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Abstract
Monitoring is an essential part of reintroduction programs, but many years of data 
may be needed to obtain reliable population projections. This duration can poten-
tially be reduced by incorporating prior information on expected vital rates (survival 
and fecundity) when making inferences from monitoring data. The prior distributions 
for these parameters can be derived from data for previous reintroductions, but it is 
important to account for site-to-site variation. We evaluated whether such informa-
tive priors improved our ability to estimate the finite rate of increase (λ) of the North 
Island robin (Petroica longipes) population reintroduced to Tawharanui Regional Park, 
New Zealand. We assessed how precision improved with each year of postrelease 
data added, comparing models that used informative or uninformative priors. The 
population grew from about 22 to 80 individuals from 2007 to 2016, with λ esti-
mated to be 1.23 if density dependence was included in the model and 1.13 other-
wise. Under either model, 7 years of data were required before the lower 95% 
credible limit for λ was > 1, giving confidence that the population would persist. The 
informative priors did not reduce this requirement. Data-derived priors are useful 
before reintroduction because they allow λ to be estimated in advance. However, in 
the case examined here, the value of the priors was overwhelmed once site-specific 
monitoring data became available. The Bayesian method presented is logical for rein-
troduced populations. It allows prior information (used to inform prerelease deci-
sions) to be integrated with postrelease monitoring. This makes full use of the data 
for ongoing management decisions. However, if the priors properly account for site-
to-site variation, they may have little predictive value compared with the site-specific 
data. This value will depend on the degree of site-to-site variation as well as the qual-
ity of the data.
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1  | INTRODUC TION

Species reintroduction is a costly exercise that has historically had 
a low rate of success (Fischer & Lindenmayer, 2000; Griffith, Scott, 
Carpenter, & Reed, 1989; Griffiths & Pavajeau, 2008). It is well rec-
ognized that reintroductions have suffered from insufficient moni-
toring, with failure to learn from monitoring probably contributing 
to the poor success (Griffith et al., 1989; IUCN 2013; Lyles & May, 
1987). Increased monitoring has improved the ongoing management 
of reintroduced populations and helped to guide strategies for fu-
ture reintroductions (Seddon et al. 2007). It has also facilitated the 
development of quantitative models to make predictions about pop-
ulation dynamics, which can be used to guide a range of decisions 
(Converse & Armstrong, 2016).

Models used in reintroduction programs fall into two main types: 
those used to predict site suitability prerelease and those used to 
predict population persistence postrelease (Chauvenet, Parlato, 
Gedir, & Armstrong, 2015; Converse, Moore, & Armstrong, 2013). 
The latter models typically use data collected on vital rates (survival 
and fecundity), with data collection starting at the time of release. 
They are therefore similar to other models used for population vi-
ability analysis (Beissinger & Westphal, 1998), but with greater em-
phasis on transient dynamics associated with postrelease effects, 
initially small population sizes, and unstable sex and age structures 
(Burgman, Ferson, & Lindenmayer, 1994; McCallum, 1994). Such 
models are famously “data hungry,” meaning large data sets are 
needed to make precise predictions, and therefore, most predictions 
are highly uncertain (Possingham, Lindenmayer, & Norton, 1993). 
Quantifying this uncertainty should therefore be considered essen-
tial when making management decisions for populations (Beissinger 
& Westphal, 1998).

The treatment of uncertainty in population projections has 
advanced markedly in the last 20 years, mainly due to the advent 
of Bayesian hierarchical modeling (Clark, 2005; King, Morgan, 
Gimenez, & Brooks, 2009; Link & Barker, 2010). Bayesian hierarchi-
cal modeling is a flexible approach that potentially allows complex 
variation to be modeled even with relatively small data sets, allowing 
multiple sources of uncertainty to be quantified (Clark & Gelfand, 
2006). This method therefore lends itself to reintroductions as they 
often involve small data sets and multiple uncertainties (Converse & 
Armstrong, 2016). However, reintroduction programs have not ex-
ploited the most basic feature of Bayesian modeling because prere-
lease and postrelease inferences are typically disconnected.

