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Abstract: Machine learning models predicting the bioactivity of chemical compounds belong nowa-
days to the standard tools of cheminformaticians and computational medicinal chemists. Multi-task
and federated learning are promising machine learning approaches that allow privacy-preserving
usage of large amounts of data from diverse sources, which is crucial for achieving good general-
ization and high-performance results. Using large, real world data sets from six pharmaceutical
companies, here we investigate different strategies for averaging weighted task loss functions to train
multi-task bioactivity classification models. The weighting strategies shall be suitable for federated
learning and ensure that learning efforts are well distributed even if data are diverse. Comparing
several approaches using weights that depend on the number of sub-tasks per assay, task size, and
class balance, respectively, we find that a simple sub-task weighting approach leads to robust model
performance for all investigated data sets and is especially suited for federated learning.

Keywords: machine learning; classification; multi-task learning; federated; weighting; drug design;
small molecule drug discovery; MELLODDY

1. Introduction

Drug discovery is a costly and risky (due to high failure rates) endeavor. Time and
money spent until market access are continuously increasing for various reasons, including
the early-stage effort needed to discover and optimize suitable drug candidates. To over-
come this, new avenues are pursued. One particularly promising approach is collaborative
efforts between otherwise competing companies, e.g., Martin and Zhu [1], leveraging artifi-
cial intelligence (AI) methods [2,3]. Here, we describe a part of the MELLODDY project, a
collaborative effort of different pharma companies (referred to as “partner” throughout
this article) in the field of multi-task learning [4]. The goal of the project is to train and
utilize a federated multi-task feedforward neural network while still preserving the privacy
of highly confidential and competitive data. It is an exciting and innovative approach to
overcome the stagnation of machine learning model quality and to accelerate drug design
that is realized for the first time to a scale this large in drug discovery. Because of the
unprecedented scale of the project (increasing from >60 million datapoints in >97,000 tasks
in the first year) many fundamental questions and challenges have to be addressed. In
general, multi-task models have been shown to be beneficial in drug discovery [5–8]. Fur-
thermore, increasing the amount of (diverse) high quality data is supposed to increase
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model performance and applicability domains [1,5,9]. Nevertheless, detailed investigations
to leverage the full potential of the new federated multi-task learning approach are needed.
Particularly, the diversity, e.g., size and chemical space (applicability domain) of the data
sets of the 10 partners within MELLODDY is interesting and challenging. Thus, weighting,
i.e., scaling the contribution of each task’s loss to the total loss, the tasks in federated multi-
task learning should be considered to mitigate the risk of the learning being dominated
by either a small subset of data sets or tasks and to ensure proper distribution of learning
efforts. In this work, we focus on discussing and analyzing different weighting strategies
for multi-task bioactivity classification models.

A standard approach in multitask learning is to weight all tasks with a constant and
equal weight, i.e., no application of a dedicated weighting scheme. However, an equal
weight does not necessarily reflect the underlying circumstances, e.g., difficulty of training,
relevance of the task, or scale of the task’s loss [10]. Furthermore, the concrete setting in
the studied federated machine learning approach (MELLODDY) contains multiple binary
classification tasks belonging to one pharmaceutically relevant assay. This means that
for each assay the data are binary classified by one to five thresholds (e.g., 1 µM and
10 µM thresholds for an IC50 assay leading to two separate tasks). Within this study,
we used two thresholds for each assay: (1) median; and (2) lower quartile if a minimal
number (25) of positives and negatives remained. This relationship between tasks wouldn’t
be reflected by an equal weight and could lead to a domination of learning by easy
tasks, because the machine learning algorithm is rewarded equally for both. In other
works, the weights are learned and dynamically adapted during training [11–13]. Other
approaches use similarities of tasks [14] or a multi-objective optimization view [15] to tune
gradients in multi-task learning. In this work, fixed and continuous weighting schemes
are analyzed (see Table 1). In the fixed scheme all tasks with more datapoints than a given
cutoff are down-weighted. In contrast, the continuous weighting schemes down-weight
either dependent on the task size (datapoints), task number (sub-tasks per assay), task
classification label balance, or the task fraction of a positive sample (actives, short: fraction
actives). Task size dependent weighting was investigated due to the influence of task size
on two crucial parameters: difficulty (smaller tasks are assumed to be more difficult) and
relevance (larger tasks are not expected to gain much in the federated setting and are hence
of less interest [7]). Other works [16] showed superior performance when smaller tasks
were upweighted. The two task characteristics, label balance and fraction of actives, are
also assumed to be related to task difficulty. Moreover, baseline weighting all tasks equally
(all tasks have a weight of 1, “1” in Table 1) is used and a weighting based on task number
is applied. A detailed overview of the examined weighting schemes is given in Table 1.

