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A B S T R A C T

Due to delay in reporting, the daily national and statewide COVID-19 incidence counts are often unreliable
and need to be estimated from recent data. This process is known in economics as nowcasting. We describe in
this paper a simple random forest statistical model for nowcasting the COVID-19 daily new infection counts
based on historic data along with a set of simple covariates, such as the currently reported infection counts,
day of the week, and time since first reporting. We apply the model to adjust the daily infection counts in
Ohio, and show that the predictions from this simple data-driven method compare favorably both in quality
and computational burden to those obtained from the state-of-the-art hierarchical Bayesian model employing
a complex statistical algorithm. The interactive notebook for performing nowcasting is available online at
https://tinyurl.com/simpleMLnowcasting.
1. Introduction

The SARS-CoV-2 virus, first observed in the United States (USA) in
January 2020 [1–3], is highly contagious [4] and has spread in both
urban and rural regions [5,6] of the USA. To gauge and combat the
SARS-CoV-2 spread, governments and health organizations have set
up public information systems such as COVID-19 dashboards [7–10].
These dashboards are useful to brief the public [8] about the current
state of COVID-19 in specific regions, make data-driven public health
decisions [10], and improve transparency in governance [11]. Many
of these dashboards show the number of daily new infections (daily
incidence), where the infection count on a particular date refers to the
number of people who started experiencing disease symptoms on that
date (i.e., the onset date of illness). Whereas reporting onset dates is
very useful from the viewpoint of contact tracing and disease spread
monitoring, it is also challenging due to unavoidable delays. [7,12,13].
These delays are often due to the time-lags between experiencing initial
symptoms and seeking care, receiving testing results, and updating the
statewide records [14,15]. As a consequence, the incidence reporting
based on onset counts leads to under-counting of the present and
most recent cases. Dashboards often explicitly warn about this prob-
lem [16,17]. Fig. 1 shows one such example from COVID-19 Dashboard
maintained by the Ohio Department of Health (ODH) [7] where the
region of possible under-reporting is marked with a gray rectangle.

The incomplete current count data poses huge challenges for both
local and national healthcare policymakers as they strive to make
difficult public health decisions (e.g., introduce lockdowns, curfews,
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Fig. 1. Daywise COVID-19 cases in Ohio, as on 12-01-2020. The shaded area –
comprising of 21 days – is the preliminary case data and is likely under-reported to
the ODH due to delayed reporting.

evaluate vaccination effects, etc.) in real time to limit the spread
of the virus. The use of statistical methods to moderate the effects
of incomplete data could help reduce uncertainty in public health
decision-making during the COVID-19 pandemic and increase public
awareness of the most recent disease trends.

While forecasting COVID-19 cases is typically concerned with pre-
dicting the future burden of the epidemic, nowcasting [18–20] addresses
the problem of delayed reporting and focuses on the estimation of
current case counts from not-too-distant historic data. Given the under-
reported infection data for a particular date, the nowcasting models
estimate the total number of current infections for that date, which
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will be reported eventually. In the literature, there exist several so-
phisticated statistical methods for addressing the issue of nowcasting
for COVID-19. For instance, Wu et al. [21] nowcast the probable size
of the COVID-19 outbreak in Wuhan, China. The authors estimate the
basic reproduction number 𝑅0 from their proposed non-homogeneous
counting process modeling the exported number of international cases
from Wuhan and the global human mobility data from/to Wuhan.
The authors then used the estimated 𝑅0 in the Susceptible–Exposed–
nfected–Recovered or SEIR model [22] for nowcasting and forecasting
he outbreak’s size. The nowcasting problem for delayed reporting of
OVID-19 cases is also addressed by Silva et al. [23] and Greene
t al. [13] using Bayesian smoothing approach [19] where the au-
hors model the delayed number of reported cases with their proposed
arkov counting processes.

