
fnint-12-00024 June 7, 2018 Time: 16:28 # 1

ORIGINAL RESEARCH
published: 07 June 2018

doi: 10.3389/fnint.2018.00024

Edited by:
Christophe Lopez,

Centre National de la Recherche
Scientifique (CNRS) and Aix-Marseille

Université, France

Reviewed by:
Roberto Martuzzi,

École Polytechnique Fédérale
de Lausanne, Switzerland

Rochelle Ackerley,
UMR7260 Neurosciences
Sensorielles et Cognitives,

Aix-Marseille Université, France

*Correspondence:
Fiona N. Newell

fiona.newell@tcd.ie

Received: 15 January 2018
Accepted: 22 May 2018

Published: 07 June 2018

Citation:
O’Callaghan G, O’Dowd A,

Simões-Franklin C, Stapleton J and
Newell FN (2018) Tactile-to-Visual

Cross-Modal Transfer of Texture
Categorisation Following Training: An

fMRI Study.
Front. Integr. Neurosci. 12:24.

doi: 10.3389/fnint.2018.00024

Tactile-to-Visual Cross-Modal
Transfer of Texture Categorisation
Following Training: An fMRI Study
Georgia O’Callaghan, Alan O’Dowd, Cristina Simões-Franklin, John Stapleton and
Fiona N. Newell*

Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland

We investigated the neural underpinnings of texture categorisation using exemplars
that were previously learned either within modalities (visual training and visual test) or
across modalities (tactile training and visual test). Previous models of learning suggest
a decrease in activation in brain regions that are typically involved in cognitive control
during task acquisition, but a concomitant increase in activation in brain regions
associated with the representation of the acquired information. In our study, participants
were required to learn to categorise fabrics of different textures as either natural or
synthetic. Training occurred over several sessions, with each fabric presented either
visually or through touch to a participant. Pre- and post-training tests, in which
participants categorised visual images only of the fabrics, were conducted during a
functional magnetic resonance imaging (fMRI) scan. Consistent with previous research
on cognitive processes involved in task acquisition, we found that categorisation training
was associated with a decrease in activation in brain regions associated with cognitive
systems involved in learning, including the superior parietal cortex, dorsal anterior
cingulate cortex (dACC), and the right dorsolateral prefrontal cortex (DLFC). Moreover,
these decreases were independent of training modality. In contrast, we found greater
activation to visual textures in a region within the left medial occipital cortex (MOC)
following training. There was no overall evidence of an effect of training modality in
the main analyses, with texture-specific regional changes associated with both within-
(visual) and cross- (touch) modal training. However, further analyses suggested that,
unlike categorisation performance following within-modal training, crossmodal training
was associated with bilateral activation of the MOC. Our results support previous
evidence for a multisensory representation of texture within early visual regions of the
cortex and provide insight into how multisensory categories are formed in the brain.

Keywords: crossmodal, multisensory, vision, touch, texture perception, material perception, categorisation,
practise

INTRODUCTION

The issue of how sensory information is organised into different categories has received
considerable interest in the literature, particularly with regards to object shapes (Riesenhuber and
Poggio, 1999; Newell and Bülthoff, 2002), faces and facial expressions (Calder et al., 1996; Bülthoff
and Newell, 2004) and scenes (Thorpe et al., 1996; Greene et al., 2016). In contrast, the question
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of how multiple sensory inputs contribute to the formation of
categories has received relatively little attention. In principle,
perceptual categories should be formed using all relevant
information about a concept (e.g., Taylor et al., 2006). For
example, a Labrador belongs to the category of ‘dog’ on the basis
of multisensory information including visual information about
its shape and size, as well as other non-visual information such as
the sound of the dog barking, the feel of its coat and maybe even
its smell. Yet despite this sensory convergence, the cognitive and
cortical processes underpinning the formation of multisensory
categories is poorly understood.

A number of cognitive processes are known to be involved
in the formation of categories based on novel exemplars. In
particular, the task of categorisation itself involves learning to
associate particular features of an object with belonging to a
particular category. Such a skill is likely to be domain general,
and non-specific to different category types. The acquisition of
this skill can be rapid, if the features associated with each category
are distinctive, or more effortful if either the distinguishing
features are subtle (e.g., Biederman and Shiffrar, 1987) or the
exemplars from each category share common features (Newell
and Bülthoff, 2002). In the latter case, practise on the task is
likely to lead to better categorisation performance. Concomitant
with the cognitive ability to form categories is an increase
in familiarity with the properties of the particular exemplars
themselves during task acquisition. Thus, the ability to categorise
objects becomes more efficient with increasing familiarity of
exemplars within each object category as well as perceptual
expertise in distinguishing between these exemplars (see e.g.,
Bornstein and Mash, 2010). However, what is not clear is
how exemplar familiarity or expertise in one sensory domain
transfers to another modality. In the following study, we used
neuroimaging to investigate the role of higher-level cognitive
and lower-level perceptual processes involved in learning to
categorise novel textures and ask whether these processes may be
specific to, or independent of, the learning modality.