The basic concept of Bayesian inference is that prior knowledge 
and new data can be combined using a model to produce posterior 
knowledge (Link & Barker, 2010). The prior knowledge can poten-
tially take the form of expert judgment (Martin et al., 2012). However, 
it may also be possible to obtain data-derived priors through 
quantitative analysis of previous data (Morris, Vesk, McCarthy, 
Bunyavejchewin, & Baker, 2015). Although applied ecologists are 
always influenced by data from previous studies, they usually only 
incorporate this information implicitly in their sampling designs or 
discussions (McCarthy & Masters, 2005). The advantage of explicitly 

incorporating prior information is that this may reduce the amount 
of data needed before useful predictions can be made (McCarthy & 
Masters, 2005; Morris et al., 2015), potentially reducing the need for 
expensive long-term monitoring (Likens, 1983; Taylor, 1989).

Reintroduction programs naturally lend themselves to Bayesian 
inference because the decision to undertake a reintroduction must 
be based on some form of prior knowledge (IUCN 2013), which can 
then be updated based on postrelease data. Such inference lends 
itself to adaptive management, both for ongoing management of 
reintroduced populations and for making future decisions about 
proposed reintroductions (McCarthy, Armstrong, & Runge, 2012). 
However, as in other fields of applied ecology (Morris et al., 2015), 
such inference is not currently part of the reintroduction praction-
er’s “toolbox”. Parameter estimates from previous research have 
been used to make prior predictions about reintroduced populations 
(e.g., South, Rushton, & Macdonald, 2000), but this has not involved 
deriving prior distributions that account for uncertainty. Gedir, 
Thorne, Brider, and Armstrong (2013) explicitly used Bayesian infer-
ence when modeling dynamics of a reintroduced population, with 
prior data for vital rates obtained from two previous reintroductions. 
However, because they only had data for two previous sites, they 
were not able to derive prior distributions that accounted for site-
to-site variation. Canessa et al. (2016) used Bayesian inference to 
model survival rates of a reintroduced population, with a combina-
tion of data and expert judgment used to obtain the priors.

We report the first case study illustrating how fully data-derived 
priors can be combined with postrelease monitoring data when mak-
ing predictions for reintroduced populations. Parlato and Armstrong 
(2012) earlier showed how data on vital rates for multiple reintro-
duced populations of North Island (NI) robin (Petroica longipes) pop-
ulations could be integrated using Bayesian hierarchical modeling, 

F IGURE  1 A juvenile North Island robin (Petroica longipes) at 
Tawharanui Regional Park in 2016. Photograph credit: Jonas Kotlarz
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allowing random site-to-site variation to be accounted for. This 
meant that prior distributions could be derived for the finite rate 
of increase (λ) expected at proposed reintroductions, meaning that 
site selection could be improved over time through passive adaptive 
management (McCarthy et al., 2012). Here, we extend this approach 
by showing how such data-derived priors can be progressively up-
dated as postrelease data are collected at a new reintroduction site, 
potentially facilitating ongoing management decisions at that site. 
To test the usefulness of the priors, we compared how the preci-
sion of the estimated finite rate of increase (λ) increased over time 
if the data-derived priors were or were not used, to determine how 
many years of data were required to be confident of population 
persistence.

2  | MATERIAL S AND METHODS

2.1 | Species and study area

The NI robin (Figure 1) is a small (26–32 g) forest passerine endemic 
to New Zealand (Higgins & Peter, 2002). NI robins are mainly insec-
tivorous, monogamous, territorial, and sedentary, with adults rarely 
leaving their territories once established. Females can lay up to three 
clutches from September to February. Juveniles usually undergo a 
dispersal phase shortly after fledgling, and if they survive the win-
ter, become sexually mature by the start of the following breeding 
season.

NI robins were widespread throughout the North Island and 
nearby offshore islands at the time of European settlement, but dis-
appeared from most of their original range following forest clear-
ance and introduction of mammalian predators. They have now been 
reintroduced to many sites where mammalian predators have been 
controlled or eradicated, with these reintroductions having mixed 
success (Miskelly & Powlesland, 2013; Parlato & Armstrong, 2012). 
This scenario is ideal for assessing the usefulness of data-derived 
priors because multiple reintroductions have taken place, postre-
lease data have been collected using fairly consistent methodol-
ogy, the biology and threats are well understood, but there remains 

considerable uncertainty about whether many reintroductions will 
be successful or not.