In this paper, we propose a simple yet efficient machine learning
odel that addresses the problem of nowcasting in a way that is

asily understood by non-experts and therefore suitable for presenting
o public health decision-makers. The only data our proposed model
equires can be readily collected from publicly available dashboards.
espite its simplicity, the model is seen to predict, with high accuracy

measured with the typical regression-style 𝑅2 value), the number of
eople who start experiencing COVID-19 symptoms on a particular
ate. We also show that our proposed model outperforms the state-
f-the-art hierarchical Bayesian model [24] in terms of nowcasting
ccuracy while being also approximately 72000x faster. Our model
redictions can also be utilized as input to other forecasting models, for
nstance, the ones created for ODH [25] that forecast the future number
f infections and subsequent hospital burden in Ohio. Note that since
he goal is to nowcast the state epidemic incidence curve, there is no
ccounting for non-symptomatic cases.

. Materials and methods

.1. Data processing

To perform our analysis, we used the public data available at ODH
OVID-19 dashboard,1 which is updated daily. It provides the daily
artial incidence count, that is, the count of all individuals 𝑖𝑡𝑑 reported
n a given day 𝑡 to be confirmed COVID-19 cases with the day of onset
where 𝑑 ≤ 𝑡. For our analysis we aggregated cases by the onset

ate to get the state-level progression of the onset reporting. This was
one by pulling data from the dashboard everyday — the dashboard
rovides the data for the 𝑑 days which we pull for 𝑡 days. Accordingly,

the infection count 𝐼𝑇𝐷 on a specific day 𝑇 for a given specific onset
ate 𝐷 is given by

𝑇𝐷 =
∑

𝑑≤𝑡≤𝑇
1𝑖𝑡𝑑 , (1)

here 1𝑖𝑡𝑑 is the indicator function

𝑖𝑡𝑑 =

{

1 where 𝑡 ≤ 𝑇 , 𝑑 = 𝐷,
0 otherwise.

(2)

Note that for a given 𝐷, 𝐼𝑇𝐷 is non-decreasing as a function of 𝑡
and, assuming that it is also bounded, it has a limit as 𝑇 → ∞. This is
illustrated in Fig. 2 where we see that over the course of 52 days 𝐼𝑇𝐷
becomes approximately a constant.

We denote the asymptotic stable value of 𝐼𝑇𝐷 for an onset date 𝐷
by

𝐼𝑠𝐷 = lim
𝑇→∞

𝐼𝑇𝐷 (3)

and define 𝐹𝑇𝐷 as the amount of undercounting for a specific 𝐷 on day
𝑇 given by

𝐹𝑇𝐷 = 1 −
𝐼𝑇𝐷
𝐼𝑠𝐷

. (4)

1 https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/
verview
2

Fig. 2. Progression of infection count 𝐼𝑡𝑑 for a specific 𝑑 value (11-01-2020) over 𝑡
ranging from 11-01-2020 to 12-22-2020. There is a steep rise in the infection count in
the initial days of data collection as the data is backfilled, but it gradually stabilizes.

We may think about 𝐹𝑇𝐷 as a standardized measure of undercounting
that is also robust to changes in incidence rates during the course of the
pandemic. In what follows, we therefore consider 𝐹𝑇𝐷 in place of 𝐼𝑇𝐷.
Note that although in general 𝐹𝑇𝐷 → 0 as 𝑇 → ∞, this convergence is
not necessarily monotone and that in the fixed time window, 𝐼𝑇𝐷 only
pproximately stabilizes as it approaches 𝐼𝑠𝐷. In order to improve data
tability in the time windows of interest, we consider the 𝐼𝑇𝐷 limit to be
eached in practice as soon as 𝐹𝑇𝐷 < 0.05. This particular cutoff value
as chosen by cross-validation [0, 0.5], as described in Section 2.2.

In order to cross-validate and measure the prediction testing error,
ata to be used for nowcasting is split into a training and a validation
testing) set based on 𝑡, where all 𝐹𝑡𝑑 with 𝑡 < 𝑇𝑡𝑟𝑎𝑖𝑛 are in the former

and 𝑡 > 𝑇𝑡𝑟𝑎𝑖𝑛 are in the latter.