The capacity to learn and become proficient in a new
task is present throughout the lifespan, with practise serving
as an important cornerstone of such learning (Ericsson
et al., 1993; Ericsson and Charness, 1994; Jonides, 2004).
Indeed, there is evidence that repeated practise not only
influences behavioural efficiency, by increasing speed and/or
accuracy (Chein and Schneider, 2005), but also by altering
the functional and/or structural properties of the brain
(Kelly and Garavan, 2004; Chein and Schneider, 2005,
2012). Task acquisition can influence brain activity through
various individual mechanisms, including a reorganisation
or redistribution of neural activity within and across neural
networks which can manifest as increases or decreases in
brain activity during the period of training (Petersen et al.,
1998; Poldrack, 2000; Kelly and Garavan, 2004). More
specifically, reorganisation refers to fundamental changes
in the neural systems underlying task acquisition, such that
neural activity may subside in one region and increase in
another depending on the cognitive strategies adopted (e.g., see
Petersson et al., 1999). Conversely, redistribution refers to the
reduced involvement of neural systems involved in attention

and cognitive control (the so-called ‘scaffolding’ network;
Kelly and Garavan, 2004) and an increase in activity in regions
underlying the sensory representation of the task stimuli (e.g.,
see Frutiger et al., 2000).

There is clear evidence that training in a particular task can
exert significant changes on brain function (Poldrack, 2000;
Kelly and Garavan, 2004; Carmel and Carrasco, 2008; Sasaki
et al., 2010). However, reports of functional changes to task-
and stimulus-specific regions are somewhat heterogeneous, with
patterns of functional activity associated with either increases
or decreases in strength following training in both higher
cognitive regions as well as lower, sensory nexuses. Moreover,
these effects can vary across different classes of stimuli, stimulus
familiarity, characteristics of the training procedure and training
groups (Schwartz et al., 2002; Carmel and Carrasco, 2008;
Sasaki et al., 2010). Other studies have provided evidence to
suggest that plasticity can occur within the primary visual
cortex in a stimulus-driven manner, that is, independently
of top-down modulation (Karni and Sagi, 1991; Schwartz
et al., 2002; Pourtois et al., 2008). For example, following
visual texture discrimination training, Schwartz et al. (2002)
observed an increase in functional activity in the visual cortex
that appeared to be unrelated to functional changes in other
brain regions. A similar finding was demonstrated in an fMRI
study by Yotsumoto et al. (2008) in which participants were
also trained to visually discriminate target textures located
in specific quadrants of the visual field. In an attempt to
unify these findings, Chein and Schneider (2012) proposed a
Triarchic Theory of Learning in which they outlined predictions
for the involvement of different brain areas during different
stages of task acquisition. In summary, they proposed that
both task acquisition and proficiency are associated with a
decrease in activation in regions of the brain involved in
metacognition or cognitive control as well as an increase
in regions of the brain that are more involved with the
representation of the stimulus-specific information required for
the task.

Texture information can be perceived using vision or touch,
but often in combination. However, it is not clear whether
learning in each of these modalities transfers to the other for
texture perception. Although some studies on texture perception
have provided evidence for a multisensory representation, other
behavioural and neuroimaging findings suggest that vision and
touch may contribute in different ways to the perception
of texture. For example, Podrebarac et al. (2014) reported
texture- but not shape- selective processing in regions of the
occipitotemporal cortex but found no evidence for overlapping
activation to visual or tactile inputs across these regions.
Furthermore, in their review of behavioural and neuroimaging
studies on crossmodal texture perception, Whitaker et al. (2008)
argued for the independent processing of texture across vision
and touch. They acknowledged, however, that studies of texture
often involved distinct aspects relating to either the spatial
distribution of texture components (such as raised dots) or the
roughness of surface textures and that further research was
required to investigate crossmodal interactions for the purpose
of perceiving more naturalistic textures.
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In contrast, other studies have provided evidence for
overlapping regions within the visual and parietal cortices
that are selective to texture processing within both the visual
and tactile modalities. For example, Stilla and Sathian (2008)
reported that a haptic texture matching task activated a number
of regions that were selective for texture but not for shape,
including ventral somatosensory areas, the parietal operculum
and bilateral posterior insula. These regions were also identified
as activated during the tactile exploration of textures (see e.g.,
Simões-Franklin et al., 2011). Furthermore, Stilla and Sathian,
along with other studies, reported activation to haptic texture
perception in areas of the visual cortex that also overlap with
regions activated to visual textures, specifically the middle
occipital cortical region extending to the middle occipital gyrus
(see also Sathian et al., 2011; Sathian, 2016). Most relevant to
the goal of our study are findings suggesting a distribution
in activations from low-level, image-based analyses of texture
within early regions of sensory cortices (visual or touch) to more
perceptual regions within the brain. For example, Hiramatsu
et al. (2011) reported a distributed activation pattern to visual
textures that included the primary visual cortex and higher-
level areas such as the collateral sulcus (see e.g., Cant and
Goodale, 2011). Similarly, Sathian et al. (2011) found distributed
activations to tactile textures from somatosensory regions to
the more higher-level medial occipital cortex (MOC). Using
a more direct comparison of regions activated to visual and
tactile textures, Eck et al. (2013) compared the associated
BOLD response during a texture matching task across bimodal
and unimodal exploration (most notably for the purpose
of our study, participants were not required to conduct a
cognitive task). Consistent with previous studies, Eck et al.
(2013) found distributed activation across a network of cortical
regions including early sensory areas (e.g., the post-central
gyrus activated by haptic exploration) to higher-order areas
involved in perception such as the middle occipital gyrus,
collateral sulcus and lingual gyrus (see Sathian, 2016 for a
review).