Table 1. Overview of analyzed weighting schemes. Experiments were performed in three phases blue:
I, yellow: II, green: III. “Cutoff” determines the task size threshold above which down-weighting
according to weights was applied either only once (fixed scheme) or as often as “cutoff” fit into the
task size (continuous scheme).

Fixed Continuous Baseline
cutoff 1000 - based on task number

weights 0.1, 0.25, 0.5, 0.75
cutoff 1000, 95% quantile 500, 1000 -

weights 0.6, 0.9 0.02 1

weights - wrt. fraction actives,
wrt, label balance 1

This work is structured in three Results and Discussion sections, which we call phases:

1. Phase I: exploration results from the fixed scheme are discussed.
2. Phase II: results from the continuous scheme and of further fixed scheme experiments

are discussed.
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3. Phase III: results from weighing experiments based on fraction active or label balance
are discussed.

2. Results and Discussion

In three phases, several weighting schemes were analyzed (see Table 1). In order to
compare their performance, delta performances (measured as AUPR or AUROC) were
computed relative to the baseline (equal weight of 1). The thresholding scheme (to divide
an assay into classification tasks) applied in all presented weighting studies has two
thresholds: the median and the lower quartile (25/75), because this scheme was superior
when compared to a thresholding solely based on either median or lower quartile alone
(see Figure 1b). The results of detailed analyses on thresholding schemes will be published
elsewhere. During the first phase, a fixed weighting scheme was analyzed. The weighting
was only dependent on the task size.
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2.1. Phase I

In phase I, four different weights (0.1, 0.25, 0.5, 0.75) for a fixed weighting scheme
where all tasks with more than 1000 datapoints are down-weighted were evaluated based
on a subset of all tasks. Overall, the delta AUPR values are small, in the region of −0.02
and 0.01 (see Figure 1a). A slight trend toward higher weights (less down-weighting)
performing better (positive delta performances) than lower weights can be observed.
Figure 1b shows the benefit of using a quartile and median threshold over only applying a
quartile threshold.

2.2. Phase II

In phase II the following approaches were investigated: (a) two continuous schemes
with steps 500 and 1000 both with a weight of 0.02, fixed weighting schemes with weights
0.6 and 0.9 and (b) cutoff 1000 and (c) cutoff at the 95% quantile of the task size (called
cutoff auto) as well as (d) weighting based on the number of tasks and based on the task
size. These cutoffs, steps and weights were selected because they performed best in a
pretest executed by one partner (weighting schemes analyzed in the pretest are listed in
Table S1 in the Supplementary Materials).
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Quartile Task Performance

