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XOR is a special nonlinear problem in artificial intelligence (AI) that resembles multiple real-world nonlinear data distributions. A
multiplicative neuron model can solve these problems. However, the multiplicative model has the indigenous problem of
backpropagation for densely distributed XOR problems and higher dimensional parity problems. To overcome this issue, we have
proposed an enhanced translated multiplicative single neuron model. It can provide desired tessellation surface. We have
considered an adaptable scaling factor associated with each input in our proposed model. It helps in achieving optimal scaling
factor value for higher dimensional input. /e efficacy of the proposed model has been tested by randomly increasing input
dimensions for XOR-type data distribution. /e proposed model has crisply classified even higher dimensional input in their
respective class. Also, the computational complexity is the same as that of the previous multiplicative neuron model. It has shown
more than an 80% reduction in absolute loss as compared to the previous neuron model in similar experimental conditions.
/erefore, it can be considered as a generalized artificial model (single neuron) with the capability of solving XOR-like
real problems.

1. Introduction

Minski and Perpert deduced that the XOR problem requires
more than one hyperplane [1]. /ey provide a more gen-
eralized artificial neuron model by introducing the concept
of weights and proved the inability of a single perceptron for
solving ‘Exclusive-OR (XOR)’ [2]. /e XOR problem is
symmetrical to other popular and real-world problems such
as XOR type nonlinear data distribution in two classes,N-bit
parity problems. [3]. /erefore, many researchers tried to
find a suitable way out to solve the XOR problem [4–15].
Although, most of the solutions are for the classical XOR
problem. /ey either use more than one layer or provide a
complex solution for two-bit logical XOR only. Few of these
used the complex value neuron model, eventually creating
one more layer (i.e., hidden layer). Because the complex
value neuron model requires representing the real input in a
complex domain, one approach is based on the multipli-
cative neuronmodel./is is translatedmultiplicative neuron
(πt-neuron) approach [16, 17]. /ey have modified the
π-neuron model (which generates the decision surfaces

centered at the origin of input) to an extended multiplicative
neuron, i.e., a πt-neuron model for solving the N-bit parity
problems by creating tessellation surfaces. However, it has
limitations for higher dimensional N-bit parity problems. It
is suitable for up to six dimensions. For seven and higher
dimensional inputs, it has reported poor accuracy [17]. In
other words, it has a convergence problem for higher di-
mensional inputs. It is merely because of the multiplicative
nature of the model. More clearly, the infinitesimal errors in
the model obtain a much smaller value after getting mul-
tiplied in case of higher dimensional inputs, consequently
vanishing the gradient. /erefore, a convergence problem
occurs in this model for higher-dimensional inputs.

To overcome the issue of the πt-neuron model, we have
proposed an enhanced translated multiplicative model
neuron (πt-neuron)model in this paper. It helps in achieving
mutually orthogonal separation in the case of two-bit
classical XOR data distribution. Also, the proposed model
has shown the capability for solving the higher-order N-bit
parity problems./erefore, it is a generalized artificial model
for solving real XOR problems. To examine this claim, we
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have tested our model on different XOR data distributions
and N-bit parity problems. For parity problems, we have
varied the input dimension for a higher dimensional dataset.
Our proposed model has no vanishing gradient issues and
convergence issues for higher dimensional inputs. /e
proposed model has accurately classified the considered
dataset. Table 1 presents the list of variables used in this
article with their meaning.

2. Understanding the XOR Problem

XOR is a classical problem in the artificial neural network
(ANN) [18]. /e digital two-input XOR problem is rep-
resented in Figure 1. By considering each input as one
dimension and mapping the digital digit ‘0’ as the negative
axis and ‘1’ as the positive axis, the same two-digit XOR
problem becomes XOR type nonlinear data distribution in
two-dimensional space. It is obvious here that the classes
in two-dimensional XOR data distribution are the areas
formed by two of the axes ‘X1’ and ‘X2’ (Here, X1 is input 1,
and X2 is input 2). Furthermore, these areas represent
respective classes simply by their sign (i.e., negative area
corresponds to class 1, positive area corresponds to class
2).