The current study sought to examine how a short-term
training programme influences the functional characteristics of
brain networks. Specifically, we included a training paradigm
to elucidate the neural substrates underpinning the crossmodal
transfer of learned information during texture categorisation,
as this is currently poorly understood. Participants learned
to categorise textures as either ‘natural’ or ‘synthetic’ through
either touch or vision and were subsequently tested on
their ability to categorise these trained textures using vision
only. Consistent with Chein and Schneider’s (2012) Triarchic
model of Learning, we hypothesised that decreases in the
cognitive ‘scaffolding’ network, including metacognitive systems,
would be observed as participants became more proficient
at the texture categorisation task itself (see also Kelly and
Garavan, 2004). Furthermore, we hypothesised that brain regions
associated with the perceptual representation of texture would
become more activated with practise. In light of previous
studies on texture perception across modalities, we expected
an increase in activation in cortical regions associated with
texture perception and that those regions, if multisensory,

would be equally activated by unimodal and crossmodal texture
information.

MATERIALS AND METHODS

Participants
Seventeen volunteers (9 male) were recruited from the
undergraduate and postgraduate student population at Trinity
College Dublin via local advertising. All reported to be right-
hand dominant (verified through the Edinburgh Handedness
Inventory) and had normal or corrected-to-normal vision.
All reported to be healthy and all confirmed no history of
neurological, psychiatric or psychological illness. One of the
participant’s data set was excluded from the final analysis as they
failed to show any effect of training and did not complete the
study. The final sample included eight males and eight females,
with a mean age of 21.2 (1.68) years (range from 19 to 24).
The experimental protocol was approved by the Psychology
Research Ethics Committee at Trinity College Dublin prior to
testing. Informed, written consent was obtained prior to study
participation and compensation was at a rate of €5.00 per hour
or in exchange for undergraduate ‘research credits’ to complete
course requirements.

Stimuli and Apparatus
The stimuli were comprised of a range 32 different samples
of texture fabrics. Each sample varied in weave (coarse or fine
textures) and the quantity of ‘natural’ fabric contained in the
threads. The coarse and fine textures were defined on the basis
of the spatial period of the weave, with fabrics of less than,
or greater than, 0.2 mm spatial period defined as ‘fine’ and
‘coarse,’ respectively (Hollins and Bensmaïa, 2007). The addition
of both fine and coarse types ensured we had a representative
sample of roughness textures in our study, but this dimension
was not of relevance to the overall hypothesis of the study. The
‘natural’ fabrics included cotton and wool, whereas the synthetic
fabrics included polypropylene and acrylic. All fabric samples
were custom woven as samples of pure ‘natural’ (i.e., 100% cotton
or 100% wool) or pure synthetic (i.e., 100% polypropylene or
100% acrylic) fibres. Other samples included mixtures of two
fibres, one each from the natural and synthetic category. All
mixtures contained either 75% of one fibre and 25% of the other
fibre category, or 50% of each, and fibres were evenly distributed
within each sample material. For example, a material sample may
contain 75% wool threads and 25% acrylic threads, or vice versa.
Figure 1A provides an illustration of some of the pure fabric
samples used as stimuli in this study. Prior to conducting the
study, we determined that the correct categorisation of samples
containing 75% or more of a natural fibre was ‘natural’ (100%
wool, 100% cotton, 75% wool and 75% cotton). For the samples
that contained 50% natural fibres, we determined that the correct
categorisation of 50% wool was ‘natural’ and 50% cotton was
‘synthetic.’ This was based on the results of a previous pilot
study where the 50% wool mixes were consistently perceived as
being ‘natural’ whereas the 50% cotton mixes were consistently
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categorised as ‘synthetic’1. Finally, all the remaining samples were
categorised as synthetic (25% wool, 25% cotton, 0% wool and 0%
cotton).

Each of the fabric samples were mounted onto a hard plastic
background surface and secured in place by a frame. The edges
of the fabric were fixed behind the block so that these could not
be viewed or felt during exploration. The dimensions of each
fabric sample was 80 mm in length and 80 mm in width. Each
fabric sample was photographed under standardised lighting
conditions that simulated diffuse, normal daylight. For both
the visual training and fMRI categorisation testing sessions,
high-resolution images of the samples were presented on a
computer monitor during the training task, or projected onto
a screen located at the bore of the MRI system during the
fMRI task. The same visual images of the 32 fabrics were used
for both the (fMRI) categorisation and behavioural training
sessions.

During the behavioural training sessions only, the
apparatus consisted of a table at which the participant sat
and a curtain which prevented the participant from viewing
the stimuli during tactile exploration. The participant and
experimenter sat on either side of the curtain. For tactile
presentation of the stimuli, the fabrics were placed behind a
curtain, the participant reached underneath the curtain and
the experimenter manually presented the stimuli one at a
time.

All tasks (behavioural and fMRI) were programmemed and
presented using Neurobehavioural Systems (NBS) Presentation
software (version 0.702).

