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Abstract
Monitoring	is	an	essential	part	of	reintroduction	programs,	but	many	years	of	data	
may	be	needed	to	obtain	reliable	population	projections.	This	duration	can	poten-
tially	be	reduced	by	incorporating	prior	information	on	expected	vital	rates	(survival	
and	fecundity)	when	making	inferences	from	monitoring	data.	The	prior	distributions	
for	these	parameters	can	be	derived	from	data	for	previous	reintroductions,	but	it	is	
important	to	account	for	site-	to-	site	variation.	We	evaluated	whether	such	informa-
tive	priors	improved	our	ability	to	estimate	the	finite	rate	of	increase	(λ)	of	the	North	
Island	robin	(Petroica longipes)	population	reintroduced	to	Tawharanui	Regional	Park,	
New	Zealand.	We	assessed	how	precision	 improved	with	each	year	of	postrelease	
data	added,	 comparing	models	 that	used	 informative	or	uninformative	priors.	The	
population	grew	 from	about	22	 to	80	 individuals	 from	2007	 to	2016,	with	λ	 esti-
mated	to	be	1.23	if	density	dependence	was	included	in	the	model	and	1.13	other-
wise.	 Under	 either	 model,	 7	years	 of	 data	 were	 required	 before	 the	 lower	 95%	
credible	limit	for	λ	was	>	1,	giving	confidence	that	the	population	would	persist.	The	
informative	priors	did	not	 reduce	 this	 requirement.	Data-	derived	priors	are	useful	
before	reintroduction	because	they	allow	λ	to	be	estimated	in	advance.	However,	in	
the	case	examined	here,	the	value	of	the	priors	was	overwhelmed	once	site-	specific	
monitoring	data	became	available.	The	Bayesian	method	presented	is	logical	for	rein-
troduced	 populations.	 It	 allows	 prior	 information	 (used	 to	 inform	prerelease	 deci-
sions)	to	be	integrated	with	postrelease	monitoring.	This	makes	full	use	of	the	data	
for	ongoing	management	decisions.	However,	if	the	priors	properly	account	for	site-	
to-	site	variation,	they	may	have	little	predictive	value	compared	with	the	site-	specific	
data.	This	value	will	depend	on	the	degree	of	site-	to-	site	variation	as	well	as	the	qual-
ity	of	the	data.
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1  | INTRODUC TION

Species	reintroduction	is	a	costly	exercise	that	has	historically	had	
a	low	rate	of	success	(Fischer	&	Lindenmayer,	2000;	Griffith,	Scott,	
Carpenter,	&	Reed,	1989;	Griffiths	&	Pavajeau,	2008).	It	is	well	rec-
ognized	that	reintroductions	have	suffered	from	insufficient	moni-
toring,	with	failure	to	 learn	from	monitoring	probably	contributing	
to	the	poor	success	(Griffith	et	al.,	1989;	IUCN	2013;	Lyles	&	May,	
1987).	Increased	monitoring	has	improved	the	ongoing	management	
of	 reintroduced	populations	and	helped	to	guide	strategies	 for	 fu-
ture	reintroductions	(Seddon	et	al.	2007).	It	has	also	facilitated	the	
development	of	quantitative	models	to	make	predictions	about	pop-
ulation	dynamics,	which	can	be	used	to	guide	a	range	of	decisions	
(Converse	&	Armstrong,	2016).

Models	used	in	reintroduction	programs	fall	into	two	main	types:	
those	used	 to	predict	 site	suitability	prerelease	and	 those	used	 to	
predict	 population	 persistence	 postrelease	 (Chauvenet,	 Parlato,	
Gedir,	&	Armstrong,	2015;	Converse,	Moore,	&	Armstrong,	2013).	
The	latter	models	typically	use	data	collected	on	vital	rates	(survival	
and	fecundity),	with	data	collection	starting	at	the	time	of	release.	
They	are	therefore	similar	 to	other	models	used	for	population	vi-
ability	analysis	(Beissinger	&	Westphal,	1998),	but	with	greater	em-
phasis	 on	 transient	 dynamics	 associated	with	 postrelease	 effects,	
initially	small	population	sizes,	and	unstable	sex	and	age	structures	
(Burgman,	 Ferson,	 &	 Lindenmayer,	 1994;	 McCallum,	 1994).	 Such	
models	 are	 famously	 “data	 hungry,”	 meaning	 large	 data	 sets	 are	
needed	to	make	precise	predictions,	and	therefore,	most	predictions	
are	 highly	 uncertain	 (Possingham,	 Lindenmayer,	 &	 Norton,	 1993).	
Quantifying	this	uncertainty	should	therefore	be	considered	essen-
tial	when	making	management	decisions	for	populations	(Beissinger	
&	Westphal,	1998).