/ere are many other nonlinear data distributions re-
sembling XOR. N-bit parity problem is one such typical
example. Both these problems are popular in the AI research
domain and require a generalized single neuron model to
solve them. We have seen that these problems require a
model which can distinguish between positive and negative
quantities. Interestingly, addition cannot easily separate
positive and negative quantities, whereas multiplication has
the basic property to distinguish between positive and
negative quantities. /erefore, previous researchers sug-
gested using a multiplicative neuron model for solving XOR
and similar problems.

3. Translated Multiplicative Neuron (ΠT-
NEURON) Model

/e idea of the multiplicative neuron model was initiated
by Durbin et al. in 1989 [19]. /ey named this model the
‘Product Units (PUs)’ and used this model to deal with the
generalized polynomial terms in the input. It can learn
higher-order inputs easily as compared to the additive
units. /is is because of its increased information ca-
pacity as compared to the additive units [19]. /ough, PU
has shown the capability for N-bit parity problems.
However, it has issues in training with the standard
backpropagation (BP) algorithm especially for higher-
order inputs (more than three-dimensional input) [20].
According to Leerink et al., it is because of nonglobal
minima trapping in the case of higher dimensional inputs
[20]. Later, in 2004, Iyoda et al. proposed a single neuron
based on a multiplicative neuron model, aka πt-neuron
model, to solve the XOR and parity bit problems [16, 17].
/ey have modified the previous multiplicative π-neuron
model to find a suitable tessellation decision surface. /ey
incorporated a scaling factor, a threshold value, and used

the sigmoid as an activation function to solve the N-bit
parity problems using a single translated multiplicative
neuron (the model is defined by equations (1) and (2))
[16].

vπ− t � bπ− t × 

N

i�1
xi − ti( ; Here, bπ− t( i ∈ R, ti ∈ R, (1)

y � f vπ− t( . (2)

Here, ‘vπ‒t’ represents the πt-neuron model mathe-
matically, ‘y’ is the final output through the activation
function ‘f’, ‘bπ‒t’ is scaling factor, and ‘ti’ represent the
coordinates of the center of the decision surfaces [16].
Mathematically, Iyoda et al. have shown the capability of the
model for solving the logical XOR andN-bit parity problems
for ∀ N≥ 1. However, this model also has a similar issue in
training for higher-order inputs.

3.1. Limitations of Translated Multiplicative Neuron. /e πt-
neuron model has shown the appropriate research direc-
tion for solving the logical XOR and N-bit parity problems
[16]. /e reported success ratio is ‘1’ for two-bit to six-bit
inputs in [17]. However, in the case of seven-bit input, the
reported success ratio is ‘0.6’ only. Success ratio has been
calculated by considering averaged values over ten simu-
lations [17]. Also, for successful training in the case of
seven-bit, it requires adjusting the trainable parameter
(scaling factor bπ‒t) [17]. /is is also indicating the training
issue in the case of higher dimensional inputs. Moreover,
Iyoda et al. have suggested increasing the range of ini-
tialization for scaling factors in case of a seven-bit parity
problem [17]. Although, after the suggested increment as
well, the reported success ratio is ‘0.6’ only [17]. It indicates
the problem of training in the πt-neuron model for higher
dimensional input.

3.2. Causes of Failure in Πt-NEURON Model. In the back-
propagation algorithm, the local gradient ‘δ(n)’ accounts
for the required changes in the trainable parameter at ‘nth’
iteration to obtain desired output [21]. It is equal to the
product of the corresponding error signal for that neuron
and the derivative of the associated activation function
[21]. Backpropagation requires that the activation func-
tion should be bounded, continuous, and monotonic.
Also, it should be continuously differentiable for the
entire domain of the input to get optimization [22].
Sigmoid activation function ‘ϕ(x)’ is preferred in the
classification problem because it has met all of the
aforementioned requirements [23]. Also, it is an appro-
priate activation function for training multiplicative
neuron models [23]. Iyoda et al. have demonstrated the
error gradient (∇Ɛ) associated with the πt-neuron model
[17]. Here, ‘Ɛ(n)’ is the error energy, i.e., the instanta-
neous sum of the error squares at ‘nth’ iteration. /e error
gradient has two components, one is due to the scaling
factor ‘(bπ‒t),’ given by equation (3), and the other is due
to the thresholds ‘ti’, given by equation (4) [17].