Design
The main experimental protocol was based on an ABA design
in which the effects of a training intervention (B) was measured
by comparing texture categorisation performance pre- and
post-training (A) (see Figure 1B for a schematic illustration
of the protocol). Performance was measured as behavioural
responses (accuracy) as well as functional changes in the brain
(BOLD response) as a consequence of training. Participants were
presented with all fabric samples throughout the experiment.

During the behavioural training session, participants were
trained over 10 blocks of trials within each training modality per
day, over 2 days (as illustrated in Figure 1B). Thus there were
20 training blocks in total in each of two main training sessions.
Participants were offered a self-timed break between blocks. Each
block included 32 samples presented once in either the tactile
or visual modality: each participant learned to categorise half
of the samples (16) using touch only, and the other half using
vision only. Participants were randomly allocated to the training
modality condition. Fabric texture at training (coarse or fine)
was also counterbalanced across participants such that half of the
participants were trained on fine textured fabrics in one modality
and coarse fabrics in the other modality.

1This pilot study (N = 16) also established that performance at categorising each
of the fabrics as natural or synthetic (including 100% samples) was not at ceiling,
either using vision or touch.
2www.neurobs.com

The pre- and post- training categorisation task was
always conducted in the visual domain only and fMRI was
simultaneously acquired during these sessions. During the
categorisation task, responses (‘natural’ or ‘synthetic’) were
indicated using the index and middle fingers of the participant’s
right hand with a 1 × 2 Fibre-Optic response pad. The button
assigned to ‘natural’ (either middle or index finger) was
counterbalanced across participants. Within each categorisation
block, all 32 images of texture stimuli were shown twice (once in
each of two blocks) and were presented in a randomised order
across participants, irrespective of the training modality to which
each participant was allocated.

Procedure
The experiment took place over two consecutive days (see
Figure 1B). There were two main sessions to this study: an
intensive behavioural training session and a visual categorisation
task which was conducted twice, both before and after training.
Participants completed each of the visual categorisation tasks in
conjunction with fMRI on the 1st and 2nd day. On day 1, the
first visual categorisation task in the scanner was followed by
2 hours of behavioural training (i.e., outside the scanner). On the
2nd day participants undertook two further hours of behavioural
training before conducting a final visual categorisation task in the
scanner.

Behavioural Training
During this session, participants learned to categorise each fabric
sample as either ‘natural’ or ‘synthetic’ through feedback. As
shown in Figure 1C, a trial started with a fixation cross of 1 s
which prepared the participant for the subsequent presentation
of each stimulus. The structure of the trials was similar across
modalities with the following exceptions: each image of a
fabric was presented to the participant for 1000 ms in the
visual modality and 3000 ms in the tactile modality. For tactile
training, each sample was presented behind a curtain and the
participant was instructed to explore the sample using circular
hand movements in an anti-clockwise direction (at an average
rate of one circular movement per second). An inter-trial interval
of approximately 3 s occurred in the tactile modality only to
allow the experimenter to change the fabric stimuli between trials.
Participants verbally reported their responses and feedback was
provided to the participant immediately after a response was
made to each trial.

Categorisation Task (fMRI Acquisition)
The pre- and post- training categorisation task was conducted in
the visual modality only. As with the training study, participants
were required to categorise each visual image as either ‘natural’
or ‘synthetic.’ Each test session was conducted in the visual
modality alone, thus the related test session was either with
stimuli presented within the same modality or across modalities
to the training modality.

Participants completed four blocks of each test whilst being
scanned using fMRI, two before and two after the behavioural
training blocks. Each block lasted 300 s (150 TRs) and contained
all 32 unique fabric samples, one per trial (with 64 samples

Frontiers in Integrative Neuroscience | www.frontiersin.org 4 June 2018 | Volume 12 | Article 24

www.neurobs.com
https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-12-00024 June 7, 2018 Time: 16:28 # 5

O’Callaghan et al. Crossmodal Training in Texture Categorisation

FIGURE 1 | (A) An example of some of the pure (100%) fabrics from either the natural (wool, cotton) or synthetic (polypropylene, acrylic) categories used as stimuli in
the study. All samples shown are examples of coarse textures. (B) A schematic illustration of the experimental protocol adopted in the study. (C) An example of a
typical trial structure in the visual and tactile behavioural training sessions. See text for further details.

across the two blocks in each categorisation task). A trial
began with a fixation cross with a duration that was jittered
between 4 and 10 s. The stimulus image was then presented
for 1000 ms, followed by a response window of 2 s (question
mark). No feedback was provided during the categorisation
task.