The	 treatment	 of	 uncertainty	 in	 population	 projections	 has	
advanced	markedly	 in	 the	 last	 20	years,	mainly	 due	 to	 the	 advent	
of	 Bayesian	 hierarchical	 modeling	 (Clark,	 2005;	 King,	 Morgan,	
Gimenez,	&	Brooks,	2009;	Link	&	Barker,	2010).	Bayesian	hierarchi-
cal	modeling	 is	a	flexible	approach	that	potentially	allows	complex	
variation	to	be	modeled	even	with	relatively	small	data	sets,	allowing	
multiple	 sources	of	uncertainty	 to	be	quantified	 (Clark	&	Gelfand,	
2006).	This	method	therefore	lends	itself	to	reintroductions	as	they	
often	involve	small	data	sets	and	multiple	uncertainties	(Converse	&	
Armstrong,	2016).	However,	 reintroduction	programs	have	not	ex-
ploited	the	most	basic	feature	of	Bayesian	modeling	because	prere-
lease	and	postrelease	inferences	are	typically	disconnected.

The	basic	concept	of	Bayesian	inference	is	that	prior	knowledge	
and	new	data	can	be	combined	using	a	model	to	produce	posterior	
knowledge	 (Link	&	Barker,	2010).	The	prior	knowledge	can	poten-
tially	take	the	form	of	expert	judgment	(Martin	et	al.,	2012).	However,	
it	 may	 also	 be	 possible	 to	 obtain	 data-	derived	 priors	 through	
quantitative	 analysis	 of	 previous	 data	 (Morris,	 Vesk,	 McCarthy,	
Bunyavejchewin,	 &	 Baker,	 2015).	 Although	 applied	 ecologists	 are	
always	influenced	by	data	from	previous	studies,	they	usually	only	
incorporate	 this	 information	 implicitly	 in	 their	 sampling	designs	or	
discussions	(McCarthy	&	Masters,	2005).	The	advantage	of	explicitly	

incorporating	prior	information	is	that	this	may	reduce	the	amount	
of	data	needed	before	useful	predictions	can	be	made	(McCarthy	&	
Masters,	2005;	Morris	et	al.,	2015),	potentially	reducing	the	need	for	
expensive	long-	term	monitoring	(Likens,	1983;	Taylor,	1989).

Reintroduction	programs	naturally	lend	themselves	to	Bayesian	
inference	because	the	decision	to	undertake	a	reintroduction	must	
be	based	on	some	form	of	prior	knowledge	(IUCN	2013),	which	can	
then	be	updated	based	on	postrelease	data.	 Such	 inference	 lends	
itself	 to	 adaptive	 management,	 both	 for	 ongoing	 management	 of	
reintroduced	 populations	 and	 for	 making	 future	 decisions	 about	
proposed	 reintroductions	 (McCarthy,	 Armstrong,	 &	 Runge,	 2012).	
However,	as	in	other	fields	of	applied	ecology	(Morris	et	al.,	2015),	
such	inference	is	not	currently	part	of	the	reintroduction	praction-
er’s	 “toolbox”.	 Parameter	 estimates	 from	 previous	 research	 have	
been	used	to	make	prior	predictions	about	reintroduced	populations	
(e.g.,	South,	Rushton,	&	Macdonald,	2000),	but	this	has	not	involved	
deriving	 prior	 distributions	 that	 account	 for	 uncertainty.	 Gedir,	
Thorne,	Brider,	and	Armstrong	(2013)	explicitly	used	Bayesian	infer-
ence	when	modeling	dynamics	of	 a	 reintroduced	population,	with	
prior	data	for	vital	rates	obtained	from	two	previous	reintroductions.	
However,	because	 they	only	had	data	 for	 two	previous	sites,	 they	
were	not	able	to	derive	prior	distributions	that	accounted	for	site-	
to-	site	 variation.	 Canessa	 et	al.	 (2016)	 used	Bayesian	 inference	 to	
model	survival	rates	of	a	reintroduced	population,	with	a	combina-
tion	of	data	and	expert	judgment	used	to	obtain	the	priors.

We	report	the	first	case	study	illustrating	how	fully	data-	derived	
priors	can	be	combined	with	postrelease	monitoring	data	when	mak-
ing	predictions	for	reintroduced	populations.	Parlato	and	Armstrong	
(2012)	earlier	showed	how	data	on	vital	 rates	for	multiple	reintro-
duced	populations	of	North	Island	(NI)	robin	(Petroica longipes)	pop-
ulations	 could	be	 integrated	using	Bayesian	hierarchical	modeling,	

F IGURE  1 A	juvenile	North	Island	robin	(Petroica longipes)	at	
Tawharanui	Regional	Park	in	2016.	Photograph	credit:	Jonas	Kotlarz
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allowing	 random	 site-	to-	site	 variation	 to	 be	 accounted	 for.	 This	
meant	 that	 prior	 distributions	 could	 be	 derived	 for	 the	 finite	 rate	
of	increase	(λ)	expected	at	proposed	reintroductions,	meaning	that	
site	selection	could	be	improved	over	time	through	passive	adaptive	
management	(McCarthy	et	al.,	2012).	Here,	we	extend	this	approach	
by	showing	how	such	data-	derived	priors	can	be	progressively	up-
dated	as	postrelease	data	are	collected	at	a	new	reintroduction	site,	
potentially	 facilitating	 ongoing	management	 decisions	 at	 that	 site.	
To	 test	 the	usefulness	of	 the	priors,	we	 compared	how	 the	preci-
sion	of	the	estimated	finite	rate	of	increase	(λ)	increased	over	time	
if	the	data-	derived	priors	were	or	were	not	used,	to	determine	how	
many	 years	 of	 data	 were	 required	 to	 be	 confident	 of	 population	
persistence.