2 Computational Intelligence and Neuroscience



zε(n)

zbπ− t(n)
� δ(n) ×  xk(n) − tk(n)( , (3)

zε(n)

zti(n)
� − δ(n) × bπ− t ×  xk(n) − tk(n)( ;∀(i≠ k), (4)

δ(n) � e(n) × ϕ′ vπ− t(n)( . (5)

Here, ‘n’ represents ‘nth’ iteration, ∀ (k� 1, 2, 3, . . ., N).
‘xk(n)’ is the ‘kth’ input for ‘nth’ iteration, and ‘vπ‒t(n)’
represents πt-neuron model. /erefore, the error’s gradient

obtains a much smaller value after getting multiplied for
higher dimensional inputs and becomes an infinitesimally
small value. Consequently, vanishing the gradient. /ere-
fore, a convergence problem occurs in this model.

It is inferred from Figure 1 and equation (1) that the πt-
neuronmodel has ranged between [‒1, 1] for XOR andN-bit
parity problems. Here, ‘‒1’ corresponds to digit ‘0’, and ‘+1’
corresponds to digit ‘1’. Sigmoid function has a basic issue of
vanishing gradient near the extremes as shown in
Figure 2(a). However, about the XOR and N-bit parity
problems, the input varies between [‒1, 1] only, as explained
earlier./erefore, the main region of interest is incorporated

Table 1: List of variables used in this article with their meaning.

Variables Meaning
π-neuron Multiplicative neuron model
πt-neuron Symbol of translated multiplicative neuron model
Π Product operator
vπ‒t /e mathematical form of the pt-neuron model
f Activation function
xi ‘ith’ input to the neuron
y /e final output of the pt-neuron model through the activation function ‘f’
bπ‒t Scaling factor associated with the pt-neuron model
ti /e coordinates of the center of the decision surfaces (‘ith’ threshold value)
δ(n) /e local gradient in the backpropagation algorithm at ‘nth’ iteration
ϕ(x) Sigmoid activation function
Ɛ(n) /e error energy (the instantaneous sum of the error squares at ‘nth’ iteration)
∇Ɛ Error gradient
e(n) /e error value in the backpropagation algorithm at ‘nth’ iteration
ϕ′ Derivative of the sigmoid activation function
b Scaling factor associated with the enhanced pt-neuron model (proposed)
v /e mathematical form of the proposed model
O /e final output of the proposed model through the activation function ‘ϕ’
R Set of the real numbers
L1, L2, L∞ Respective loss functions
L L1 loss function
W Weight matrix
G Gaussian probability distribution
p Number of samples required in an XOR dataset for appropriate training
μ Mean or average value
σ Standard deviation value
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Figure 1: XOR problem is illustrated by considering each input as one dimension and mapping the digital digit ‘0’ as negative axis and ‘1’ as
the positive axis. /erefore, XOR data distribution is the areas formed by two of the axes ‘X1’ and ‘X2’, such that the negative area
corresponds to class 1, and the positive area corresponds to class 2.
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by a rectangular box of sigmoid activation function in
Figure 2. Here, it is important to notice that margin between
two points has been reduced by the sigmoid activation
function (as shown in Figure 2(a), ϕ (‒1)� 0.2689, and ϕ
(1)� 0.7311). /erefore, it leads to the smaller local gradient
‘δ(n)’ value (given by Equation (5)) which consequently
results in smaller error gradients (given equations (3)–(5)),
eventually leading to the gradient vanishing problem.