The performances of weighting schemes of phase II were analyzed in more detail.
Therefore, the average synoptic performances were deconvoluted into the performances
of the median and the lower quartile tasks. The delta performances for the lower quartile
tasks (more informative tasks compared to the median tasks, and also more challeng-
ing tasks due to higher label imbalance) are depicted in Figure 2 (delta AUROC) and
Figure 3 (delta AUPR). Full performance plots (including synoptic delta performances
and delta performances of the median tasks) are given in the Supplementary Materials
(Figures S1 and S2).
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All but one (task size) weighting scheme improved the AUROC performance of the
quartile task to a similar extent (see Figure 2). In contrast, for AUPR all tested weighting
schemes except weighting wrt. task size resulted in a low delta AUPR close to zero (see
Figure 3), and therefore were essentially equivalent in performance to the baseline (equal
weight of 1). Weighting based on task size clearly performs worse than the baseline
weighting (Figure 3d left). The computation of the weights based on task size leads to an
extreme distribution with many very small weights and a weight that is overall (sum over
all tasks) much smaller than the overall weight of the other weighting schemes.

An explanation for the small delta AUPR values could be that the AUPR metric is
dependent on the fraction actives, which does not change through the different weighting
schemes and thus masks the impact of the different weighting schemes. An analysis of the
correlation of AUPR and AUROC values to several factors, e.g., fraction actives, can be
found in the Supplementary Materials (Figure S3).
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Subsequent to this analysis, we were curious whether other task characteristics besides
task size, used to compute task weights, further improve predictive performance. Hence,
in phase III other task characteristics like label balance and fraction actives were used to
compute the task weights.

2.3. Phase III
2.3.1. Synoptic Performance Analysis

Due to the small performance deltas in phases I–II, a significance test was used in
phase III (see Table S3). Furthermore, in phase III weighting schemes based on the label
balance of the tasks or the fraction of actives in the tasks were assessed. Two general
settings can be distinguished in phase III: a global weighting strategy (inter assay) and
a weighting strategy that remains within one assay (intra assay). For global weighting
strategies, the label balance or fraction actives for the task at hand is compared to the overall
(global) fraction actives/label balance, whereas for intra assay weighting strategies, the
label balance or fraction actives of that task is only related to the label balance or fraction
actives of other tasks originating from the same assay.

No task that performs significantly better than the baseline could be identified for
any of the phase III weighting schemes (see Table S3). On the other hand, some of the
weighting schemes have a considerably high percentage of tasks performing worse than
the baseline. Particularly, up-weighting balanced tasks globally (“balance up weight”)
leads on average over three partners and five folds to 74% of tasks performing statistically
significantly worse than the baseline.

However, phase III also identified weighting schemes that result in only a very small
percentage of significantly worse performing tasks (“fractive down weight”, “fractive up
weight”, “intra down weight balanced” in Table S3). Especially for these weighting schemes,
an analysis of the convergence speed is of interest to determine whether computational
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costs could be saved with one of these schemes while not decreasing performance (results
see below, Section 2.3.3).

On a synoptic performance level, no weighting scheme of any of the three phases
could be identified that performs considerably better for all participating partners than
the baseline (1). However, the practical value of both tasks per assay (median and lower
quartile) is not equal, and a deterioration of the median-based task performance may be
acceptable if the lower quartile task performance improves. Therefore, the pure quartile-
based task performance was analyzed for phase III weighting schemes.

2.3.2. Quartile Task Performance

The performances of weighting schemes of phase III were analyzed in more detail, as
for phase 2. The delta performances for the lower quartile tasks are depicted in Figure 4
(delta AUROC) and Figure 5 (delta AUPR). Full performance plots (including synoptic delta
performances and delta performances of the median tasks) are given in the Supplementary
Materials (Figures S4 and S5).
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Interestingly, the delta AUROC performance evaluation (Figure 4) reveals that weight-
ing based on the fraction actives and number of sub-tasks (Figure 4b,d,e, respectively)
is superior to the baseline weighing (1) for the quartile tasks. Surprisingly, this posi-
tive effect is independent from whether tasks with a high fraction of actives got down-
or up-weighted. Down-weighting imbalanced tasks is again detrimental (orange boxes
Figure 4a,c). Down-weighting balanced tasks (purple boxes Figure 4a,c) and weighting
based on task size (Figure 4e) had no strong impact on delta AUROC performance.