2  | MATERIAL S AND METHODS

2.1 | Species and study area

The	NI	robin	(Figure	1)	is	a	small	(26–32	g)	forest	passerine	endemic	
to	New	Zealand	(Higgins	&	Peter,	2002).	NI	robins	are	mainly	insec-
tivorous,	monogamous,	territorial,	and	sedentary,	with	adults	rarely	
leaving	their	territories	once	established.	Females	can	lay	up	to	three	
clutches	 from	September	 to	February.	Juveniles	usually	undergo	a	
dispersal	phase	shortly	after	fledgling,	and	if	they	survive	the	win-
ter,	become	sexually	mature	by	the	start	of	the	following	breeding	
season.

NI	 robins	 were	 widespread	 throughout	 the	 North	 Island	 and	
nearby	offshore	islands	at	the	time	of	European	settlement,	but	dis-
appeared	 from	most	 of	 their	 original	 range	 following	 forest	 clear-
ance	and	introduction	of	mammalian	predators.	They	have	now	been	
reintroduced	to	many	sites	where	mammalian	predators	have	been	
controlled	 or	 eradicated,	with	 these	 reintroductions	 having	mixed	
success	(Miskelly	&	Powlesland,	2013;	Parlato	&	Armstrong,	2012).	
This	 scenario	 is	 ideal	 for	 assessing	 the	 usefulness	 of	 data-	derived	
priors	 because	multiple	 reintroductions	 have	 taken	 place,	 postre-
lease	 data	 have	 been	 collected	 using	 fairly	 consistent	 methodol-
ogy,	the	biology	and	threats	are	well	understood,	but	there	remains	

considerable	uncertainty	about	whether	many	reintroductions	will	
be	successful	or	not.

The	 reintroduction	 featured	 here	was	 to	 Tawharanui	 Regional	
Park,	 a	 558	ha	 peninsular	 reserve	 approximately	 80	km	 north	 of	
Auckland,	New	Zealand.	An	aerial	poison	operation,	ongoing	inten-
sive	predator	control,	and	an	open	ended	2.7	km	predator	exclusion	
fence	installed	in	2004	have	effectively	eradicated	all	exotic	mam-
mal	 species	 except	 mice	 (Mus musculus)	 and	 rabbits	 (Oryctolagus 
cuniculus).	 There	 is	 ongoing	 monitoring	 for	 predator	 incursions	
(Maitland,	2011).	 In	March	2007,	21	NI	 robins	 (14	male,	7	 female)	
were	translocated	from	Tiritiri	Matangi	Island	to	Tawharanui.	A	fur-
ther	four	females	were	translocated	from	Puhoi	near	Wenderholm	
in	July-	August	2007.	NI	robins	now	occupy	approximately	120	ha	of	
Tawharanui.

2.2 | Data collection

Annual	 surveys	 were	 carried	 out	 in	 September	 (the	 start	 of	 the	
breeding	 season)	 from	2007	 to	2016	 to	generate	data	on	 survival	
of	color-	banded	individuals.	Fecundity	data	were	obtained	through	
weekly	checks	of	known	robin	pairs.	These	checks	consisted	of	re-
cording	 the	breeding	status	 (nonbreeding,	number	of	eggs,	chicks,	
and	fledglings)	of	each	nest	and	generating	data	on	the	number	of	
young	fledged	over	the	season	by	each	pair.

Pairs	were	usually	located	by	walking	through	the	territory,	but	
playback	 calls	 were	 occasionally	 used	when	 pairs	were	 not	 easily	
found.	 Nests	 were	 located	 by	 feeding	 mealworms	 (Tenebrio moli-
tor)	to	the	birds.	During	incubation,	the	male	would	call	the	female	
off	the	nest,	or	if	the	chicks	had	hatched,	either	parent	would	take	
mealworms	to	the	nest.	Nestlings	were	typically	banded	9–12	days	
after	hatching,	with	660	chicks	being	banded	 in	the	nest	between	
2007	and	2016.	There	were	only	a	few	instances	(4),	where	young	
birds	were	caught	using	a	claptrap	or	hand	net	and	banded	as	fledg-
lings.	It	was	not	possible	to	color	band	all	chicks	every	year	as	some	
nests	were	inaccessible	and	the	occasional	nest	was	missed	during	
monitoring.	However,	the	number	of	unbanded	birds	has	remained	
relatively	low,	and	most	(>	95%)	of	the	population	has	always	been	
banded.

Due	to	the	number	of	pairs	increasing	(9	in	2007	to	37	in	2016),	
the	nests	could	not	all	be	monitored	through	to	fledging.	To	maintain	
consistency	between	years,	chicks	were	considered	to	have	fledged	
if	 they	 survived	 to	 banding	 age.	 The	 number	 considered	 fledged	
was	therefore	slightly	higher	than	the	number	recorded	as	 leaving	
the	nest,	but	more	intensive	data	collection	from	the	2015	to	2016	
breeding	season	showed	that	the	proportion	of	chicks	that	died	be-
tween	banding	and	fledging	was	quite	small	(<	1%).

