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aDepartment of Cattle and Sheep Diseases, National Veterinary Research Institute, Puławy, Poland
bLaboratory of Serological Diagnosis, National Veterinary Research Institute, Puławy, Poland

ABSTRACT Here, we report the draft genome sequence of avian Chlamydia abortus
genotype G1 strain 15-70d24, isolated from Eurasian teal in Poland. The total ge-
nome assembly length is 1,149,382 bp.

Chlamydia spp. are Gram-negative, obligate intracellular bacteria responsible for a
broad range of diseases in animals and humans. The genus Chlamydia comprises

five candidate species (1–4) and 11 recognized species (5). Chlamydia psittaci, which is
encountered mainly in birds, can cause avian chlamydiosis, whereas Chlamydia abortus
is the etiological agent of abortion in pregnant ruminants and other mammals (6, 7).
Both pathogens represent a zoonotic risk to humans and may lead to significant
economic losses worldwide (8, 9). Interestingly, the presence of C. abortus in nonmam-
malian hosts has also been reported recently (10, 11). The strains originating from wild
birds were provisionally named avian C. abortus. It seems these strains are epidemio-
logically relevant, as can be deduced from their worldwide distribution in various bird
families (Anatidae, Corvidae, Psittacidae, and Rallidae) (11–13).

Here, we present the draft genome sequence of avian Chlamydia abortus genotype
G1 strain 15-70d24, isolated from Eurasian teal in our previous study (11). Taxonomic
classification should reflect phylogenetic relationships and avoid the creation of para-
phyletic taxa, such as C. psittaci, comprising, according to the current definition, also
the C. psittaci/C. abortus intermediates demonstrating features of both C. psittaci and C.
abortus (11). Therefore, the draft genome sequence of strain 15-70d24 genotype G1 will
contribute to the understanding of genetic diversity and the creation of a taxonomic
definition of C. abortus, including avian strains, consistent with the current knowledge
and updates.

An avian C. abortus strain representing genotype G1, 15-70d24, was isolated from a
cloacal swab from Eurasian teal on buffalo green monkey (BGM) cell culture and
propagated in T25 flasks for 72 h based on procedure published previously (11). After
several passages, the cell culture was used for DNA extraction using a QIAamp DNA
minikit (Qiagen, Germany), according to the manufacturer’s instructions. DNA was
subjected to host-methylated DNA depletion using the NEBNext microbiome DNA
enrichment kit (New England BioLabs, USA). Genomic libraries were prepared using the
Nextera XT DNA library preparation kit and Nextera XT index kit (Illumina, USA). The
DNA concentration of the tested sample was adjusted to 0.2 ng/�l, whereas the total
input was 1 ng. Sequencing was conducted on a MiSeq sequencer (Illumina) with the
2 � 300-bp paired-end protocol. Read quality was checked using FastQC 0.1.18 (14),
whereas adapters and low-quality sequences were trimmed with Trimmomatic 0.36
(15). Nonchlamydial reads pertaining to the host DNA (from BGM cells) were identified
through mapping against the African green monkey genome using BWA-MEM 0.7.15
(16) and removed. The total number of filtered reads was 636,103 (144,572,325 bp). The
remaining reads were assembled using SPAdes 3.11.1 (17). Coverage cutoff was set at
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10� and a 500-bp length, which yielded 2 contigs. The assembly resulted in scaffold
1 (1,141,702 bp), representing the chromosome, and scaffold 2 (7,680 bp), representing
plasmid p70d24. The average read coverages across the chromosome and plasmid
were 124� and 140�, respectively. The total genome assembly was 1,149,382 bp long,
with a GC content of 39.5%, whereas the N50 value amounted to 1. Detailed genome
properties are presented in Table 1. Default parameters were used for all software
programs, unless otherwise specified.

Data availability. The genome sequence of avian Chlamydia abortus strain 15-
70d24 genotype G1 has been deposited at the ENA/GenBank/DDBJ under the accession
number LS450958 for the chromosome and LS450959 for the plasmid, whereas raw
reads have been deposited under the accession number ERS2484026 as a part of
BioProject number PRJEB26715.
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