The reintroduction featured here was to Tawharanui Regional 
Park, a 558 ha peninsular reserve approximately 80 km north of 
Auckland, New Zealand. An aerial poison operation, ongoing inten-
sive predator control, and an open ended 2.7 km predator exclusion 
fence installed in 2004 have effectively eradicated all exotic mam-
mal species except mice (Mus musculus) and rabbits (Oryctolagus 
cuniculus). There is ongoing monitoring for predator incursions 
(Maitland, 2011). In March 2007, 21 NI robins (14 male, 7 female) 
were translocated from Tiritiri Matangi Island to Tawharanui. A fur-
ther four females were translocated from Puhoi near Wenderholm 
in July-August 2007. NI robins now occupy approximately 120 ha of 
Tawharanui.

2.2 | Data collection

Annual surveys were carried out in September (the start of the 
breeding season) from 2007 to 2016 to generate data on survival 
of color-banded individuals. Fecundity data were obtained through 
weekly checks of known robin pairs. These checks consisted of re-
cording the breeding status (nonbreeding, number of eggs, chicks, 
and fledglings) of each nest and generating data on the number of 
young fledged over the season by each pair.

Pairs were usually located by walking through the territory, but 
playback calls were occasionally used when pairs were not easily 
found. Nests were located by feeding mealworms (Tenebrio moli-
tor) to the birds. During incubation, the male would call the female 
off the nest, or if the chicks had hatched, either parent would take 
mealworms to the nest. Nestlings were typically banded 9–12 days 
after hatching, with 660 chicks being banded in the nest between 
2007 and 2016. There were only a few instances (4), where young 
birds were caught using a claptrap or hand net and banded as fledg-
lings. It was not possible to color band all chicks every year as some 
nests were inaccessible and the occasional nest was missed during 
monitoring. However, the number of unbanded birds has remained 
relatively low, and most (> 95%) of the population has always been 
banded.

Due to the number of pairs increasing (9 in 2007 to 37 in 2016), 
the nests could not all be monitored through to fledging. To maintain 
consistency between years, chicks were considered to have fledged 
if they survived to banding age. The number considered fledged 
was therefore slightly higher than the number recorded as leaving 
the nest, but more intensive data collection from the 2015 to 2016 
breeding season showed that the proportion of chicks that died be-
tween banding and fledging was quite small (< 1%).

2.3 | Modeling

We modeled the data using OpenBUGS version 3.2.3 which uses 
Markov Chain Monte Carlo (MCMC) techniques to fit Bayesian hi-
erarchical models (Spiegelhalter, Thomas, Best, & Lunn, 2014). This 
approach allows multiple random effects and also facilitated an 

F IGURE  2 Growth of the North Island robin population 
reintroduced to Tawharanui. Points show estimated numbers at the 
start of each breeding season, with 95% credible intervals
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integrated modeling approach where all data are modeled simulta-
neously to generate population projections that fully account for pa-
rameter uncertainty and covariance (Schaub & Abadi, 2011). Models 
were run for up to 50,000 iterations with an initial burn in of 5,000 
samples after checking convergence by examining the chains and 
autocorrelation plots.

We generated informative priors using Parlato and Armstrong’s 
(2012) model, which integrated demographic data from 10 rein-
troduction sites to predict what would happen at a proposed rein-
troduction site. We adapted this model by removing the two years 
of Tawharanui data that had been originally included and used the 
model to generate prior distributions for four parameters: 1) mean 
fecundity (number of fledglings per female per year), 2) random ef-
fect of individual female on fecundity, 3) probability of an adult sur-
viving one year, and 4) the probability of a juvenile surviving from 
fledgling to adulthood (Appendix S1). The priors for the survival pa-
rameters are specific to peninsular sites, as Parlato and Armstrong 
(2012) found apparent survival of juveniles to be lower on peninsular 
than nonpeninsular sites, and the significance of this effect was re-
tained when the Tawharanui data were removed. They hypothesized 
that apparent juvenile survival was lower at peninsular sites because 
juveniles dispersed along forest edges into unprotected habitat out-
side the site.

