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Abstract: Participatory sensing services utilizing the abundant social participants with 

sensor-enabled handheld smart device resources are gaining high interest nowadays.  

One of the challenges faced is the recruitment of participants by fully utilizing their daily 

activity behavior with self-adaptiveness toward the realistic application scenarios. In the 

paper, we propose a self-adaptive behavior-aware recruitment scheme for participatory 

sensing. People are assumed to join the sensing tasks along with their daily activity without 

pre-defined ground truth or any instructions. The scheme is proposed to model the  

tempo-spatial behavior and data quality rating to select participants for participatory 

sensing campaign. Based on this, the recruitment is formulated as a linear programming 

problem by considering tempo-spatial coverage, data quality, and budget. The scheme 

enables one to check and adjust the recruitment strategy adaptively according to 

application scenarios. The evaluations show that our scheme provides efficient sensing 

performance as stability, low-cost, tempo-spatial correlation and self-adaptiveness. 
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1. Introduction 

Participatory sensing [1,2] is a novel and promising sensing paradigm with the fast development of 

mobile smart devices. The participatory sensing paradigm enables people with smart devices as the 

social sensors to be part of the sensing campaign to collect data from the ambient environment. The 

sensing data can then be shared and analyzed to reveal a certain pattern of the city. Participatory 

sensing is well-suited for applications such as air quality monitoring, noise monitoring, and 

transportation monitoring, etc. The objective of participatory sensing is to supervise the process and 

results of social activities. According to this, the recruitment scheme of social participants with  

self-adaptive data quality within varied realistic scenario becomes the key problem in participatory 

sensing. The participants are engaged in their own daily activities when they take part in the sensing 

campaign. Thus, the sensing activity is restrained by the daily behavior. The behavior then results in 

the data quality contributed by recruited participants. For a participatory sensing campaign to succeed, 

the participant recruitment has to stay connected with the living, working, and entertaining behavior.  

In the paper, we present a self-adaptive behavior-aware recruitment (SBR) scheme for participatory 

sensing that recruits the well-suited participants for sensing tasks according to the behavior of 

participants. The recruitment scheme is self-adaptive to the sensing data quality, i.e., the recruit 

strategy will change dynamically according to the data quality of current status.  

The main contributions of this work can be summarized as follows: 

(1) SBR scheme is proposed to recruit participants according to tempo-spatial-correlated behavior 

and valid data quality to provide efficient data collection in participatory sensing.  

(2) SBR enables a self-adaptive recruitment strategy to obtain a relatively stable sensing 

performance according to varied application scenarios. 

(3) SBR is designed for the realistic social participatory sensing scenario when people are recruited 

as they commit to their daily activity at the same time. The SBR scheme does not need  

pre-defined ground truth or any instructions on where and when to sample during the 

participatory sensing campaign. 

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3 outlines 

the recruitment framework. We present the SBR scheme in Section 4. Section 5 is performance 

evaluation. Finally, Section 6 concludes this paper. 

2. Related Work 

Participatory sensing has become one of the most promising application paradigms for  

human-centric mobile sensing. The following provides a brief overview of related work in terms of 

participatory sensing paradigm and data recruitment, respectively.  

The state-of-the-art literature [3] shows that future mobile sensing systems develop toward the 

people-centered and environment-centered sensing paradigm. The sensing domain can be home, urban, 

vehicular, etc. As the concept of participatory sensing was proposed, lots of research on participatory 

sensing paradigms was brought forward. Common Sense [4] is a participatory sensing system based on 

mobile handheld devices, which enables individuals and social community to be a part of air quality 

monitoring and measurement for an urban city environment. Ear-phone [5] is an open participatory sensing 
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platform for urban noise surveillance by using Nokia N95 and HP iPAQ to monitor the noise data, which is 

a better option for noise monitoring with moderate price and timeliness. Hasenfratz et al. [6] proposed 

participatory air pollution monitoring with both built-in sensors of smartphones and USB plug-in 

sensors for data sensing. Zhou et al. [7] proposed a participatory sensing paradigm that can predict bus 

arrival time with mobile phone.  

Predic et al. [8] proposed the ExposureSense participatory sensing framework with general 

information infrastructure based on smartphones, virtual sensors, and deployed wireless sensor 

networks through web services. Sun et al. [9] proposed a participatory sensing system for air quality 

monitoring based on static wireless sensors and smartphones held by people.  