Nevertheless, the AUPR performance evaluation (Figure 5), confirms the results from
the synoptic performance analysis (see above, Section 2.3.1) and shows only a weak impact
of the weighting schemes of phase III on the performance of the quartile tasks (small delta
AUPR values). Again, the weighting scheme that down-weights imbalanced tasks (orange
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boxes Figures 5a and 6c) is an exception with a negative impact on performance. Moreover,
weighting based on task size (Figure 5e) also performs worse; the latter observation being
contradictory to the delta AUROC performances.
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weighting based on balance. Here, down-weighting balanced task is clearly superior to
down-weighting imbalanced tasks. Together with the results achieved for down-weighting
according to the fraction of actives, one can conclude that the positive performance delta
rather originates from up-weighting tasks with either high or low fraction of actives
than from down-weighting the opposite, because down-weighting both (down-weighting
imbalanced) leads to a much worse performance than up-weighting imbalanced tasks.
Noteworthily, the observations made by the intra-assay weighting schemes can be trans-
ferred to the global weighting schemes. In contrast to the AUROC-based performance
analysis, no weighting scheme of phase III demonstrated a strong positive delta perfor-
mance compared to the baseline (1) wrt. AUPR. However, preserving performance while
reducing learning time would also be favorable. Thus, the impact of different weighting
schemes on the speed of convergence was assessed.

2.3.3. Speed of Convergence

The speed of convergence was assessed for weighting schemes of phase II and phase
III (see Figure 6a,b, respectively). Those schemes performing better than the baseline (1)
reached the plateau of the learning curve at a similar number of epochs as the baseline (see
Figure 6).

None of the weighting schemes with reasonable performance exhibit accelerated learning.

3. Materials and Methods
3.1. Data Preparation

Data was prepared in a standardized way throughout all pharmaceutical companies
involved in this work utilizing MELLODDY-TUNER [https://github.com/melloddy/
MELLODDY-TUNER, accessed on 10 November 2021]. In total six pharma companies
(Amgen, Bayer, Boehringer Ingelheim, GSK, Janssen Pharmaceutica NV, Novartis) per-
formed the experiments of this study. Each of the six data sets contained 100,000–2,000,000
unique compounds and 3000–26,000 tasks. The chemical space was analyzed for one pri-
vate data set and shows that the majority of compounds are unsurprisingly in a drug-like
chemical space with a median clogP of ~2.9 and a median molecular mass of ~390. This is
in good alignment with other analyses [17], and in general other private pharmaceutical
data sets are expected to populate a similar chemical space regarding physico-chemical
properties [18]. In addition to the weighting performed by MELLODDY-TUNER, further
weighting schemes were investigated. The weighting schemes applied can be divided into
four categories:

1. Baseline.
2. Fixed weighing schemes.
3. Continuous weighting schemes.
4. Weighting based on task properties (here task size, fraction actives or class label

balance) and number of sub-tasks.

3.2. Baseline

The baseline used in this study is a weight of 1 for each task resulting in an equal
weight for all tasks. In the performance plots, delta performance compared to this baseline
is depicted if not stated otherwise.

3.3. Fixed Weighting Schemes

In the fixed scheme, all tasks with more than a certain number of datapoints (cutoff)
were down-weighted to a fixed value which is smaller than one. Tasks below the cutoff
obtain a weight of 1/task_number. In this work, the cutoff was 1000 datapoints or the 95%
quantile of the task size. Weights studied were: 0.1, 0.25, 0.5, 0.6, 0.75 and 0.9. The weights
were divided by the number of sub-tasks. Further cutoffs and down-weighting values
were studied in a pretest (see Supplementary Materials Table S1) but were not selected for
analysis by all partners due to lower performance.

https://github.com/melloddy/MELLODDY-TUNER
https://github.com/melloddy/MELLODDY-TUNER
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3.4. Continuous Weighting Schemes