We initially modeled the Tawharanui data using uninformative 
priors (Appendix S1) and started by examining the effects of all 
variables we believed may affect survival or fecundity. Priors were 
taken to be normally distributed for main parameters (regression 
coefficients) and uniformly distributed for hyperparameters (stan-
dard deviation of random effects). We then reduced the model by 
removing fixed effects if their 95% credible intervals included zero, 
and removing random effects if the lower portions of their posterior 
distributions were concentrated near zero (Kéry & Schaub, 2012).

Fecundity was modeled with a log link function and Poisson 
error distribution. The full fecundity model included a fixed effect 
of density and two random effects, one for the individual female 
and the other for year. Due to high adult survival (see below), most 
breeding females occurred over multiple years in the fecundity data 
set. Including the random female effect allowed variation among in-
dividual females and ensured that the results were robust to poten-
tial pseudoreplication. Age was not considered, as previous studies 
suggest that age of female robins does not affect their fecundity 
(Dimond & Armstrong, 2007).

Survival was modeled using a state-space formulation of the 
Cormack–Jolly–Seber (CJS) model (Kéry & Schaub, 2012). Both 
survival and resighting were modeled with logit link functions and 
Bernoulli error distributions. Survival surveys were conducted an-
nually at the start of each breeding season, and the difference in 
the time interval between the translocation and first annual survival 
survey (6 months) was corrected for. The full survival model included 
fixed effects of age (adult vs. juvenile), sex (adults only), and trans-
location (first 6 months’ vs. subsequent adult survival), as well as a 
fixed effect for density on juvenile survival. An effect of banding 
age was also included to correct for the higher survival probability 

expected in the four juveniles banded as fledglings, compared with 
those banded in the nest. Random annual variation on juvenile sur-
vival was included to allow for changes in survival over time due to 
weather and other factors.

Annual abundance was also estimated as this enabled us to ob-
serve how population size had changed over time and model density 
dependence in survival and fecundity. There were two components 
to estimating yearly abundance: estimating the number of banded 
birds alive at each survival survey based on the CJS model and es-
timating the number of unbanded birds present. We assumed that 
detection probability was equal for banded and unbanded birds. We 
obtained separate estimates for males and females and then com-
bined these to estimate the total.

The reduced model was used to derive the finite rate of increase, 
which is given by:

where sa is annual adult survival probability, f is the mean number 
of fledglings per female per year and sj is the apparent juvenile sur-
vival probability (probability of both surviving from fledging until 
adulthood and staying at Tawharanui). We generated λ with both 
informative priors and uninformative priors. For both approaches, 
we added the Tawharanui data one year at a time to assess how the 
precision of the λ estimate and usefulness of the priors changed with 
the amount of data available.

The code for the reduced model is presented in Appendix S2, and 
the data are presented in Appendix S3.

3  | RESULTS

3.1 | Abundance

The Tawharanui population increased from 22 birds in 2007 to about 
80 birds in 2016 (Figure 2). There was a slow increase from 2007 
to 2011 followed by a more rapid increase after the 2011 breeding 
season, and the population size remained relatively constant from 
2014 to 2016.

3.2 | Fecundity

There was a trend for fecundity to decrease as population size 
increased, but this effect was ambiguous (Figure 3, Appendix 
S4). Thus, there were two fecundity models with similar support: 
a “constant” model and a “density” model. Under the constant 
model, an average female was estimated to have 3.8 fledglings, 
whereas under the density model, this was expected to decline 
from 4.8 to 3.3 fledglings as the population grew from 0 to 80. 
While there was random variation in fecundity among individual 
females, there was no evidence of random variation among years 
(Appendix S4).

The precision of fecundity estimates depended on both the 
model and amount of data available (Figure 4). The “constant” model 

λ= sa+
1

2
sjf,
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was supported for the first 7 years, as it took 8 years before the pos-
terior distribution for the density effect to be narrow enough that 
it no longer included 0. The ambiguity of the density effect for the 
final two years means that it was unclear which model gave the best 
fecundity estimate (Figure 4).