The preliminary data recruitment in participatory sensing is based on simple schemes: random 

selection of data contributors and a naive scheme that asks all the contributors in the area of interest to 

contribute data. Although they are easy to be implemented, the schemes have potentially serious 

disadvantages, such as sensing coverage, redundancy, and cost. The state-of-the-art data recruitment 

schemes focus on the recruitment of suitable contributors as participants with good performance 

oriented toward the sensing campaign requirement. According to the metrics during recruitment, the 

schemes include three main categories. 

The first one is coverage-based recruitment. The tempo-spatial coverage is the first consideration 

for most of the participatory sensing campaign. Estrin et al. [10] proposed recruitment schemes to 

choose participants for data collection based on geographic and temporal availability with 

consideration of participation habits. Tuncay et al. [11] proposed an autonomous distributed 

recruitment and data collection framework for opportunistic sensing. They proposed a fully-distributed, 

opportunistic sensing framework to recruit the participants within the coverage of sensing missions, 

which is based on data mining of the human historical mobile trajectories. Hamid et al. [12] proposed an 

efficient data recruitment scheme for urban sensing based on vehicle trajectories. They analyzed the 

sensing coverage according to the mobile trajectories of vehicles and then recruited the suitable vehicles 

for urban sensing. The above schemes are mostly based on the mobility analysis according to the 

historical trajectories, and then choose the suitable participants with tempo-spatial coverage.  

The second category is reputation-based recruitment. The reputation-based recruitment schemes are 

mainly based on metrics for cross-campaign and campaign-specific situations. For campaign-specific 

participatory sensing, the metrics usually include timeliness, relevance of data, participant willingness, 

and degree of trustworthiness of data. For cross-campaign participatory sensing, the metrics also 

include the number of previous campaigns taken, the experience of participants, and fairness, etc. In [10], 

they also proposed a reputation-based recruitment scheme, which proposed to use Beta distribution to 

build the reputation metric and then calculate the probability of participation. Amintoosi et al. [13] 

proposed to choose trustworthy participants among friends and friends’ friends of online social networks. 

They [14] then proposed a novel recruitment scheme that considers both the quality of contribution and 

the trustworthiness level of participant within the social networks combined via a fuzzy inference 

system to arrive at a final trust rating for a contributor. Hamid et al. [15] proposed the reputation 

assessment and pricing model for the optimal reputation-aware recruitment framework to calculate the 

reputation score and recruitment cost. They proposed to recruit vehicles for public sensing considering 

the spatio-temporal coverage of participants along with the participant reputation within a budget limit.  
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The third category is expertise-based recruitment. The expertise-based recruitment schemes choose 

the well-suited participant with relevant expertise or experience for a given topic in a sensing 

campaign. Expert finding problems have been excessively studied in social networks [16,17]. In [16], 

they proposed a propagation-based approach for expert finding in social networks. In [17], they 

proposed a Bayesian hierarchical model for expert finding considering both social relationships and 

contents. Wang et al. [18] proposed a participant recruitment framework for crowdsourcing system, 

which identify the well-suited participants with particular kind of domain knowledge based on 

clustering in particular spatio-temporal spaces. 

Beyond the above categories, there are some other recruitment schemes to identify the participants 

according to more than one metric. In fact, it is usually in the form of a hybrid scheme with some 

combined metrics [13,15,19] from the above categories for better recruitment performance in 

participatory sensing campaign. 

Some of the research [20–22] shows that human mobility in daily activities obeys a certain pattern 

with strong tempo-spatial correlation and periodic discipline. Different from the above schemes, our 

recruitment scheme considers the behavior of participants during the daily activities as an important 

factor to identify the data quality with metrics combines coverage, reputation and expertise in 

participatory sensing. The scheme is also self-adaptive toward the change of participant behavior 

during daily activity as well as sensing activity. 

3. Behavior Modeling in Participatory Sensing 

The behavior modeling includes the modeling of tempo-spatial-related behavior and behavior ties. 

3.1. Tempo-Spatial-Related Behavior  

We represent the mobile trajectory of people held with smartphones or the other smart devices in 

participatory sensing using the association matrix as illustrated in Figure 1. In the matrix, the row 

corresponds to a location grid. The location grid g0, g2, …, gl is originated from the place division of 

the interested area for sensing task. The column corresponds the time period at the location grid for the 

typical time duration, such as a day or a week. In people’s daily life, behavior varies within different 

time periods. The value of column is based on this; e.g., time 24:00–6:00 is the rare moving time 

duration for most of the people in daily life. The other time durations like 6:00–8:00 and 8:00–10:00 

show more activity of moving trajectory. The matrix elements represent the percentage of time that 

people stay inside the grid. 