.2. Model

ovariates. The model includes the following features to predict the
𝑡𝑑 .

• Days since data collection (𝛥). For any given infection count 𝐼𝑡𝑑
reported on day 𝑡 with onset date 𝑑, we define this feature as

𝛥𝑡𝑑 = 𝑡 − 𝑑. (5)

• Day of the week (𝜔𝑡). This categorical variable denotes the day of
the week for 𝑡, at which data is being reported, 𝜔𝑡 ∈{Mo, Tu, We,
Th, Fr, Sa, Su}.

• Raw infection count (𝐼𝑡𝑑). This is the daily partial incidence count
for the pandemic, as described in Eq. (1).

Random forest regression. We train a random forest (RF) regression
model [26] on the data partition defined in Section 2.1, to predict 𝐹𝑡𝑑
rom the covariates. Formally, we may write

𝑡𝑑 = 𝑓 (𝛥𝑡𝑑 , 𝛥
2
𝑡𝑑 , 𝛥

3
𝑡𝑑 , 𝜔𝑖, 𝐼𝑡𝑑 ), (6)

where 𝑓 is the RF model.

3. Results

Goodness of fit. The explained variance (𝑅2 value) is used to evaluate
the goodness of fit of the model on both the training data (time window
from 10-01-2020 to 11-15-2020) and on the testing data (time window
from 11-16-2020 to 12-15-2020). The predictions from the fitted model
plotted against the true values in test data can be seen in Fig. 3. The
explained variance is 0.99 on the training data and 0.89 on the testing
data, which shows that the model’s prediction of 𝐹𝑡𝑑 generalizes well

to the unseen data.

https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/overview
https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards/overview
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Table 1
Relative (Gini) importance of covariates. Days since data collection (𝛥) and its transformations are the most important, with day of the week
(𝜔𝑡) having the least effect.
Covariate 𝛥2 𝛥3 𝛥 𝐼 𝜔𝑡 = Th 𝜔𝑡 = Tu 𝜔𝑡 = We 𝜔𝑡 = Fr 𝜔𝑡 = Mo 𝜔𝑡 = Sa 𝜔𝑡 = Su

Importance 0.337 0.325 0.311 0.013 0.003 0.003 0.003 0.002 0.001 0.001 0.001
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Fig. 3. Actual vs Predicted 𝐹𝑡𝑑 on the testing dataset. Robust prediction of 𝐹𝑡𝑑 is crucial
or correct prediction of final infection count 𝐼𝑠

𝑑 .

Fig. 4. Predicted missing fraction, 𝐹𝑡𝑑 at various 𝛥𝑡𝑑 .

mportance of covariates. The relative importance of covariates (the
ini importance or the mean decrease in impurity) in the fitted model,
escribed in Section 2.2 can be seen in Table 1. The covariate days
ince data collection (𝛥), along with its quadratic and cubic transforms
urn out to be the most important features in determining the fraction
f missing data 𝐹𝑡𝑑 . The day of the week 𝜔𝑖 has much less relative

importance.

Prediction of missingness 𝐹𝑡𝑑 . Fig. 4 shows the prediction of 𝐹𝑡𝑑 for
ifferent values of 𝛥𝑡𝑑 . As seen from the plot, the model predictions are
lose to the true 𝐹𝑡𝑑 when 𝛥 > 4. The good agreement at 𝛥 = 0 is trivial,

as at first date of collection, 𝐹𝑡𝑑 is almost always close to 1.0 and thus
asy to predict. It is also evident that first 3–4 days of data collection
eem to be unreliable in predicting the correct 𝐹𝑡𝑑 and therefore should

be utilized cautiously in the nowcasting predictions.