3.3 | Survival

Adult survival was relatively constant (ca. 0.78) over time (Figure 5, 
Appendix S4), so we removed the random time effect on adult sur-
vival from the model. The fixed sex and translocation effects were 
also removed, as there was no evidence for a difference in survival 
between males and females, or between survival over the first 
6 months and later adult survival (Appendix S4). Juvenile survival 

was considerably lower than adult survival and varied from 0.14 
to 0.38 among years (Figure 5). There was no evidence that den-
sity dependence caused this variation, as the 95% credible inter-
val for the density effect of juvenile survival was centered near 0 
(Appendix S4), and there was no decrease in juvenile survival over 
time (Figure 5). The probability of resighting a bird at each survey 
was 0.90, and this was constrained to be constant over time as the 
95% confidence interval for the random year effect was centered 
near 0 (Appendix S4).

The precision of adult survival estimates increased as more data 
became available (Figure 6). For juvenile survival, random annual 
variation became apparent after 5 years of data were available (pos-
terior distribution no longer concentrated near zero), so the model 
selected was changed at this stage, increasing the accuracy of the 
estimates but reducing precision (Figure 6).

3.4 | Population growth

Because it was unclear which was the best fecundity model, we es-
timated λ under models that did or did not include density depend-
ence in fecundity. After 9 years of monitoring, the model with no 
density dependence gave a λ estimate of 1.13, with a lower 95% 
credible limit near 1 (Table 1). The model including density depend-
ence gave a slightly higher λ estimate of 1.23 at zero density, but 
the lower credible limit was also near 1 due to the greater standard 
deviation under this model.

The estimated λ was always above 1 but its 95% credible in-
terval was not completely > 1 until 7 years of data had been col-
lected (Figure 7), meaning it was unclear until that stage whether 
the population was expected to persist. Although the credible in-
tervals appeared to be >1 after 3–4 years, these intervals should 
be regarded as overprecise because they do not account for the 
substantial annual variation in juvenile survival revealed by sub-
sequent data.

Informative priors enabled λ to be predicted when no Tawharanui 
data were available. They subsequently allowed slightly narrower 
credible intervals, especially when the random year effect on 

F IGURE  3 Changes in mean fecundity (fledglings per female) 
of North Island robins at Tawharanui Regional Park in relation to 
breeding population size. The dots and error bars show annual 
estimates and standard errors. The gray curve shows the estimated 
relationship between fecundity and density, whereas the black line 
shows the estimated fecundity if density dependence is excluded 
from the model. Dotted lines show 95% credible intervals. The 
models shown here had uninformative priors for all parameters, but 
the results are very similar with informative priors

F IGURE  4 Changes in the estimated mean number of fledglings 
per female for North Island robins at Tawharanui Regional Park, as 
a function of the number of years of postrelease monitoring data. 
Black lines show estimates of the intercept based on a constant 
model, and gray lines show estimates of the intercept based on 
the density-dependent model. Dotted lines show 95% credible 
intervals. Both models had uninformative priors for all parameters

F IGURE  5 Estimated annual survival of adult (black) and 
juvenile (gray) North Island robins at Tawharanui under a model 
with random year effects, with uninformative priors used for all 
parameters. Error bars show 95% credible intervals
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juvenile survival was added to the model at 5 years (λ 7). However, 
they did not reduce the number of years of data that needed to be 
collected for the lower 95% credible limit for λ to be > 1.

4  | DISCUSSION

Models for reintroduced populations are useful for predicting popu-
lation persistence under current conditions to assess whether future 
management is likely to be required and for improving predictions 
for future reintroductions. As for any conservation scenario, the 
appropriate monitoring and modeling approaches depend on the 
management problem (Nichols & Williams, 2006). The approach 
used here was to collect detailed data on vital rates from the time of 
release and model these in combination with data-derived priors for 
previous reintroductions.