2.3 | Modeling

We	modeled	 the	 data	 using	OpenBUGS	 version	 3.2.3	which	 uses	
Markov	Chain	Monte	Carlo	 (MCMC)	techniques	to	fit	Bayesian	hi-
erarchical	models	(Spiegelhalter,	Thomas,	Best,	&	Lunn,	2014).	This	
approach	 allows	 multiple	 random	 effects	 and	 also	 facilitated	 an	

F IGURE  2 Growth	of	the	North	Island	robin	population	
reintroduced	to	Tawharanui.	Points	show	estimated	numbers	at	the	
start	of	each	breeding	season,	with	95%	credible	intervals
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integrated	modeling	approach	where	all	data	are	modeled	simulta-
neously	to	generate	population	projections	that	fully	account	for	pa-
rameter	uncertainty	and	covariance	(Schaub	&	Abadi,	2011).	Models	
were	run	for	up	to	50,000	iterations	with	an	initial	burn	in	of	5,000	
samples	 after	 checking	 convergence	 by	 examining	 the	 chains	 and	
autocorrelation	plots.

We	generated	informative	priors	using	Parlato	and	Armstrong’s	
(2012)	 model,	 which	 integrated	 demographic	 data	 from	 10	 rein-
troduction	sites	to	predict	what	would	happen	at	a	proposed	rein-
troduction	site.	We	adapted	this	model	by	removing	the	two	years	
of	Tawharanui	data	that	had	been	originally	 included	and	used	the	
model	to	generate	prior	distributions	for	four	parameters:	1)	mean	
fecundity	(number	of	fledglings	per	female	per	year),	2)	random	ef-
fect	of	individual	female	on	fecundity,	3)	probability	of	an	adult	sur-
viving	one	year,	and	4)	 the	probability	of	a	 juvenile	surviving	from	
fledgling	to	adulthood	(Appendix	S1).	The	priors	for	the	survival	pa-
rameters	are	specific	to	peninsular	sites,	as	Parlato	and	Armstrong	
(2012)	found	apparent	survival	of	juveniles	to	be	lower	on	peninsular	
than	nonpeninsular	sites,	and	the	significance	of	this	effect	was	re-
tained	when	the	Tawharanui	data	were	removed.	They	hypothesized	
that	apparent	juvenile	survival	was	lower	at	peninsular	sites	because	
juveniles	dispersed	along	forest	edges	into	unprotected	habitat	out-
side	the	site.

We	 initially	modeled	 the	Tawharanui	 data	 using	 uninformative	
priors	 (Appendix	 S1)	 and	 started	 by	 examining	 the	 effects	 of	 all	
variables	we	believed	may	affect	survival	or	fecundity.	Priors	were	
taken	 to	 be	 normally	 distributed	 for	 main	 parameters	 (regression	
coefficients)	 and	 uniformly	 distributed	 for	 hyperparameters	 (stan-
dard	deviation	of	random	effects).	We	then	reduced	the	model	by	
removing	fixed	effects	if	their	95%	credible	intervals	included	zero,	
and	removing	random	effects	if	the	lower	portions	of	their	posterior	
distributions	were	concentrated	near	zero	(Kéry	&	Schaub,	2012).

Fecundity	 was	 modeled	 with	 a	 log	 link	 function	 and	 Poisson	
error	distribution.	The	full	 fecundity	model	 included	a	fixed	effect	
of	 density	 and	 two	 random	effects,	 one	 for	 the	 individual	 female	
and	the	other	for	year.	Due	to	high	adult	survival	(see	below),	most	
breeding	females	occurred	over	multiple	years	in	the	fecundity	data	
set.	Including	the	random	female	effect	allowed	variation	among	in-
dividual	females	and	ensured	that	the	results	were	robust	to	poten-
tial	pseudoreplication.	Age	was	not	considered,	as	previous	studies	
suggest	 that	 age	 of	 female	 robins	 does	 not	 affect	 their	 fecundity	
(Dimond	&	Armstrong,	2007).

Survival	 was	 modeled	 using	 a	 state-	space	 formulation	 of	 the	
Cormack–Jolly–Seber	 (CJS)	 model	 (Kéry	 &	 Schaub,	 2012).	 Both	
survival	and	resighting	were	modeled	with	 logit	 link	functions	and	
Bernoulli	 error	distributions.	Survival	 surveys	were	conducted	an-
nually	 at	 the	 start	 of	 each	breeding	 season,	 and	 the	difference	 in	
the	time	interval	between	the	translocation	and	first	annual	survival	
survey	(6	months)	was	corrected	for.	The	full	survival	model	included	
fixed	effects	of	age	(adult	vs.	juvenile),	sex	(adults	only),	and	trans-
location	(first	6	months’	vs.	subsequent	adult	survival),	as	well	as	a	
fixed	 effect	 for	 density	 on	 juvenile	 survival.	 An	 effect	 of	 banding	
age	was	also	included	to	correct	for	the	higher	survival	probability	

expected	in	the	four	juveniles	banded	as	fledglings,	compared	with	
those	banded	in	the	nest.	Random	annual	variation	on	juvenile	sur-
vival	was	included	to	allow	for	changes	in	survival	over	time	due	to	
weather	and	other	factors.