Magnetic Resonance Imaging (fMRI)
Image Acquisition
The current study utilised a Philips Achieva 3.0 Tesla MR
system in conjunction with an 8-channel head coil. A mounted
mirror reflected a display that was projected onto a panel
behind the participant’s head outside the magnet. After an
initial reference scan to allow for the resolution of sensitivity
variations, 180 high-resolution T1-weighted anatomic MPRAGE
transverse images (FOV 230 mm, thickness 1.5 mm, voxel size
1.5 mm × 1.5 mm × 1.5 mm, total duration 343 s) were
acquired for each participant, which allowed for subsequent
activation localisation and spatial normalisation. Functional
images consisted of 40 non-contiguous (0.3 mm gap), 3 mm
transverse slices covering the entire brain and collected in
ascending order. Images were acquired using a T2∗ weighted
echo-planar imaging sequences (TR = 2000 ms, TE = 25 ms,
FOV 240 mm, 80 × 80 matrix size in Fourier space).
All imaging utilised a parallel sensitivity encoding (SENSE)

approach with a reduction factor of 2.5 (Pruessmann et al.,
1999).

fMRI Preprocessing and Statistical
Analysis
The analysis of fMRI data was conducted in Matlab 2016a
(Matlab: MATLAB and Statistics Toolbox Release, 2016a) using
Statistical Parametric Mapping, version 12 (SPM12, 2014).
The imaging data initially underwent realignment, spatial
normalisation to MNI space and smoothing with a Gaussian
kernel of full-width half maximum (FWHM) 8 mm3. Volumes
with scan-to-scan motion in excess of 1 mm were identified
by the ArtRepair toolbox (by Mazaika et al., 2009) and were
flagged to be deweighted in the design matrix phase. In the
design matrices an additional motion regressor was included
(i.e., a 7th motion regressor), with the onset and duration
of these volumes marked. This occurred in less than 0.1% of
scans.

General linear models (GLM) at the individual subject level
were created for each of the four runs; two before training
and two after training. The following events were modelled;
tactile trained synthetic, tactile trained natural, visually trained
synthetic, visually trained natural, with a canonical HRF and a
high pass filter (HPF) of 128 Hz.
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First level analysis consisted of contrasting the four conditions
against baseline, separately for tests before and after training,
leading to the creation of eight conditions; two training
modalities (tactile or vision), categorisation task (pre- and post-
training), and fabric category (synthetic or natural). Although
fabric category was not directly related to our hypothesis, we
included this factor for completeness to rule out any inherent
differences in activation associated with natural or synthetic
fabrics that may affect the overall results. Following this, the
flexible factorial approach in SPM12 was used to apply a
2 × 2 × 2 within-subject ANOVA for categorisation test
(pre- and post training), training modality (vision or tactile)
and naturalness (synthetic vs. natural fabrics) for these first
level contrasts at the group level. As there was no effect of
the training schedule that participants were assigned to, the
current model did not contain a between-groups factor to this
effect.

Main effects and interactions from the second level analysis
were reviewed with t-contrasts with an initial uncorrected
voxel threshold of p < 0.001 and had to exceed a 0.05
Family wise error (FWE) rate corrected cluster extent of
k > 104 (832 µl) continuous voxels, determined by AFNI’s
3dClustSim programme (Analysis of Functional NeuroImages,
2016) with the following settings; probability of a cluster
a < 0.05; voxel threshold p < 0.001; autocorrelation function
(ACF) values of 0.47, 4.52, and 10.68; one-tailed; edges
touching.

Six further second level contrasts were produced as they
addressed the particular hypotheses of the current study. Separate
analyses of change in activation during the categorisation tasks
pre- to post-training, and vice versa, were conducted for
stimuli trained through vision (within modality) and through
touch (cross modality). In addition, direct comparisons were
made between activity in response to stimuli previously trained
through touch and through vision, by contrasting these after
training, i.e., ‘post- training vision > touch’ and ‘post-training
touch > vision.’ Since these secondary analyses were exploratory,
a more stringent threshold was applied with a cluster extent of
k > 251 (2,008 µl), FWE corrected to 0.001, to account for
multiple comparisons.

Statistical Analyses of Behavioural
Performance
Two-tailed t-tests on performance during each training session
(visual and tactile) was used to assess improvement in trials
presented at the end of the training session relative to those
performed at the beginning. To assess behavioural changes
in categorisation performance following training we used a
2 × 2 within-subjects ANOVA on participants’ mean accuracy
scores with categorisation task (pre- or post- training) and test
modality (within or across modalities) as factors. All analyses of
behavioural data were conducted using the Statistical Package for
Social Sciences (SPSS) version 24 (IBM Corporation; Armonk,
NY, United States). Effect sizes are reported as partial eta-squared
(η2

p). Where appropriate, Tukey’s honest significant difference
(HSD) pair-wise comparison tests, which corrected for multiple

comparisons, were used to conduct post hoc analyses of any
interactions and significant main effects from the ANOVA, where
appropriate. All reported p-values were based on an alpha level of
α = 0.05.

RESULTS

Behavioural Performance
Behavioural Training Performance
We first measured performance to each block on the training
task to ensure that participants were improving on the texture
categorisation task during both visual and tactile training.
Because some participants reported fatigue during the final
training block (Block 20), and performance generally reached
asymptote for all participants, we took the average performance
between the final two training blocks and compared this to
performance in the initial block (Block 1) of training trials, in
each modality. Although the task was more difficult in the tactile
modality (56.3 and 69.2% accuracy in Block 1 for touch and
vision, respectively) there was evidence of improvement in both
modalities: performance following training in the tactile modality
improved by 7.5% (SD = 14.75%) whilst performance in the
visual modality improved by 14.2% (SD = 6.45%). There was no
difference in improvement of performance across the modalities
[t(16) = 1.65, p = 0.11].