Monitoring vital rates are labor-intensive, and therefore expen-
sive, but are otherwise advantageous in the short term because it 
provides maximum power to make inferences. Monitoring population 

trends alone not only has lower power, but can give misleading in-
ferences due to an inability to model transient dynamics associated 
with sex ratios, age structure and stochasticity, and make unbiased 
inferences about density dependence (Caswell, 2001). The reintro-
duced NI robin population at Tawharanui is a good example, as the 
pattern of increase over time (Figure 2) could be interpreted to mean 
that the population is tightly regulated with a carrying capacity of 
about 80. In contrast, analysis of the vital rate data indicated that 
density dependence was weak or nonexistent at this stage, with a 
carrying capacity of approximately 200 if density dependence in 
fecundity is assumed (the population size at which λ declines to 1 
based on the parameter estimates in Appendix S4). The observed 
pattern of increase is therefore entirely attributable to stochasticity.

The focus of our analysis was on determining whether λ was >1 
at low density, indicating whether management intervention would 
be needed for the population to persist. Once growth is ensured, it is 
sensible to focus on the longer-term viability of the population which 

F IGURE  6 Changes in the estimated survival probabilities of 
adult (black) and juvenile (gray) North Island robins as a function 
of the number of years of postrelease monitoring data. Solid lines 
show estimates, and dotted lines show 95% credible intervals. 
All variables in the reduced model fitted to all 9 years of data are 
included, except for the random year effect on juvenile survival 
which was added when 5 years of data were available (black arrow). 
Uninformative priors were used for all parameters

TABLE  1 Finite rate of increase (λ) estimates for the North Island robin population at Tawharanui Regional Park. The first row gives 
estimates based only on prior data from nine other reintroduction sites. All other rows show estimates after 9 years of monitoring the 
Tawharanui population, with and without the ambiguous density dependence (DD) in fecundity. Separate estimates are shown for when 
informative (I) and uninformative (U) priors were used. λ decreases with increasing population density under the density-dependent model, 
and the values shown are for 0 density

Tawharanui data Priors

λ

DD Mean 2.5% CL 97.5% CL

No I N/A 1.08 0.76 1.66

Yes U No 1.13 0.99 1.30

Yes I No 1.11 0.99 1.25

Yes U Yes 1.23 1.03 1.48

Yes I Yes 1.20 1.02 1.40

F IGURE  7 Changes in the estimated finite rate of increase (λ) 
of the reintroduced North Island robin population at Tawharanui 
Regional Park as a function of the number of years’ postrelease 
monitoring data. Black lines show estimates (solid lines) and 95% 
credible intervals (dotted lines) using informative priors, whereas 
gray lines show estimates and 95% credible intervals using 
uninformative priors. The finely dotted line shows a λ value of 1, 
meaning the population is expected to persist. The arrow shows 
where random annual variation in juvenile survival was added to 
the models (Figure 6), resulting in wider credible intervals. The 
models showed here exclude density dependence in fecundity
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will be affected by its dynamics and regulation (Sarrazin, 2007). One 
factor to consider is inbreeding, which can potentially reduce vital 
rates over time if populations remain small (Frankham, Briscoe, & 
Ballou, 2002). Inbreeding was found to moderately reduce juvenile 
survival, but has no detectable effect on fecundity, in NI robins on 
Tiritiri Matangi Island (Jamieson, Tracy, Fletcher, & Armstrong, 2007) 
which was the source population for the Tawharanui reintroduction. 
However, effects on population dynamics were expected to be neg-
ligible for time frames <100 years (Jamieson, 2011).

The key results of our case study were that λ was indeed found 
to be > 1 at low density, but that 7 years of monitoring data were 
needed before we could be confident that this was the case, and 
this requirement was not reduced by the use of informative priors. 
These results show that it can be quite difficult to confirm the fu-
ture persistence of reintroduced populations, even when intensive 
monitoring has been conducted for several years. They also show 
the importance of properly translating uncertainty about vital rates 
into λ estimates (Schaub & Abadi, 2011; Wade, 2002), as there may 
be considerable risk that a reintroduced population will decline even 
though the λ estimate is > 1. Finally, they show that informative pri-
ors may have negligible effect on this uncertainty.