Annual	abundance	was	also	estimated	as	this	enabled	us	to	ob-
serve	how	population	size	had	changed	over	time	and	model	density	
dependence	in	survival	and	fecundity.	There	were	two	components	
to	estimating	yearly	abundance:	estimating	 the	number	of	banded	
birds	alive	at	each	survival	survey	based	on	the	CJS	model	and	es-
timating	the	number	of	unbanded	birds	present.	We	assumed	that	
detection	probability	was	equal	for	banded	and	unbanded	birds.	We	
obtained	separate	estimates	for	males	and	females	and	then	com-
bined	these	to	estimate	the	total.

The	reduced	model	was	used	to	derive	the	finite	rate	of	increase,	
which	is	given	by:

where	sa	 is	annual	adult	survival	probability,	 f	 is	 the	mean	number	
of	fledglings	per	female	per	year	and	sj	is	the	apparent	juvenile	sur-
vival	 probability	 (probability	 of	 both	 surviving	 from	 fledging	 until	
adulthood	 and	 staying	 at	 Tawharanui).	We	 generated	 λ	with	 both	
informative	 priors	 and	uninformative	 priors.	 For	 both	 approaches,	
we	added	the	Tawharanui	data	one	year	at	a	time	to	assess	how	the	
precision	of	the	λ	estimate	and	usefulness	of	the	priors	changed	with	
the	amount	of	data	available.

The	code	for	the	reduced	model	is	presented	in	Appendix	S2,	and	
the	data	are	presented	in	Appendix	S3.

3  | RESULTS

3.1 | Abundance

The	Tawharanui	population	increased	from	22	birds	in	2007	to	about	
80	birds	 in	2016	 (Figure	2).	There	was	a	 slow	 increase	 from	2007	
to	2011	followed	by	a	more	rapid	increase	after	the	2011	breeding	
season,	 and	 the	population	 size	 remained	 relatively	constant	 from	
2014	to	2016.

3.2 | Fecundity

There	 was	 a	 trend	 for	 fecundity	 to	 decrease	 as	 population	 size	
increased,	 but	 this	 effect	 was	 ambiguous	 (Figure	3,	 Appendix	
S4).	Thus,	there	were	two	fecundity	models	with	similar	support:	
a	 “constant”	 model	 and	 a	 “density”	 model.	 Under	 the	 constant	
model,	 an	 average	 female	was	 estimated	 to	 have	 3.8	 fledglings,	
whereas	 under	 the	 density	model,	 this	was	 expected	 to	 decline	
from	4.8	 to	 3.3	 fledglings	 as	 the	 population	 grew	 from	0	 to	 80.	
While	 there	was	 random	variation	 in	 fecundity	among	 individual	
females,	there	was	no	evidence	of	random	variation	among	years	
(Appendix	S4).

The	 precision	 of	 fecundity	 estimates	 depended	 on	 both	 the	
model	and	amount	of	data	available	(Figure	4).	The	“constant”	model	

λ= sa+
1

2
sjf,
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was	supported	for	the	first	7	years,	as	it	took	8	years	before	the	pos-
terior	distribution	for	the	density	effect	to	be	narrow	enough	that	
it	no	longer	included	0.	The	ambiguity	of	the	density	effect	for	the	
final	two	years	means	that	it	was	unclear	which	model	gave	the	best	
fecundity	estimate	(Figure	4).

3.3 | Survival

Adult	survival	was	relatively	constant	(ca.	0.78)	over	time	(Figure	5,	
Appendix	S4),	so	we	removed	the	random	time	effect	on	adult	sur-
vival	from	the	model.	The	fixed	sex	and	translocation	effects	were	
also	removed,	as	there	was	no	evidence	for	a	difference	in	survival	
between	 males	 and	 females,	 or	 between	 survival	 over	 the	 first	
6	months	 and	 later	 adult	 survival	 (Appendix	 S4).	 Juvenile	 survival	

was	 considerably	 lower	 than	 adult	 survival	 and	 varied	 from	 0.14	
to	0.38	 among	 years	 (Figure	5).	 There	was	 no	 evidence	 that	 den-
sity	 dependence	 caused	 this	 variation,	 as	 the	 95%	 credible	 inter-
val	 for	 the	density	effect	of	 juvenile	survival	was	centered	near	0	
(Appendix	S4),	and	there	was	no	decrease	in	juvenile	survival	over	
time	 (Figure	5).	The	probability	of	 resighting	a	bird	at	each	survey	
was	0.90,	and	this	was	constrained	to	be	constant	over	time	as	the	
95%	confidence	 interval	 for	 the	 random	year	effect	was	centered	
near	0	(Appendix	S4).

The	precision	of	adult	survival	estimates	increased	as	more	data	
became	 available	 (Figure	6).	 For	 juvenile	 survival,	 random	 annual	
variation	became	apparent	after	5	years	of	data	were	available	(pos-
terior	distribution	no	longer	concentrated	near	zero),	so	the	model	
selected	was	changed	at	this	stage,	 increasing	the	accuracy	of	the	
estimates	but	reducing	precision	(Figure	6).

3.4 | Population growth

Because	it	was	unclear	which	was	the	best	fecundity	model,	we	es-
timated	λ	under	models	that	did	or	did	not	include	density	depend-
ence	 in	 fecundity.	After	9	years	of	monitoring,	 the	model	with	no	
density	 dependence	 gave	 a	 λ	 estimate	 of	 1.13,	with	 a	 lower	 95%	
credible	limit	near	1	(Table	1).	The	model	including	density	depend-
ence	gave	a	 slightly	higher	λ	 estimate	of	1.23	at	 zero	density,	but	
the	lower	credible	limit	was	also	near	1	due	to	the	greater	standard	
deviation	under	this	model.