Actual count prediction. Based on the prediction of 𝐹𝑡𝑑 and the current
observed count 𝐼𝑡𝑑 , we use (4), to get the estimate of 𝐼𝑠𝑑 , which is the
stable value of the infection count on day 𝑑. The typical trends for 4
different days of the week can be seen in Fig. 5. The infection count
from the model predicts the stable value 𝐼𝑠𝑑 robustly after five days
(starting from 𝛥 = 5), and in some cases even earlier. In Fig. 5 we
may see that irrespective of the day of the week (Monday, Wednesday,
Friday, Sunday), the model is seen to predict the value of 𝐼𝑠𝑑 with good
accuracy. We may also note that on Monday and Sunday the model
predictions have higher uncertainty likely due to the effect of weekend
test processing slowdown.

Comparison with the Bayesian model. In order to provide some context
for assessing the quality of the RF model predictions, we compare our
results with a state-of-the-art hierarchical Bayesian model proposed
recently by Kline et al. [24], which has been used for the same purpose
3

of nowcasting COVID-19 cases in the state of Ohio. The model, which
we refer to as the Bayesian model (BM) in the following, is more
elaborate than ours as it has also a spatial component. Specifically,
it keeps track of COVID-19 cases over time in different geographical
regions (counties in Ohio). Although in our comparison we aggregate
BM spatial counts, for the sake of completeness we briefly describe here
the entire model along with its spatial component. Denoting by 𝑌𝑖,𝑡 the
rue count of cases in county 𝑖 with onset date 𝑡 the BM assumes the

following Poisson model for the dynamics of the disease:

𝑌𝑖,𝑡 ∼ Poisson
(

exp
(

𝑂𝑖 + 𝛼𝑖,𝑡 +𝑋𝑡𝜂𝑖
))

, (7)

where 𝑂𝑖 is an offset of the logarithm of population of county 𝑖,
the spatio-temporal random variables 𝛼𝑖,𝑡 are the latent states of the
process, the design vector 𝑋𝑡 indicates the day of the week, and the
ector 𝜂𝑖 captures the day of the week effect. It is assumed that 𝑌𝑖,𝑡 is
nly partially observed for time 𝑡 > 𝑇max −𝐷, where 𝑇max stands for the
ast onset date and 𝐷 (assumed 30 in [24]) is the maximum reporting
elay following onset. BM also uses a semi-local linear trend model [27]
or the spatio-temporal random variables 𝛼𝑖,𝑡. Further, the spatial cor-
elation is accounted for using an intrinsic conditional auto-regressive
odel. The reporting delay is described by a Multinomial-Dirichlet
odel as follows. Denoting by 𝑍𝑖,𝑡,𝑑 the count of cases in county 𝑖
ith onset date 𝑡, which are observed 𝑑 days after 𝑡, one defines
𝑖,𝑡 =

(

𝑍𝑖,𝑡,0, 𝑍𝑖,𝑡,1,… , 𝑍𝑖,𝑡,𝐷
)

. Then, the Multinomial-Dirichlet model
rescribes

𝑖,𝑡 ∼ Multinomial
(

𝑝𝑖,𝑡, 𝑌𝑖,𝑡
)

,

𝑝𝑖,𝑡 ∼ GeneralizedDirichlet
(

𝑎𝑖,𝑡, 𝑏𝑖,𝑡
)

,

here the vectors 𝑎𝑖,𝑡 and 𝑏𝑖,𝑡 are described in terms of mean and
ispersion parameters [28]. The choice of a Generalized Dirichlet dis-
ribution allows for modeling potential overdispersion in 𝑝𝑖,𝑡 (see [28]).
oreover, it leads to a convenient Beta-Binomial conditional distribution

epresentation for the components 𝑍𝑖,𝑡,𝑑 . For the purpose of Bayesian
nalysis, the authors specify normally distributed priors for the pa-
ameters and use the R package nimble to perform a Markov chain
onte Carlo (MCMC) algorithm. The authors report a run time of

pproximately 20 h for 30,000 iterations.
In Figs. 6 and 7 we visually compare the nowcasts of the two models

nd see in particular that the RF enjoys narrower uncertainty bounds
nd less bias than the corresponding BM model. In order to quantify
his difference more formally, we calculate the 𝐿2 distance between
he predictions made by the RF and the Bayesian model, respectively
nd the actual known stable values in the Ohio COVID-19 daily counts
ataset. We report the ratio of the two 𝐿2 distance values as a measure
f relative closeness of the models to the true (stable) data value for
ays 𝑇 − 10 to 𝑇 and 𝑇 − 10 to 𝑇 − 5, where 𝑇 is the last available
ate in the data. The results are presented in Table 2. As can be seen
n the table, the predictions by the random forest model are relatively
loser to the true values than those generated using the Bayesian model
stimates. The ratio is smaller in the full 10 day window, indicating that
he RF model makes better predictions than BM for days that are close
o data collection.

