)

ART vs. no fertility treatment
ART 3.49 (3.43–3.54) 1.50 (1.47–1.53)
Multiple gestation 13.19 (12.95-13.43) 10.26 (10.05–10.47)
AMFE 2.18 (2.15–2.12) 1.83 (1.80–1.87)
NIFT Vs. no fertility treatment
NIFT 2.84 (2.78–2.90) 1.33 (1.30–1.36)
Multiple gestation 15.9 (15.5–16.3) 13.61 (13.24–14.0)
AMFE 1.90 (1.85–1.93) 1.75 (1.71–1.80)
AMFE ¼ adverse maternal-fetal environment; ART ¼ assisted reproductive technologies; CI ¼ Confidence interval; NIFT ¼ non IVF fertility treatment; OR ¼ odds ratio.
* Adjusted for maternal race and ethnicity, maternal education, insurance status, maternal age, maternal smoking, maternal obesity, maternal preexisting diabetes, and preexisting hypertension.

Fineman. Fertility treatment and multiple gestations. Fertil Steril Rep 2023.

Fertil Steril Rep®
with 95% CIs. For example, in Figure 3A, multiple gestation
was 21.1% (95% CI, 20.9%–21.4%) higher in the NIFT group
compared with the no fertility treatment group. Multiple
gestation was 49.7% (95% CI, 49.2%–50.2%) higher in neo-
nates born preterm vs. term. The proportion mediated is
shown for the different paths: 76.8% (95% CI, 75.2%–

78.1%) of the total effect of NIFT on prematurity is mediated
through multiple gestations. The proportion mediated
through AMFE, either directly or because of multiple gesta-
tions, accounts for only 2.1% (95% CI, 1.9%–2.3%) and
0.7% (95% CI, 0.6%–0.7%), respectively. The direct effect of
NIFT on prematurity is 20.4% (95% CI, 19.0%–22.0%). The
direct effect entails any not assessed mediators.

Similarly, Figure 3B shows that 71.2% (95% CI, 70.8–
72.7) of the total effect of ART on prematurity is mediated
through multiple gestations. The direct effect of ART was
24.7% (95% CI, 23.7%–25.6%). The proportion mediated
through AMFE, either directly or because of multiple gesta-
tions, accounts for only 2.4% (95% CI, 2.2%–2.5%) and
1.2% (95% CI, 1.1–1.3%), respectively.
DISCUSSION
In this large population-based study, we confirm known rela-
tionships between fertility treatment and an increased inci-
dence of preterm delivery, multiple gestation, and AMFE for
both NIFT and ART. Further, we demonstrate an interaction
between multiple gestation and the outcome of prematurity
for NIFT and ART, and we show a consistent and parallel
decline in the incidence of bothmultiple gestation and prema-
turity associated with these fertility treatments over the 5-
year study period. Finally, we identified that multiple gesta-
tion accounts for the majority (approximately 70%–75%) of
the effect of both NIFT and ART on preterm birth, affirming
the employment of therapeutic strategies to reduce this modi-
fiable risk for prematurity.

Increasing data suggests that infertility treatment may be
associated with adverse neonatal and childhood outcomes,
with the increased risk of preterm birth being one of the
most important and consistent adverse outcomes (2, 6, 11–
16). In 2018, ART accounted for 2.8% of live births but
5.1% of preterm births in the US; the overall incidence of
preterm birth was 10% but 26.1% after ART (9). However, it
VOL. 4 NO. 3 / SEPTEMBER 2023
is important to mention that despite the increased risk of
preterm birth, the vast majority of infants conceived using
ART are born at term or near term: the mean (�SD) GA in
spontaneously conceived infants in this study was 38.6 vs.
37.7 and 37.4 weeks in the fertility treatment groups.
Similarly, the incidence of IUGR was only slightly increased
in the ART groups.

Whether neonatal morbidity after fertility treatment is
affected beyond the relationship to prematurity is less well-
established. Our prior studies suggest that prematurity is a
major driver of some of the reported fertility treatment-
induced adverse outcomes (26, 27). For example, we found
that infant outcomes (mortality and need for respiratory sup-
port) were not different between those conceived spontane-
ously vs. ART in a very preterm (<32 weeks’ GA) cohort
matched for GA and multiple gestation (27). Thus, under-
standing the driver of preterm birth in this population is of
paramount importance to mitigate adverse outcomes and
optimize child health.