We caution that these particular results are case-specific and 
will depend on several factors. The period of uncertainty will tend 
to be prolonged if the initial population size is small, λ is close to 1, 
or there is annual variation in one of more vital rates (i.e., environ-
mental stochasticity), all of which were the cases for the Tawharanui 
NI robin population. It is not surprising that five years of data were 
needed before the annual variation in juvenile survival could incor-
porate, as 5–6 levels are typically needed for hierarchical modeling 
(Gelman & Hill, 2007). The approach we used here was to exclude 
annual variation and other random effects until there were sufficient 
data to estimate them (see Modeling). However, if annual variation 
is anticipated, a better approach may be to use a weakly informative 
prior so this variation can be modeled from the outset. Data-based 
priors could also be used if available, as was the case for individual 
variation among females (Appendix S1), but these were not available 
for annual variation because most of the previous data sets were 
from short-term studies (Parlato & Armstrong, 2012).

The degree to which informative priors reduce data require-
ments will depend on the variances of those priors in relation to the 
postrelease data collected. In our case study, the relatively high vari-
ance in the priors reflected the degree of unexplained site-to-site 
variation in previous NI robin reintroductions (Parlato & Armstrong, 
2012). Although postrelease sample sizes were limited by the ini-
tially low population size, the data were of high quality due to the 
intensive monitoring regime. Consequently, the postrelease data 
quickly “overwhelmed” the priors (Link & Barker, 2010), but this will 
not always be the case. Gedir et al. (2013) inferred that informative 
priors saved about one year of postrelease monitoring data, but this 
may have been an overestimate given that their priors did not incor-
porate site-to-site variation.

Regardless of the amount of postrelease monitoring saved, there 
are several reasons why we believe that the Bayesian approach 

should be widely applied to inferences for reintroduced populations. 
First, quantitative derivation of informative priors provides a more 
transparent basis for prerelease decisions than the intuitive proce-
dures often followed, and if done well should allow managers to see 
the uncertainty involved. For example, the 95% credible interval for 
λ ranged from 0.76 to 1.66 prior to the NI robin reintroduction to 
Tawharanui, showing that a wide range of outcomes was possible. 
Second, deriving explicit priors for vital rates allow reintroduction 
practitioners to test the reliability of their prerelease predictions 
using postrelease data, allowing adaptive management (McCarthy 
et al., 2012). Third, explicit priors make it possible to predict the 
value of postrelease data collected and therefore design monitoring 
programs strategically (Canessa et al., 2016). Finally, the Bayesian 
approach is the natural framework for integrating prerelease and 
postrelease inferences, making full use of the information available 
(Morris et al., 2015).

The final point depends on the priors being valid, as they may 
otherwise bias parameter estimates, especially for small data sets. 
This potential problem is avoided if fully data-derived priors are 
used, meaning not only that the prior data are as equally objective as 
the new data (Morris et al., 2015), but also that the uncertainty in-
volved in extrapolating prior data to a new site is properly accounted 
for (Parlato & Armstrong, 2012). Although we were able to adopt this 
approach, this will be difficult with most reintroductions due to lack 
of high-quality data for multiple sites, and hence, some degree of ex-
pert judgment will be needed to derive priors (Canessa et al., 2016). 
This is where most of the controversy surrounding Bayesian infer-
ence stems from, as the validity of the priors depends on how well 
the subjectivity of expert judgment is accounted for (Pan & Yontay, 
2017; Spiegelhalter, Myles, Jones, & Abrams, 2000). However, re-
cent advances in structured elicitation (Martin et al., 2012; McBride, 
Fidler, & Burgman, 2012) should allow prior expert judgment of vital 
rates to play an increasingly important role in reintroduction pro-
grams (Converse & Armstrong, 2016).

In conclusion, we advocate increased use of Bayesian frame-
works to integrate prerelease and postrelease inferences about re-
introduced populations, but caution that prior information should 
be interpreted carefully. Fully data-derived priors are ideal, and 
the research described here illustrates how such priors can be in-
corporated into models used to predict reintroduction outcomes. 
However, if priors properly reflect the many uncertainties involved 
in reintroduction (IUCN 2013), their predictive value may be quickly 
overwhelmed by postrelease data, which will therefore continue to 
be invaluable.
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