In the continuous scheme, all tasks with more than a certain number of datapoints
(cutoff) were down-weighted by a value which increased by the amount the task’s data size
exceeded the cutoff. Tasks below the cutoff obtained a weight of 1/task_number. In this
work, two cutoffs (500 and 1000) were investigated. Every 500 respective 1000 datapoints
the weight of the corresponding task was reduced by 0.02, e.g., if a task had 3600 datapoints,
the weight is in the 500 cutoff scheme 1 − (3600/500) × 0.02 = 1 − 0.144 = 0.856, and in
the 1000 cutoff scheme 1 − (3600/1000) × 0.02 = 1 − 0.072 = 0.928 (assuming only one
task per assay). Further cutoffs and down-weighting values were studied in a pretest (see
Supplementary Materials Table S1), but were not selected for analysis by all partners due
to lower performance.

3.5. Weighting Based on Number of Sub-Tasks and Task Size

Based on the task size two schemes were analyzed. The calculation of the weighting
schemes based on task number and task size is given below:

let D ⊆ A×R× {=, 〈, 〉}

be the data set used, where A is the set of assays

with Di ⊆ D

the data corresponding to assay ai
and Dij ⊆ Di

the data corresponding to the jth task of assay ai

then let tij : Dij → {0, 1}

be the corresponding task,
tij ∈ Ti ⊆ T

with Ti the tasks corresponding to assay ai, and T the set of all tasks
then the first weighting strategy is

wbasic
ij =

1
number o f tasks f or the assay

=
1
|Ti|

The next takes data volumes into consideration

wvolume
ij =

1
number o f datapoints f or task j, assay i

=
1∣∣Dij
∣∣

Finally, a scaled version of this that leaves the average task weight invariantly one

wavg
ij =

number o f tasks

∑t ε T
1

number o f datapoints o f task t
∗ 1

number o f datapoints f or the task ij
=

|T|
∑tkl ε T |Dkl |−1 ∗ wvolume

ij

3.6. Weighting Based on Fraction Actives or Class Label Balance

The fraction actives as well as the label balance are factors influencing the difficulty
of the classification task. Some studies suggest that better predictive performance can be
achieved when weighting either difficult tasks higher (giving them a higher priority) [11]
or down-weighting them (giving a lower priority) [12,19]. The latter is probably especially
the case if the data is noisy [10]. Thus, both directions were tested within this study. In
addition, to giving easy tasks a higher priority the down-weighting of tasks with a low
fraction of actives can be seen as an up-sampling of the active’s class, which is usually
underrepresented in drug discovery related tasks. Moreover, two different schemes of
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weighting are explored. On the one hand, the weight is only calculated based on the fraction
actives respective label balance within the tasks corresponding to the same assay, leading
to a weight of one in sum over the tasks in that assay (intra-assay). Thus, this scheme
sees the sums of weights over one assay held at one, with label balance respective fraction
actives only adjusted for between tasks on that assay. On the other hand, the weights are
calculated considering all tasks’ fraction actives respective label balance (inter-assay). The
weights were calculated as follows:

Here, fraction active means:

f active
ij =

∣∣{(x, mod) ε Dij s.t. tij((x, mod)) = 1
}∣∣∣∣Dij

∣∣
3.6.1. Intra-Assay

based on fraction actives:
down-weight excess of inactives:

winactives↓
ij =

f active
ij

∑tik ε Ti
f active
ik

down-weight excess of actives (normalized inverse of above weight):

wactives↓
ij =

(
winactives↓

ij

)−1
∗ 1

∑tik ε Ti

(
winactives↓

ij

)−1

based on label balance
down-weight imbalanced (more extreme fractions penalized, then weight normalized):

wimbalanced↓
ij =

1∣∣∣0.5− f active
ij

∣∣∣ ∗
 ∑

tij ε Ti

1∣∣∣0.5− f active
ij

∣∣∣
−1

down-weight balanced (extreme fractions favored, then normalized):