Categorisation Test Performance
A plot comparing the mean accuracy performance at test,
(i.e., pre- and post- training), depending on visual or tactile
training is presented in Figure 2. These pre- and post-training
(categorisation) tests were conducted within the scanner, and in
the visual modality only (therefore the cross-modal performance
is indicated in the ‘Touch’ training condition). A 2 × 2 ANOVA,
conducted on the participants’ accuracy at categorising the visual
stimuli as either ‘natural’ or ‘synthetic’ identified a main effect
of categorisation task [F(1,15) = 43.37, p < 0.001, η2

p = 0.756],
with an improvement in accuracy performance in this task from
pre- to post- training (as shown in Figure 2). No main effect
of (within or across) training modality (F < 1) was observed.
The interaction between test session and training modality
approached but failed to reach significance [F(1,15) = 3.53,
p = 0.079]. However, since this interaction was most pertinent
to our predictions, a more detailed, post-hoc analyses of the
categorisation task performance data confirmed significant pair-
wise improvement in task performance from pre- to post-training
sessions for each modality (Tukey HST; all ps < 0.05), and no
difference in performance across the training modalities at either
the pre-training or post-training tests (all ps > 0.1). These results
are therefore consistent with the performance improvement
during the behavioural training session itself, reported above.

fMRI Results
Global brain analysis identified a widespread pattern of regions
that had significantly greater activation during the categorisation
task before training compared to after training. Cortical regions
within this bilateral, continuous cluster included the majority
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FIGURE 2 | Plot showing the mean accuracy performance to each
categorisation task conducted pre-training and post-training. The
categorisation task was conducted using vision only and performance is
shown to stimuli previously trained in the visual (i.e., within modality) and
tactile (i.e., cross-modal) modalities. Error bars represent ±1 SEM.

of the occipital cortex, the superior parietal cortex [including
the intraparietal sulcus (IPS) and aspects of the primary
motor and somatosensory cortices], supplementary motor area
(SMA), dorsal anterior cingulate cortex (dACC), the dorsolateral
prefrontal cortex (DLFC), putamen, caudate, and insula. Greater
activation was also found in the thalamus prior to training. These
regions are illustrated in Figure 3. This pattern of activation
did not appear to be specific to the training modality: separate
analyses of pre- to post-tactile and visual training showed
decreased activation in these same regions.

In addition, a region within the visual cortex, the left MOC
demonstrated a significantly greater response after training (i.e.,
a main effect of training) as shown in Figures 3, 4A. In a
subsequent analysis, we separated the responses to the visual
categorisation task by training modality (within or across), and
found that this pattern remained for stimuli trained through
vision (i.e., within modalities) but was bilateral for stimuli trained
through touch (across modalities), as illustrated in Figure 4B.
Values extracted from the left and right MOC3 associated with
the visual and tactile categorisation task pre- to post training, are
illustrated in Figure 4C. Finally, no main effects of naturalness
(synthetic vs. natural) or training modality (vision vs. tactile
training) were found, even with a direct t-test comparison
between stimuli trained through vision and through touch
during the post-training session only. All functional results are
summarised in Table 1.

DISCUSSION

Our study was designed to elucidate the neural correlates
of visual texture categorisation following both within and

3Eigenvariate extraction in SPM12 from 5mm sphere around peak coordinates.

crossmodal (tactile) training. In particular, we were interested
in determining the changes in functional activation that
occurred following categorisation training of textures and
whether the benefits of training in one modality transferred to
another. Texture categorisation performance improved across
participants following both visual and tactile training. Consistent
with previous studies on practise effects, we found a decrease in
activation with training in regions of the brain that are typically
associated with higher cognitive processes (Kelly and Garavan,
2004; Chein and Schneider, 2012). These regions included areas
within the parietal cortex, particularly the IPS, as well as regions
within the anterior cingulate and prefrontal cortex. Furthermore,
our findings also suggested an increase in activation in a region of
the occipital cortex, the MOC, that has previously been associated
with the crossmodal perception of textures (see e.g., Sathian,
2016). Thus, our findings are consistent with a redistribution
of neural activity following learning on a texture categorisation
task. More specifically, the results lend support to the Triarchic
model of Learning proposed by Chein and Schneider (2012) in
that an increase in proficiency at a texture categorisation task was
associated with both a decrease in activation within the cognitive
‘scaffolding’ network, as well as an increase in activation within
brain regions associated with the perceptual representation of
texture.