The	estimated	λ	was	always	above	1	but	 its	95%	credible	 in-
terval	was	not	completely	>	1	until	7	years	of	data	had	been	col-
lected	(Figure	7),	meaning	it	was	unclear	until	that	stage	whether	
the	population	was	expected	to	persist.	Although	the	credible	in-
tervals	appeared	to	be	>1	after	3–4	years,	these	intervals	should	
be	regarded	as	overprecise	because	they	do	not	account	 for	 the	
substantial	 annual	 variation	 in	 juvenile	 survival	 revealed	by	 sub-
sequent	data.

Informative	priors	enabled	λ	to	be	predicted	when	no	Tawharanui	
data	 were	 available.	 They	 subsequently	 allowed	 slightly	 narrower	
credible	 intervals,	 especially	 when	 the	 random	 year	 effect	 on	

F IGURE  3 Changes	in	mean	fecundity	(fledglings	per	female)	
of	North	Island	robins	at	Tawharanui	Regional	Park	in	relation	to	
breeding	population	size.	The	dots	and	error	bars	show	annual	
estimates	and	standard	errors.	The	gray	curve	shows	the	estimated	
relationship	between	fecundity	and	density,	whereas	the	black	line	
shows	the	estimated	fecundity	if	density	dependence	is	excluded	
from	the	model.	Dotted	lines	show	95%	credible	intervals.	The	
models	shown	here	had	uninformative	priors	for	all	parameters,	but	
the	results	are	very	similar	with	informative	priors

F IGURE  4 Changes	in	the	estimated	mean	number	of	fledglings	
per	female	for	North	Island	robins	at	Tawharanui	Regional	Park,	as	
a	function	of	the	number	of	years	of	postrelease	monitoring	data.	
Black	lines	show	estimates	of	the	intercept	based	on	a	constant	
model,	and	gray	lines	show	estimates	of	the	intercept	based	on	
the	density-	dependent	model.	Dotted	lines	show	95%	credible	
intervals.	Both	models	had	uninformative	priors	for	all	parameters

F IGURE  5 Estimated	annual	survival	of	adult	(black)	and	
juvenile	(gray)	North	Island	robins	at	Tawharanui	under	a	model	
with	random	year	effects,	with	uninformative	priors	used	for	all	
parameters.	Error	bars	show	95%	credible	intervals
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juvenile	survival	was	added	to	the	model	at	5	years	(λ	7).	However,	
they	did	not	reduce	the	number	of	years	of	data	that	needed	to	be	
collected	for	the	lower	95%	credible	limit	for	λ	to	be	>	1.

4  | DISCUSSION

Models	for	reintroduced	populations	are	useful	for	predicting	popu-
lation	persistence	under	current	conditions	to	assess	whether	future	
management	 is	 likely	 to	be	required	and	for	 improving	predictions	
for	 future	 reintroductions.	 As	 for	 any	 conservation	 scenario,	 the	
appropriate	 monitoring	 and	 modeling	 approaches	 depend	 on	 the	
management	 problem	 (Nichols	 &	 Williams,	 2006).	 The	 approach	
used	here	was	to	collect	detailed	data	on	vital	rates	from	the	time	of	
release	and	model	these	in	combination	with	data-	derived	priors	for	
previous	reintroductions.

Monitoring	vital	rates	are	labor-	intensive,	and	therefore	expen-
sive,	but	are	otherwise	advantageous	 in	 the	short	 term	because	 it	
provides	maximum	power	to	make	inferences.	Monitoring	population	

trends	alone	not	only	has	lower	power,	but	can	give	misleading	in-
ferences	due	to	an	inability	to	model	transient	dynamics	associated	
with	sex	ratios,	age	structure	and	stochasticity,	and	make	unbiased	
inferences	about	density	dependence	(Caswell,	2001).	The	reintro-
duced	NI	robin	population	at	Tawharanui	is	a	good	example,	as	the	
pattern	of	increase	over	time	(Figure	2)	could	be	interpreted	to	mean	
that	 the	population	 is	 tightly	 regulated	with	a	carrying	capacity	of	
about	80.	 In	contrast,	analysis	of	 the	vital	 rate	data	 indicated	that	
density	dependence	was	weak	or	nonexistent	at	this	stage,	with	a	
carrying	 capacity	 of	 approximately	 200	 if	 density	 dependence	 in	
fecundity	 is	assumed	 (the	population	size	at	which	λ	declines	 to	1	
based	on	 the	parameter	 estimates	 in	Appendix	S4).	 The	observed	
pattern	of	increase	is	therefore	entirely	attributable	to	stochasticity.