wbalanced↓
ij =

∣∣∣0.5− f active
ij

∣∣∣ ∗
 ∑

tij ε Ti

∣∣∣0.5− f active
ij

∣∣∣
−1

The intra-assay weighting functions are depicted in Figure 7.
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3.6.2. Inter Assay

based on fraction actives:
down-weight excess of inactives

winactives↓
ij =

f active
ij ∗ |A|

∑tkl ε T f active
kl

down-weight excess of actives
si = ∑

tij ε Ti

f active
ij

wactives↓
ij =

1
f active
ij

∗ 1

si ∗∑tik ε Ti

(
f active
ik

)−1 ∗
|A|

∑akεA

(
|Tk|(sk)

−1
)

based on label balance
down-weight imbalanced

wi =
0.5 ∗ |Ai|

|0.5− f raction actives o f i| ∗

0.5∗|T|
|0.5∗|Ai |−∑t ε Ai

f raction actives o f t| ∗
|A|

∑s ε Ai
0.5∗|T|

|0.5∗|As|−∑t ε As f raction actives o f t|
∑t ε Ai

0.5∗|Ai |
|0.5− f raction actives o f t|

wimbalanced↓
ij =

0.5 ∗ |Ti|∣∣∣0.5− f active
ij

∣∣∣ ∗
0.5∗|T|∣∣∣∑tik ε Ti

0.5− f active
ik

∣∣∣ ∗ |A|

0.5∗|T|∗|Ti |
∣∣∣∑tik ε Ti

0.5− f active
ik

∣∣∣−1

0.5 ∗ |Ti| ∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣−1

wimbalanced↓
ij =

0.5 ∗ |Ti|∣∣∣0.5− f active
ij

∣∣∣ ∗
|A|
|Ti |

0.5 ∗ |Ti| ∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣−1

wimbalanced↓
ij =

1∣∣∣0.5− f active
ij

∣∣∣ ∗ |A|
|Ti| ∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣−1

down-weight balanced

wi =
|0.5− f raction actives o f i|

0.5 ∗ |Ai|
∗

|0.5∗|Ai

∣∣∣−∑t ε Ai
f raction actives o f t

∣∣∣
0.5∗|T| ∗ |A|

∑s ε Ai
|0.5∗|As |−∑t ε As f raction actives o f t|

0.5∗|T|

∑t ε Ai
|0.5− f raction actives o f t|

0.5∗|Ai |

wbalanced↓
ij =

∣∣∣0.5− f active
ij

∣∣∣
0.5 ∗ |Ti|

∗

∣∣∣∑tik ε Ti
0.5− f active

ik

∣∣∣
0.5∗|T| ∗ |A|

|Ti |∗
∣∣∣∑tik ε Ti

0.5− f active
ik

∣∣∣
0.5∗|T|

1
0.5∗|Ti |

∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣
wbalanced↓

ij =

∣∣∣0.5− f active
ij

∣∣∣
0.5 ∗ |Ti|

∗
|A|
|Ti |

1
0.5∗|Ti |

∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣
wbalanced↓

ij =
∣∣∣0.5− f active

ij

∣∣∣ ∗ |A|
|Ti| ∗∑tik ε Ti

∣∣0.5− f active
ik

∣∣
3.7. Training

The prepared data were subsequently used to train a feedforward neural network us-
ing SparseChem [https://github.com/melloddy/SparseChem, accessed on 10 November

https://github.com/melloddy/SparseChem


Molecules 2021, 26, 6959 13 of 15

2021]. SparseChem is a package for machine learning models for biochemical applications
capable of high-dimensional sparse input. The data were split into five folds (subsets)
using locality sensitive hashing on molecular fingerprint features [20]. Three folds were
used for training, whereas one was used as test and the other as validation fold. The
hyperparameters as named in SparseChem, which were tested using five folds and cross
validation, are given in Table 2.

The results from the best hyperparameter set were used for subsequent evaluations
and analyses.