Collectively, the activated regions within the prefrontal and
parietal cortices represent a domain-general system and are
associated with cognitive processing of information involved in
the task, such as task acquisition and attention. Some regions,
specifically the dACC and the right DLFC, are involved in goal or
task-directed behaviour, particularly task monitoring and error
detection (Carter et al., 1998). Parietal regions, particularly the
IPS, are typically associated with visual short-term memory (e.g.,
Xu and Chun, 2006) but also in the allocation of visuo-spatial
attention (e.g., Connolly et al., 2016), as well as multisensory
attentional processes (Macaluso et al., 2000; Anderson et al.,
2010). However, regions within the IPS have also been implicated
in the crossmodal transfer of information for determining visuo-
motor action on objects (Sakata et al., 1997; Culham and
Kanwisher, 2001) as well object properties (see e.g., Grefkes et al.,
2002; Saito et al., 2003). Thus, it is feasible that in the current
task, which involved visual categorisation of textures, the IPS
may have been involved in controlling attention to information
most relevant to the categorisation task which, as a consequence
of training, may have been multisensory (i.e., from both the
visual and tactile properties of the textures). In general, our
finding of reduced activation in this region is consistent with
models of learning that suggest the IPS is involved in cognitive
or attentional control (Gilbert et al., 2001; Sigman et al., 2005).
Processing in these prefrontal and parietal areas may therefore
provide the neural ‘scaffolding’ required to facilitate learning and
performance in a task (Kelly and Garavan, 2004).

Although not entirely consistent with some cognitive models
of task proficiency (Chein and Schneider, 2012) we found
reduced activation in lower-level regions of the brain, including
large areas within the occipital lobe and fusiform gyrus
following training. These activations are likely to be associated
with repeated presentation of image-based or somatosensory
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FIGURE 3 | Illustration of the widespread pattern of changes in activation during texture categorisation following training. Regions showing reduced activity (blue
colours) included bilateral aspects of the occipital cortex, IPS, primary and somatosensory cortices, SMA, dACC, DLPFC, insula, caudate, and putamen. The left
MOC was the only region to show increased activation after training (red colours). Images are arranged such that the first slice at the top left of the figure is located in
the left hemisphere (L), progressing rightward through the brain until the last slice in the right hemisphere (R) shown on the bottom right of the figure.

FIGURE 4 | Regions demonstrating a significant increase in activation during the categorisation task post training. (A) A main effect of training was associated with
increased activation in the left MOC. (B) An illustration of the result of subsequent analyses of the effect of training modality which revealed bilateral activation in the
MOC following training using touch. (C) Barplot showing relative increases in both the left and right MOC during the visual categorisation task from before to after
training, with after-training activity shown dependent on the training modality of vision or touch. Note that barplots depicting the mean peak activations post-training
are shown only for regions associated with a significant increase in activation (i.e., activation in the right MOC to visual training was not significant, ns). See text for
details on the cluster-based analyses conducted. Error bars represent ±1 SEM.

properties of the texture materials themselves, as suggested by
the so-called ‘sharpening model of response suppression’ (Wiggs
and Martin, 1998; Grill-Spector et al., 2006). For example,
Vuilleumier et al. (2002) reported reduced activation in early
visual regions following repetition priming of images of both

real and nonsense objects but found object-selective responses
in anterior fusiform regions related to object meaning. In other
words, whereas the reduced activation in occipital cortex may be
related to stimulus repetition per se, the perceptual categorisation
of objects resulted in activation in more anterior regions of
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the brain. This finding is consistent with our results which
suggest that the learned perceptual representation of the texture
categories may be associated with increases in activation within
stimulus-specific regions of the brain but stimulus repetition may
result in a general decrease in activation in occipital areas.

Functional cortical plasticity at the level of sensory processing
has been identified predominantly in studies involving visual
perceptual learning (Gibson, 1963; Ahissar and Hochstein, 1997;
Carmel and Carrasco, 2008; Sasaki et al., 2010). Indeed, some
fMRI studies have provided evidence that visual training can
increase responses in primary visual cortex that are specific
to trained but not untrained stimuli (e.g., Schwartz et al.,
2002; Furmanski et al., 2004; Jehee et al., 2012). Other studies
have also reported stimulus-specific activity in higher visual
regions. For example, activity in the fusiform gyrus, which
is implicated in face processing (Kanwisher et al., 1997), is
reported to decrease in response to visually familiar but not
unfamiliar faces (Dubois et al., 1999; Rossion et al., 2001, 2003;
Kosaka et al., 2003; Gobbini and Haxby, 2006; see Natu and

O’Toole, 2011 for a review). Furmanski et al. (2004) proposed
several neurophysiological mechanisms which could mediate this
process, such as an increase in the firing rate of neurons or the
recruitment of additional neurons following training. However,
the results of other studies suggest that the effect of visual training
on activation in visual regions may generalise to untrained
stimuli. For example, Schiltz et al. (1999) reported a decrease
in functional activation (using positron emission tomography,
PET) in several regions within the occipital cortex, including
the fusiform gyrus, in response to both trained and untrained
stimulus orientations (see also Schiltz et al., 2001 for a similar
finding). It is not clear what is the basis for these inconsistent
findings although differences in task demands or stimulus sets
used for training are known to affect the learning process more
generally (Green and Bavelier, 2008). It is also possible that the
specific neurophysiological architecture of the visual cortex may
mean that functional modifications with practise are distinct
from those observed in other sensory or motor domains (Schiltz
et al., 2001; Kelly and Garavan, 2004).

TABLE 1 | Summary of the results of the whole brain analysis visual categorisation task (before vs. after training), training modality (within vs. across modality) and
naturalness (synthetic vs. natural) as factors.