ART accounted for 12.5% of all multiple births in the US
in 2018 (9). We demonstrated (Fig. 2) a significant decrease
in the incidence of multiple gestations (-17.4%) in the ART
group over the 5-year study period, accompanied by an
8.5% reduction in the rate of preterm delivery. Although
these changes are likely multifactorial, the increased use of
single embryo transfers (SET) in ART has probably had a sig-
nificant impact (28, 29). In Belgium, the use of SET increased
from 13%–39% between 1998 and 2002, associated with a
reduction in multiple gestation from 33.6%–11.7% over
this period (30). In the US, the SET rate was 74.1% in 2018
(9), and recent data from the Society of Assisted Reproduc-
tive Technology suggest that the use of SET has further
increased (78.4% of ART in 2020) (31). Indeed, compared
with multiple embryo transfers, neonatal outcomes with
SET are improved and include a reduction in the incidence
of prematurity (32, 33). Although we are unable to ascertain
the use of SET in the Center for Disease Control and Preven-
tion database, it seems likely it follows the trend described
elsewhere. Interestingly, the decrease in the incidence of
multiple gestation (-6.7%) and prematurity (-2.7%) in the
NIFT group over the 5-year study period was less robust,
given the inability to exactly control the number of ovulated
oocytes (10, 34–36).
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FIGURE 3

A

B

Directed acyclic graph depicting mediation analysis for the relationship between NIFT (A) or ART (B) and prematurity. The mediator’s multiple
gestation and adverse maternal-fetal environment (AMFE) are shown with effect (95% CI) and proportion mediated for each pathway.
AMFE ¼ adverse maternal-fetal environment; ART ¼ assisted reproductive technology; CI ¼ confidence interval; Dm ¼ diabetes mellitus; NIFT ¼
non IVF fertility treatment.
Fineman. Fertility treatment and multiple gestations. Fertil Steril Rep 2023.
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The direct effect of fertility treatment remained impor-
tant, accounting for 20%–25% of the increased prematurity
risk in our models. Direct factors may include placental ab-
normalities, epigenetic and genetic changes secondary to
environmental manipulation, and undefined factors related
to the subfertile environment (37–41). In ART, both animal
and human studies demonstrate placental anatomic and
functional abnormalities (19, 38–42). Furthermore,
manipulation of mouse embryos in vitro has effects on
blastocyst gene expression, cell number, potential for
implantation, and placental development (41, 43, 44).
Studies in subfertility also implicate inherent
pathophysiologic mechanisms related to the subfertile
environment, as offspring of women with a history of
infertility that are conceived spontaneously have similar
adverse outcomes as ART conception (45, 46). However, this
point uncovers a potential weakness of this study: we have
no information regarding the proportion of the control
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group who had infertility but conceived without fertility
therapy, which would decrease the magnitude of any
differences identified in these analyses. Given the large
proportion of prematurity allocated to direct effects,
continued investigation of these mechanisms is vital to
improving outcomes in this patient population.

Interestingly, AMFE, defined by the presence of gesta-
tional diabetes, hypertension, preeclampsia, or eclampsia,
had only a small influence on prematurity, contributing
approximately 3% of the effect in both NIFT and ART models
(Fig. 3). One potential explanation is the underreporting of
maternal conditions defining AMFE on the birth certificate
(47). Another significant limitation is the lack of details about
the ART on the birth certificate. We cannot distinguish be-
tween fresh and frozen embryo transfers or the presence or
absence of a corpus luteum. All these details have significant
and well-documented implications in terms of AFME. The
increased risk of AMFE with infertility treatments is well
VOL. 4 NO. 3 / SEPTEMBER 2023
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described, confers significant maternal and neonatal
morbidity (e.g., IUGR), and warrants continued investigation
toward its mechanisms and prevention (18–22).

Despite any limitations, this large study cohort, with the
collection of standard data across the US through the revised
birth certificate, supports the generalizability of our findings.
However, as with any administrative dataset, underreporting
of conditions is common, which could have resulted in
misclassification of our primary predictors or mediators.
Because we expect anymisclassification to be nondifferential,
results would be biased toward the null. Additional limita-
tions regarding detailed data for both exposures (ART or
NIFT) and our most influential mediator (multiple gestation)
are noteworthy. Within ART, we are not able to delineate
IVF from ICSI, and information regarding frozen vs. thawed
embryo implantation and the number of embryos implanted
is not reported (48). For NIFT, information regarding the
type, dosage, or frequency of fertility-enhancing drugs is
not available. Variability in these approaches may reflect dif-
ferences in maternal condition and/or characteristics of the
pregnancy itself, which could influence the effect of the path-
ways we evaluated. In addition, epidemiologic data suggests
that NIFT use is approximately 1.5–2.0 times greater than
ART, but the incidence of NIFT is similar to ART in our data-
base, suggesting potential underreporting of NIFT (9, 10). For
multiple gestations, we could not determine the type of twin-
ning (dizygotic vs. monozygotic). Further, the occurrence of a
vanishing twin would not have been captured in either
singleton or multiple gestation pregnancies, although it is a
mediator of adverse pregnancy outcomes, including prematu-
rity (49–51).

In conclusion, our analysis indicates a high proportion of
prematurity mediated by multiple gestations after both NIFT
and ART, whereas the direct effects of fertility treatment
remain substantial in our models. These data confirm the
high prevalence of preterm birth after fertility treatment
and, importantly, the impact of modifications in therapeutic
strategies (particularly with ART) that have reduced its inci-
dence. The findings of this population-based investigation
should guide ongoing research to define therapeutic targets,
modulate clinical practice, and influence health policy deci-
sions. For example, our findings support the approach that
limiting multiple gestations will improve neonatal and child-
hood outcomes after fertility treatment. Lastly, given the in-
ternational use of these technologies and potential
differences in therapeutic approaches, similar assessments
are warranted outside the US.
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