 

Figure 1. The association matrix based on mobile trajectory. 

…
…

…
…
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We utilize the method in [23] to capture the eigenbehavior vector for a given participant. For 

participant x with association matrix A, the singular value decomposition (SVD) [24] is applied as in 

Equation (1): 

TVUA ⋅⋅=  (1)

In which, a set of eigenbehavior vectors representing the leading trends within the typical time 

period can be obtained from the column of U; i.e., the rows of matrix VT.∑ is the diagonal matrix with 

corresponding singular values,σ1, σ2, …, σrank(A). The weight of each eigenbehavior vectors can be 

achieved as in Equation (2): 
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The tempo-spatial similar behavior of two participants can be achieved through the cosine similarity 

of eigenbehavior vectors. For user x and y with association matrix A and A’, the similarity is calculated 

as shown in (3): 
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3.2. Behavior Tie 

The behavior in daily life of people is constrained by the social activities and affected by social 

relations. The user behavior tends to be with homophile, which explains the reason for building ties 

among similar users. There are strong ties and weak ties in social life that affect the substantial social 

participatory sensing campaign, i.e., the ties affect participation.  

We use information theory-based methods to measure the correlation of participation to the 

probability of happening. The mutual information [25] metric measures the dependence of two users in 

terms of their participation behavior in participatory sensing campaigns. Given two random 

participating events X and Y with marginal probability mass function p(x) and p(y), representing the 

probability of the participation for user x and user y in a specific participatory sensing campaign, and 

the joint probability mass function of p(x,y),representing the joint probability of the participation for 

user x and y, their mutual information I(X;Y) is defined as the relative entropy between the joint 

distribution and their product distribution as in Equation (4). In which, the mutual information function 

I(X,Y) quantifies the amount of information (in units of bits)that can be obtained from user x about 

another user y participants in a specific sensing task: 
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The normalized mutual information (NMI) represents the normalized behavior correlation of two 

users in participatory sensing, i.e., behavior tie in participatory sensing. The NMI can be defined as in 

Equation (5), where H(X) and H(Y) are the entropy of x and y. The NMI value (i.e., behavior tie as we 

defined) is between 0 and 1.The value 1 implies X and Y with the same participating behavior in the 

sensing campaign, and value 0 implies X and Y with the opposite participating behavior: 
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According to the historical record of participants for a certain long time duration T, the user x 

moves among grid g0 to gl with tx as the time fraction of participation. The user y moves among grid g0 

to gl with ty as the time fraction of participation. The entropy H(X) and H(Y) is calculated as shown in  

Equation (6): 
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Based on this, we have Equations (7) and (8): 
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4. SBR Scheme 

We assume that all users with handheld smart devices can get to know sensing tasks from a sensing 

task distribution platform by service providers. The users that join the platform and agree to be 

recruited can become a participant. The recruitment is executed during users’ daily life without 

intervening in their daily activities. 

4.1. Recruitment Recommendation 

Data quality is a key factor to decide the recruitment in participatory sensing. From the historical 

sensing data, some metrics such as data accuracy, redundancy, relevance, completeness, and timeliness 

can be considered to measure the data quality contributed, which can assist to build the participants’ 

reputation. A final participant data quality rating score can be rated by the service provider and then be 

computed based on the weighted average metric value as shown in Equation (9), in which the metrics 

can be decided and chosen by the service provider according to sensing requirements: 

1 2 3 4 5R accuracy timeliness relevance completeness timelinnessα α α α α= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  (9)

Considering data quality is highly related with user behavior in sensing activities along with their 

daily life, we use recommendations in data quality prediction. Based on the behavior tie for users in 

participatory sensing, we can predict the unknown user behavior of participation by considering the 
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user interactions. The data quality based on recruitment recommendation becomes a collaborative 

filtering problem. The behavior tie implies the correlation of user behavior in participatory sensing with 

the value between 0 and 1. Then we choose the users with correlated behavior to make recommendation 

for a specific sensing campaign i, i.e., with NMI(Xi;Yi) ≥ NMIth. For user x that satisfies the above 

requirement, the recommendation with a weighted policy is shown as in Equation (10), in which we get 

the recommended data quality rating score as PRy,i with participation candidate y toward a specific 

sensing campaign i. 
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4.2. Recruitment Programming 