Table 2. Overview of analyzed hyperparameters. Two numbers, e.g., “1200 1200”, in the “hid-
den_size” row indicate two hidden layers. “middle_dropout” only applies if the network consists of
multiple layers.

Hyperparameter Values

hidden_sizes 800 1200 1600 2000 1200 1200 1600 1600
Number of hidden

layers 1 1 1 1 2 2

last_dropout 0.4
middle_dropout 0.4

min_samples_auc 50
weight_decay 1 × 10−5

epochs 20

lr_steps 10

3.8. Evaluation

The results were evaluated based on the following criteria: difference in predictive
performance (between baseline performance and performance of weighting scheme under
investigation) measured as area under the precision-recall or receiver operating charac-
teristics curve (AUPR, respectively AUROC), the number of statistically significant better
or worse tasks based on AUROC, and the convergence speed. Convergence speed was
determined as a plot of performance against epoch number. AUPR and AUROC were
averaged over all tasks fulfilling the criteria, i.e., minimal number of actives and inactives
and depending on the analysis, e.g., only tasks of the lower quartile threshold.

To estimate whether two tasks had statistically significant different AUROC values, a
p-value was calculated based on a Z-test comparing the two AUROC values. It has been
shown [21] that the relatedness between the AUROC and the Wilcoxon statistic allows for
obtaining an expression for the standard deviation of the AUROC:

s(AUC) = sqrt
AUC(1− AUC) + (n1− 1)

(
Q1− AUC2)+ (n0− 1)

(
Q2− AUC2)

n1 ∗ n0

with
Q1 =

AUC
2− AUC

Q2 =
A2 ∗ AUC2

1 + AUC
and n1 and n0 are the number of actives and inactives, respectively, in the fold used
for evaluation. Intuitively, for this binary classification setting, both the nonparametric
Wilcoxon statistic and the AUROC are measures for the quality of ranking actives versus
inactive samples, and depend fully on the rank between the samples.

Once the standard deviations of two AUROC values (sd1 and sd2) have been calcu-
lated, assuming normality, a Z-test can be used to compare the difference of the mean
AUROC values:

Z =
AUC1− AUC2

sqrt ((sd12 + sd22) )
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Z being the z-score from which a p-value can be calculated using the cumulative
distribution function of a normal distribution with mean 0, up to Z. If 1-(p-value) exceeds
the confidence level of 95%, the null hypothesis of the two AUROC values being statistically
equal is rejected.

4. Conclusions

Weighting tasks in multi-task models is a current area of considerable scientific interest.
In this article, we analyzed several weighting schemes in the context of federated multi-
task learning on pharmaceutical industry data in a privacy preserving setting, which was
realized for the first time at this large a scale in drug discovery. In general, our models
were resilient to most perturbations to the weights, indicating that the limiting factor on
performance is the underlying information in the data and the model architecture. The
weighting schemes that lead to a drop in performance (down-weight imbalanced and
weighting based on task size) often would have led to extreme distributions of weights
due to their reciprocal style of computation. Thus, a few very small x values would have
dominated the total contribution to sums used for normalization. All analyzed weighting
schemes with comparable AUPR performance also have similar speeds of convergence.
Flexible and continuous weighting schemes, as well as weighting based on the fraction
of actives (fractive up weight and intra assay weighting based on fraction actives), and
based on the number of sub-tasks were shown to be beneficial both regarding synoptic and
lower quartile task AUROC performance. Noteworthily, this result is consistent through
six different pharmaceutical industry data sets. Weighting based on the number of tasks
is furthermore especially suited to federated learning, because it prevents partners from
artificially increasing their weight by adding more tasks.

Supplementary Materials: The following are available online, Figure S1: Full performance plots
phase II AUROC, Figure S2: Full performance plots phase II AUPR, Figure S3: Correlation analysis
of AUPR and AUROC, Table S1: Tested weighting schemes during a pretest for phase II, Figure S4:
Full performance plots phase III AUROC, Figure S5: Full performance plots phase III AUPR.
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