. Summary and discussion

We presented here a simple method for nowcasting COVID-19 cases
rom historic data on daily incidence of new cases, as measured by the
nset of symptoms. Such type of data is now widely available for all
tates in the USA as well as for most countries in the world. When
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Fig. 5. Prediction of raw infection count.
Fig. 6. Comparison between the Bayesian model (BM) and random forest (RF) model
from 11-01-2020 to 12-09-2020. The vertical line indicates split between testing and
training dataset (of 20 days) used by RF. The weekly fluctuations (weekend effects)
are clearly visible in the data and are accounted for by both models.

Table 2
The ratio of 𝐿2 norm of nowcasted predictions from the Bayesian model
(BM) and random forest model (RF) from the true stable values at two
different time instants 𝑇 and 𝑇 -5. The ratio values below one indicate
that in both cases the RF model performs better than BM.

𝑇 -10 ∶ 𝑇 𝑇 -10 ∶ 𝑇 -5

𝑅𝐹∕𝐵𝑀 0.565 0.726

the need to take immediate decisions on governance or policy arises,
nowcasting can be a useful tool in providing more accurate estimates
about disease incidence and spread. Specifically, our proposed nowcast-
ing algorithm uses a random forest (RF) regression methodology and
4

leverages covariates that are based on day of the week, the number of
days passed since first data collection and total incidence so far.

The proposed algorithm is both conceptually simple and computa-
tionally efficient. Our results also suggest that it compares favorably
with a much more elaborate Bayesian model. We have illustrated the
application of our approach on publicly available data from COVID-19
daily onsets in Ohio, as available from the state’s COVID-19 interactive
dashboard. We observed that the model is able to predict the final
incidence for a day, within 3 to 4 days of data collection. We also find
that the number of days passed since first data collection, along with
its transformations (or derivatives), are the most important covariates
in predicting the final incidence.

The proposed model learns from the specific epidemic curve (in
our case COVID-19) and depends on how this curve is updated. In our
study, we have nowcasted epidemic incidence for Ohio. The process
of updating is highly dependent on part of the country, population
density, availability of testing and reporting by local health depart-
ments. It is likely that data from a different geographic region will lead
to different learned model. There could be some level of nowcasting
similarity in different geographical regions of the country and our
method could be used to help identify such cases. This can be a
potential follow up to our work.

In order to make our RF method predictions broadly available to
the interested researchers and practitioners, we have created a publicly
available and accessible interactive notebook (see below). As described
in the repository, the notebook allows one to use our algorithm to now-
cast current COVID-19 onset occurrences, based on any user-provided
historic data supplied in appropriate format.

The problem of nowcasting historic data is an important one, spe-
cially during the current COVID-19 pandemic, when delays in reporting
can snowball into sub-optimal policies and actions, that can cost lives
and create unnecessary societal burden. Our proposed method allows
both general public and health providers to carefully monitor the
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Fig. 7. Comparison between the Bayesian model (BM) and random forest (RF) model
from 12-01-2020 to 12-09-2020 including the respective 95% uncertainty envelopes.

pandemic trends and make informed decisions. The ideas we presented
while focused on COVID-19 can be broadly applicable to similar public
health problems in the future.

Software availability

The interactive self-contained notebook for performing the nowcast-
ing using the random forest approach described in the paper, along
with installation instructions, is freely available at https://zenodo.org/
badge/latestdoi/346708110. Additionally, the web-based version of the
interactive notebook is available at https://tinyurl.com/simpleMLnow
casting.
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