The recruitment metrics that we consider in the scheme include tempo-spatial behavior 

characteristics of participants, data quality that can be achieved through the recruitment strategy, and 

budget that users can afford. Based on this, the recruitment problem can be modeled as a linear 

programming optimization problem for recruitment objectives. For a specific participatory sensing task 
i∈I with the participants set P* = {p1, p2, …, pn }, the recruitment programming can be formulated as 

shown in Equations (11–14): 
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In Equation (11), AMstd,i is the typical tempo-spatial association matrix that can be given by the 

upper-layer application or through a long-time observation for sensing activities with the required 

coverage of grids and time fractions. sim(pi,AMstd,i) is the similarity for partition candidate pi with the 

required tempo-spatial coverage. We have sim(pi,Astd,i) = sim(Api,Astd,i), where the similarity value is 

between 0 and 1, in which 0 implies no similarity with the required tempo-spatial characteristics and  

1 implies the exact required tempo-spatial characteristics. The objective of recruitment programming is 

to maximize the total tempo-spatial behavior similarity for participants, when it subjects to  

Equations (12)–(14). In Equation (12), simth is the similarity threshold required for a sensing task, 

which provides the required tempo-spatial behavior similarity for participants. In Equation (13), Rth is 

the threshold for data quality rating required for sensing task i. It provides the constraint of data quality. In 

Equation (14), bdth is the budget threshold that users can afford. It provides the budget constraint in sensing 

task, e.g., battery energy etc. The above threshold values are given and adapted by upper-layer applications. 
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4.3. Self-Adaptive Strategy 

Sensing data is the main concern for participatory sensing campaign. Data quality can reflect the 

effectiveness of recruitment. However, the recruitment performance with participants will change with 

varied people’s behavior in daily life. We utilize a self-adaptive recruitment strategy to update the 

participants according to the dynamic scenarios. The self-adaptive scheme is to check the data quality 
periodically with interval parameter Td. If the data quality for current participant pk∈P* cannot satisfy 

the requirement for a specific check duration, i.e., Rpk < Rth, the unqualified participant will be 

removed. If the overall data quality for current participant set P* cannot satisfy the requirement for a 

specific check duration, i.e., RP* < Rth, a new round of recruitment is involved to recruit new 

participants to provide the valid data quality.  

5. Evaluation 

We implemented the proposed scheme by programming in Java to make performance evaluations. 

Our evaluation is based on real trajectory sets of people’s daily life by using the Geolife dataset [26], 

which was a project of Microsoft Research Asia with 182 users over five years from April 2007 to 

August 2012. Through data analysis, we divide the trajectory area of Geolife into 5874 grids according 

to the latitude and longitude range of the trajectory. On the other hand, we divide the trajectory data 

into each hour according to the time within a day. Based on that, we extract the association matrix data 

for each user with grid number, hour number, and stay duration within the specific grid and hour. The 

data of 182 users in the Geolife dataset forms a tensor that can be illustrated as shown in Figure 2. 

 

Figure 2. The tensor illustration of Geolife user data. 

The following section evaluates the scheme according to stability, low-cost, tempo-spatial 

correlation, and self-adaptiveness. Since real experiments in participatory sensing are not easy to 

organize, most of the research work conducts simulations to make evaluations. To our knowledge, 

current simulations for participatory sensing are based on different scenarios with specific assumptions 



Sensors 2015, 15 23369 
 

 

and controlled environments. There are different moving models and social groups set for participants 

who contribute data to sensing campaigns; e.g., some of the work assumes there are experts with the 

ground truth route to guide people moving for sensing. Some of the work assumes to use predefined 

random moving models and friendship relation models. The above leads to different metrics used to 

evaluate and observe the impact on the system performance. The performance metrics we considered 

here include number of participants and average stay duration fraction. The number of participants 

metric shows the recruitment cost with a certain sensing coverage and reputation as considered in 

SBR. The average stay duration fraction metric shows the recruitment effectiveness for the current 

strategy. Since people only join the sensing campaign within their daily life, the trajectory is dynamic. 

The instable participants may join and then leave the sensing campaign with only biased data and 

cannot provide a sustained sensing. The bigger average stay duration fraction for the specific location 

(grid) shows that people with more stable sensing habits probably provide more reliability from a 

sustained contributor.  As in [10], our scheme is compared with three recruitment schemes: random, 

naïve, and greedy. The random scheme selects participants randomly. The naive scheme selects 

participants that cover the grids and time without considering what existing selected participants 

covered. The greedy scheme selects participants that cover the most grids and time with considering 

what existing selected participants covered. We generate the target scenarios of participatory sensing 

campaign by choosing the random grids, random hours, and random stay durations within the most 

people’s activity area and time period. Our evaluation results are based on the average of five groups 

of different random scenarios.  