Side Brain areas Cluster extent (k) Cluster volume (mm3) Peak voxel T Peak MNI coordinates (x, y, z)

Main effects

Before Training > After Training

R Middle Occipital Gyrus 60,868 486,944 11.07 36 −88 10

R Fusiform Cortex 10.82 30 −70 −4

R Fusiform Cortex 10.79 28 −52 −6

L Middle Frontal Gyrus (BA9/46) 213 1,704 4.74 −34 44 40

3.29 −44 38 34

3.21 −36 34 32

L Middle Frontal Gyrus (BA46) 109 872 4.48 −38 38 18

L Superior Frontal Gyrus (BA6) 135 1,080 3.9 −24 −10 58

After Training > Before Training

L Middle occipital cortex 481 3,848 5.08 −42 −76 38

Main effect of Training Modality (Vision or Touch)

No significant differences

Main effect of Naturalness (synthetic or natural fabric)

No significant differences

Training ∗ Training Modality Interaction

No significant differences

Further analyses

Vision: Before > After Training

Same regions and approximate cluster sizes observed as for ‘Before Training > After training’

Vision: After > Before Training

Same regions and approximate cluster sizes observed as for ‘After Training > Before Training’

Touch: Before > After Training

Same regions and approximate cluster sizes observed as for ‘Before Training > After training’

Touch: After > Before Training

Middle occipital (L) 598 4,784 5.07 −46 −76 38

Middle occipital (R) 328 2,624 4.22 48 −72 38

After Training: Vision > Touch

No significant differences

After Training: Touch > Vision

No significant differences
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More pertinent to our own findings are studies involving
multisensory perceptual learning. For example, Powers
et al. (2012) observed decreases in activation in both visual
and auditory cortices following training on an audiovisual
simultaneity judgement task. Interestingly, they also reported
increased functional connectivity between these regions and
the superior temporal sulcus, implying the formation of a more
efficient neural network in parallel with perceptual learning
(see also Engel et al., 2012). In contrast, studies of multisensory
expertise, for example musical training, have reported greater
activation in specific sensory regions of the brain (Bangert and
Altenmüller, 2003; Hasegawa et al., 2004; see also Herholz and
Zatorre, 2012). Finally, crossmodal associations have also been
reported in response to perceptual learning within a specific
sensory domain, such as functional modulations within the
visual ventral pathway following training on an auditory pattern
recognition task (Poirier et al., 2006) or activation within the
fusiform gyrus following training on Braille reading in sighted
individuals (Debowska et al., 2016). These findings suggest that
functional changes with perceptual training can be specific to the
training modality itself, as well as the modality most dominant
for that task (McGovern et al., 2016).

Similar to previous findings of an increase in activation in
stimulus-specific regions of the brain, our results also suggest
that crossmodal training was associated with an increase in
activation within a particular region of the occipital lobe, namely
the MOC, that was mainly lateralised to the left hemisphere.
A subsequent analysis revealed that visual training was associated
with unilateral, left activation of the medial occipital region
whereas tactile training was associated with bilateral activation of
this region. This apparent difference should be interpreted with
some caution, however, as no interaction between categorisation
task (pre- and post- training) and training modality was detected
in the full model. Moreover, the lateralisation of these activations
following practise on a texture categorisation task differ slightly
from previous studies involving direct comparison of activation
across visual and tactile conditions. For example, whereas Stilla
and Sathian (2008) reported activation in the right MOC during
haptic texture processing and bilateral activation during visual
processing, in a later study Sathian et al. (2011) reported bilateral
activation to tactile texture processing but activation in the left
middle occipital gyri (MOG) during visual texture processing.
Although both studies used similar fabric materials as stimuli
for the texture tasks each study involved different perceptual
tasks [i.e., shape versus texture task in the Stilla and Sathian
study; localisation versus texture task in the Sathian et al. (2011)
study] which may account for the functional differences. In a
more direct comparison of crossmodal texture perception to
our study, Eck et al. (2013) found an increase in activation in
the left-posterior occipital cortex during bimodal compared to
unimodal texture exploration but activation extended to the right
hemisphere during tactile processing. Taken together with our
own findings, these results suggest that familiarity with textures
across both vision and touch is associated with greater activation
within visual regions of the cortex, particularly MOC, but that
the crossmodal processing of texture may affect the lateralisation
of the activation. The finding that increases in activation are

localised to a region within the occipital cortex, however, does
suggest the intriguing possibility that these effects are related to
perceptual processing per se, particularly texture perception, but
that activations within these regions may be modulated by the
specific requirements of the learned task.

Crossmodal training on a task involving texture
categorisation, even when subsequently tested within one
specific modality, can clearly affect processing in a wide network
of regions. However, the extent to which these observed
changes in activation is influenced by factors unrelated to
sensory encoding or the task itself, such as handedness or
stimulus discriminability, is not clear. Further research is
required to elucidate the dynamic nature of these changes
within sensory regions of the brain during and after intensive
training, specifically on a perceptual task that typically involves
multisensory processing, such as texture perception. Future
studies may also help unravel the neural underpinnings of
perceptual expertise in categorising stimuli from those associated
with an increase in familiarity with the sensory aspects relevant
to a particular task. In the meantime, our study provides some
insight into the role of cognitive control as well as perceptual
processes in the categorisation of naturalistic, multisensory
textures with changes in brain function associated with both
increased proficiency in the task as well as familiarity with the
stimulus set.
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