The	focus	of	our	analysis	was	on	determining	whether	λ	was	>1	
at	low	density,	indicating	whether	management	intervention	would	
be	needed	for	the	population	to	persist.	Once	growth	is	ensured,	it	is	
sensible	to	focus	on	the	longer-	term	viability	of	the	population	which	

F IGURE  6 Changes	in	the	estimated	survival	probabilities	of	
adult	(black)	and	juvenile	(gray)	North	Island	robins	as	a	function	
of	the	number	of	years	of	postrelease	monitoring	data.	Solid	lines	
show	estimates,	and	dotted	lines	show	95%	credible	intervals.	
All	variables	in	the	reduced	model	fitted	to	all	9	years	of	data	are	
included,	except	for	the	random	year	effect	on	juvenile	survival	
which	was	added	when	5	years	of	data	were	available	(black	arrow).	
Uninformative	priors	were	used	for	all	parameters

TABLE  1 Finite	rate	of	increase	(λ)	estimates	for	the	North	Island	robin	population	at	Tawharanui	Regional	Park.	The	first	row	gives	
estimates	based	only	on	prior	data	from	nine	other	reintroduction	sites.	All	other	rows	show	estimates	after	9	years	of	monitoring	the	
Tawharanui	population,	with	and	without	the	ambiguous	density	dependence	(DD)	in	fecundity.	Separate	estimates	are	shown	for	when	
informative	(I)	and	uninformative	(U)	priors	were	used.	λ	decreases	with	increasing	population	density	under	the	density-	dependent	model,	
and	the	values	shown	are	for	0	density

Tawharanui data Priors

λ

DD Mean 2.5% CL 97.5% CL

No I N/A 1.08 0.76 1.66

Yes U No 1.13 0.99 1.30

Yes I No 1.11 0.99 1.25

Yes U Yes 1.23 1.03 1.48

Yes I Yes 1.20 1.02 1.40

F IGURE  7 Changes	in	the	estimated	finite	rate	of	increase	(λ)	
of	the	reintroduced	North	Island	robin	population	at	Tawharanui	
Regional	Park	as	a	function	of	the	number	of	years’	postrelease	
monitoring	data.	Black	lines	show	estimates	(solid	lines)	and	95%	
credible	intervals	(dotted	lines)	using	informative	priors,	whereas	
gray	lines	show	estimates	and	95%	credible	intervals	using	
uninformative	priors.	The	finely	dotted	line	shows	a	λ	value	of	1,	
meaning	the	population	is	expected	to	persist.	The	arrow	shows	
where	random	annual	variation	in	juvenile	survival	was	added	to	
the	models	(Figure	6),	resulting	in	wider	credible	intervals.	The	
models	showed	here	exclude	density	dependence	in	fecundity
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will	be	affected	by	its	dynamics	and	regulation	(Sarrazin,	2007).	One	
factor	to	consider	 is	 inbreeding,	which	can	potentially	reduce	vital	
rates	 over	 time	 if	 populations	 remain	 small	 (Frankham,	 Briscoe,	&	
Ballou,	2002).	Inbreeding	was	found	to	moderately	reduce	juvenile	
survival,	but	has	no	detectable	effect	on	fecundity,	in	NI	robins	on	
Tiritiri	Matangi	Island	(Jamieson,	Tracy,	Fletcher,	&	Armstrong,	2007)	
which	was	the	source	population	for	the	Tawharanui	reintroduction.	
However,	effects	on	population	dynamics	were	expected	to	be	neg-
ligible	for	time	frames	<100	years	(Jamieson,	2011).

The	key	results	of	our	case	study	were	that	λ	was	indeed	found	
to	be	>	1	at	 low	density,	but	that	7	years	of	monitoring	data	were	
needed	before	we	 could	 be	 confident	 that	 this	was	 the	 case,	 and	
this	requirement	was	not	reduced	by	the	use	of	informative	priors.	
These	results	show	that	 it	can	be	quite	difficult	to	confirm	the	fu-
ture	persistence	of	reintroduced	populations,	even	when	 intensive	
monitoring	has	been	conducted	 for	 several	 years.	They	also	 show	
the	importance	of	properly	translating	uncertainty	about	vital	rates	
into	λ	estimates	(Schaub	&	Abadi,	2011;	Wade,	2002),	as	there	may	
be	considerable	risk	that	a	reintroduced	population	will	decline	even	
though	the	λ	estimate	is	>	1.	Finally,	they	show	that	informative	pri-
ors	may	have	negligible	effect	on	this	uncertainty.

We	 caution	 that	 these	 particular	 results	 are	 case-	specific	 and	
will	depend	on	several	factors.	The	period	of	uncertainty	will	tend	
to	be	prolonged	if	the	initial	population	size	is	small,	λ	is	close	to	1,	
or	there	is	annual	variation	in	one	of	more	vital	rates	(i.e.,	environ-
mental	stochasticity),	all	of	which	were	the	cases	for	the	Tawharanui	
NI	robin	population.	It	is	not	surprising	that	five	years	of	data	were	
needed	before	the	annual	variation	in	juvenile	survival	could	incor-
porate,	as	5–6	levels	are	typically	needed	for	hierarchical	modeling	
(Gelman	&	Hill,	2007).	The	approach	we	used	here	was	to	exclude	
annual	variation	and	other	random	effects	until	there	were	sufficient	
data	to	estimate	them	(see	Modeling).	However,	if	annual	variation	
is	anticipated,	a	better	approach	may	be	to	use	a	weakly	informative	
prior	so	this	variation	can	be	modeled	from	the	outset.	Data-	based	
priors	could	also	be	used	if	available,	as	was	the	case	for	individual	
variation	among	females	(Appendix	S1),	but	these	were	not	available	
for	 annual	 variation	 because	most	 of	 the	previous	 data	 sets	were	
from	short-	term	studies	(Parlato	&	Armstrong,	2012).