5.1. Recruitment for a New Participatory Sensing Campaign 

For a new participatory sensing campaign, the participant recruitment is based on the history 

trajectory. We use the Geolife data before year 2009 as the history trajectory. In a new sensing task, 

the data quality rating encounters the cold start. We assume all participant candidates have the same 

initial data quality score that is qualified. We also assume that we can afford the budget during the 

evaluation. Figure 3 shows the number of recruited participants with our scheme SBR when compared 

with the other three schemes. It implies SBR is less costly (i.e., needs less to pay for the participants 

within the sensing requirements).From the result, we can see that SBR recruits the least number of 

participants for the target sensing scenario. The naïve scheme recruits the most number of participants, 

because it only selects participants with the valid tempo-spatial coverage for the task scenario without 

considering the existing participants. The greedy scheme reduces the number of participants by 

considering the existing participants’ coverage. The random scheme still recruits considerable 

participants by arbitrary selection. Figure 4 shows the average stay duration time fraction within the 

task grids of the recruited participants (named average stay duration fraction) by using different 

recruitment schemes. The average stay duration implies the stability of participants for the sensing task, 

i.e., the longer the average stay duration, it means the participant stays longer in the expected grids 

within the expected time for the sensing task. It shows that people provide sensing data with more 

stable sensing habits and help to improve the data quality. The results show SBR achieves the best 

average stay duration. This implies that SBR recruits participants with relatively good stability of 
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tempo-spatial correlation for the sensing task. The other three schemes are with less average stay 

duration, and they have slight differences among one another.  

 

Figure 3. The number of participants with different recruitment schemes. 

 

Figure 4. The average stay duration with different recruitment schemes. 

We then made evaluations with a different similarity threshold to see the effect of tempo-spatial 

correlation within a different threshold selection. Figure 5 shows the participant number when we 

choose a different similarity threshold simth. The results show the participant number decreases as the 

similarity threshold increases, but the unreasonable similarity threshold incurs too many or too few 

participants. Too many participants increase the cost and incur the possible tempo-spatial redundancy, 

and too few participants cannot satisfy the tempo-spatial coverage. Figure 6 shows the average stay 

duration when choosing different similarity threshold simth. The results show the average stay duration 

increases as the similarity threshold increases. As we set threshold simth ≥ 0.5, the average stay duration 

gradually arrives at a considerable value than simth < 0.5. This implies that the tempo-spatial-related 

sensing habits of people tend to be more valuable for sensing tasks when choosing simth ≥ 0.5. 
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Figure 5. The number of participants with different similarity threshold. 

 

Figure 6. The average stay duration with different similarity threshold. 
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and design an adaptive strategy through the analysis of the historical data. Due to this, the  

self-adaptiveness of SBR can handle the varied scenarios by adapting the recruitment strategy.  

Figure 7 shows the self-adaptive participant number that changes with the update interval, i.e., 

months. At the end of each update interval, a data quality-based check is held to see if current data 

quality is qualified and needs to trigger the next new recruitment. The results show SBR can self-adapt 

the strategy to recruit a suited number of participants that satisfy the current application scenarios. 

Figure 8 shows the self-adaptive average stay duration, which can stay at a certain good level through 

self-adaptiveness. From the results, we can see the recruitment provides self-adaptiveness with a 

relatively stable sensing performance as the participant trajectory changes. This shows SBR can adjust 

the recruitment strategy and provide an efficient sensing capability within varied application scenarios. 

 

Figure 7. The self-adaptive participant number. 

 

Figure 8. The self-adaptive average stay duration. 
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6. Conclusions 

In this paper, we propose a self-adaptive behavior-aware recruitment scheme for participatory 

sensing considering tempo-spatial behavior and data quality incurred. The scheme utilizes historical 

trajectory analysis to model behavior similarity, based on tempo-spatial correlation, and behavior tie, 

based on NMI. We then propose a data quality assessment based on collaborative filtering. Based on 

this, we formulate the recruitment scheme as a linear programming optimization problem by 

combining coverage, data quality, and budget. The scheme enables one to adapt a recruitment strategy 

according to varied application scenarios. Our evaluation is based on a realistic mobile trajectory 

dataset without a pre-defined ground truth or instruction for when and where to sample, which is 

suitable for realistic social scenario in participatory sensing. Our scheme provides good stability,  

low-cost, tempo-spatial correlation and self-adaptiveness for participatory sensing campaigns. Our 

future work includes the implementing of SBR into our campus participatory sensing test bed. 
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