The	 degree	 to	 which	 informative	 priors	 reduce	 data	 require-
ments	will	depend	on	the	variances	of	those	priors	in	relation	to	the	
postrelease	data	collected.	In	our	case	study,	the	relatively	high	vari-
ance	 in	 the	priors	 reflected	 the	degree	of	unexplained	 site-	to-	site	
variation	in	previous	NI	robin	reintroductions	(Parlato	&	Armstrong,	
2012).	 Although	 postrelease	 sample	 sizes	were	 limited	 by	 the	 ini-
tially	 low	population	size,	the	data	were	of	high	quality	due	to	the	
intensive	 monitoring	 regime.	 Consequently,	 the	 postrelease	 data	
quickly	“overwhelmed”	the	priors	(Link	&	Barker,	2010),	but	this	will	
not	always	be	the	case.	Gedir	et	al.	(2013)	inferred	that	informative	
priors	saved	about	one	year	of	postrelease	monitoring	data,	but	this	
may	have	been	an	overestimate	given	that	their	priors	did	not	incor-
porate	site-	to-	site	variation.

Regardless	of	the	amount	of	postrelease	monitoring	saved,	there	
are	 several	 reasons	 why	 we	 believe	 that	 the	 Bayesian	 approach	

should	be	widely	applied	to	inferences	for	reintroduced	populations.	
First,	quantitative	derivation	of	 informative	priors	provides	a	more	
transparent	basis	for	prerelease	decisions	than	the	intuitive	proce-
dures	often	followed,	and	if	done	well	should	allow	managers	to	see	
the	uncertainty	involved.	For	example,	the	95%	credible	interval	for	
λ	 ranged	from	0.76	to	1.66	prior	 to	the	NI	 robin	reintroduction	to	
Tawharanui,	showing	that	a	wide	range	of	outcomes	was	possible.	
Second,	deriving	explicit	priors	 for	vital	 rates	allow	 reintroduction	
practitioners	 to	 test	 the	 reliability	 of	 their	 prerelease	 predictions	
using	 postrelease	 data,	 allowing	 adaptive	management	 (McCarthy	
et	al.,	 2012).	 Third,	 explicit	 priors	 make	 it	 possible	 to	 predict	 the	
value	of	postrelease	data	collected	and	therefore	design	monitoring	
programs	 strategically	 (Canessa	 et	al.,	 2016).	 Finally,	 the	 Bayesian	
approach	 is	 the	 natural	 framework	 for	 integrating	 prerelease	 and	
postrelease	inferences,	making	full	use	of	the	information	available	
(Morris	et	al.,	2015).

The	 final	point	depends	on	 the	priors	being	valid,	as	 they	may	
otherwise	bias	parameter	estimates,	especially	 for	small	data	sets.	
This	 potential	 problem	 is	 avoided	 if	 fully	 data-	derived	 priors	 are	
used,	meaning	not	only	that	the	prior	data	are	as	equally	objective	as	
the	new	data	(Morris	et	al.,	2015),	but	also	that	the	uncertainty	in-
volved	in	extrapolating	prior	data	to	a	new	site	is	properly	accounted	
for	(Parlato	&	Armstrong,	2012).	Although	we	were	able	to	adopt	this	
approach,	this	will	be	difficult	with	most	reintroductions	due	to	lack	
of	high-	quality	data	for	multiple	sites,	and	hence,	some	degree	of	ex-
pert	judgment	will	be	needed	to	derive	priors	(Canessa	et	al.,	2016).	
This	 is	where	most	of	the	controversy	surrounding	Bayesian	 infer-
ence	stems	from,	as	the	validity	of	the	priors	depends	on	how	well	
the	subjectivity	of	expert	judgment	is	accounted	for	(Pan	&	Yontay,	
2017;	 Spiegelhalter,	Myles,	 Jones,	&	Abrams,	2000).	However,	 re-
cent	advances	in	structured	elicitation	(Martin	et	al.,	2012;	McBride,	
Fidler,	&	Burgman,	2012)	should	allow	prior	expert	judgment	of	vital	
rates	 to	 play	 an	 increasingly	 important	 role	 in	 reintroduction	pro-
grams	(Converse	&	Armstrong,	2016).

In	 conclusion,	 we	 advocate	 increased	 use	 of	 Bayesian	 frame-
works	to	integrate	prerelease	and	postrelease	inferences	about	re-
introduced	 populations,	 but	 caution	 that	 prior	 information	 should	
be	 interpreted	 carefully.	 Fully	 data-	derived	 priors	 are	 ideal,	 and	
the	 research	described	here	 illustrates	how	such	priors	can	be	 in-
corporated	 into	models	 used	 to	 predict	 reintroduction	 outcomes.	
However,	if	priors	properly	reflect	the	many	uncertainties	involved	
in	reintroduction	(IUCN	2013),	their	predictive	value	may	be	quickly	
overwhelmed	by	postrelease	data,	which	will	therefore	continue	to	
be	invaluable.
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