For higher dimensional input, the error gradient (∇Ɛ)
attains further smaller values because of the presence of the
factor ( (xk(n) + tk(n))) in the expression of error gradients
(as given by equations (3)–(5))./erefore, the possibilities of
nonconvergence/nonglobal minima problems occur in the
previous πt-neuron model. To overcome this issue, the
model should have a larger margin for the extreme values. It
is possible by introducing a compensatory scaling factor in
the model. It eventually scales the sigmoid activation
function, as depicted in Figure 2(b). /erefore, in [17], the
author suggested using a scaling factor ‘bπ‒t’. However, it
requires an optimized value of the scaling factor to mitigate
the effect of multiplication and sigmoid function in higher-
dimensional problems. Because the effect of multiplication
and sigmoid function is severe in higher-order input, Iyoda
et al. recommended initializing the scaling factor only with
higher values (not to the threshold factor) for the seven-bit
parity problem [17]. Convergence is not possible with a
smaller scaling factor for the higher dimensional problem
(results given in ‘Table 2’ of [17] follow this statement).
/ough, the idea of increasing the learning rate for the
scaling factor is worth overcoming the vanishing gradient
problem in higher dimensional input. However, an opti-
mized value of the learning rate is not suggested in the
previous πt-neuron model. Also, it is difficult to adjust the
appropriate learning rate or range of initialization of scaling
factors for variable input dimensions. /erefore, a gener-
alized solution is still required to solve these issues of the
previous model. In this paper, we have suggested a gener-
alized model for solving the XOR and higher-order parity
problems by enhancing the pt-neuron model.

4. Related Works

Robotics, parity problems, and nonlinear time-series
prediction are some of the significant problems sug-
gested by the previous researchers where multiplicative
neurons are applied. Forecasting involving the time
series has been performed using the multiplicative
neuron models [24–26]. Yildirim et al. have proposed a
threshold single multiplicative neuron model for time
series prediction [24]. /ey utilized a threshold value and
used the particle swarm optimization (PSO) and har-
mony search algorithm (HSA) to obtain the optimum
weight, bias, and threshold values. In [25], Yolcu et al.
have used autoregressive coefficients to predict the
weights and biases for time series modeling. A recurrent
multiplicative neuron model was presented in [26] for
forecasting time series.

Yadav et al. have also used a single multiplicative neuron
model for time series prediction problems [27]. In [28],
authors have used the multiplicative neuron model for the
prediction of terrain profiles for both air and ground ve-
hicles. Egrioglu et al. have represented forecasting purposes
like classical time series forecasting using a single
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Figure 2: (a) Sigmoid function ϕ(x); (b) effect of scaling on ϕ(x).

Table 2: Assessment of Proposed Model (through variation in
dimension and no. of training samples).

Dimension
(N)

103 104 106

Time
(s)

L

(Ours)
Time
(s)

L

(Ours)
Time
(s)

L

(Ours)
2 0.710 0.0195 0.712 0.0195 1.571 0.0244
5 0.692 0.0105 0.768 0.0091 2.808 0.0088
7 0.686 0.0093 0.759 0.0064 3.822 0.0058
10 0.688 0.0184 0.770 0.0048 5.806 0.0040
13 0.693 0.0577 0.790 0.0045 7.666 0.0023
15 0.703 0.2156 0.793 0.0126 9.435 0.0020
18 0.696 0.9041 0.805 0.1501 8.497 0.0150
20 0.701 0.9883 0.812 0.2441 9.378 0.0679
25 0.701 1.2155 0.811 0.3790 11.982 0.1188
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multiplicative neuron model in [29]. In [30], Gao et al.
proposed a dendritic neuron model to overcome the limi-
tation of traditional ANNs. It has utilized the nonlinearity of
synapses to improve the capability of artificial neurons. A
few other recent works are suggested in [31–35].

5. Enhanced Translated Multiplicative Neuron

We have seen the problems associated with the πt-neuron
model. It has an issue with BP training in case of highly
dense XOR data distribution and higher dimensional parity
problems. In this paper, we have proposed an enhanced
translated multiplicative single neuron model which can
easily learn the nonlinear problems such as XOR and N-bit
parity without any training limitations. We have modified
the existing πt-neuron to overcome its limitations. /e
proposed enhanced translated multiplicative neuron model
is represented in Figure 3 and described as follows:

v � (− 1)
N+1

× 
N

i�1
bi(  × xi + ti(  ,

Here, bi ∈ R, ti ∈ R.

For b1 � b2 � · · · � bi � · · · � b; and, b ∈ R, then:

(6)

v � (− 1)
N+1

× 
N

i�1
(b) × xi + ti(  . (7)

/erefore, the final output through the proposed model
for anN-input neuron is obtained by equation (8) as follows:

O � ϕ(v). (8)

Further simplifying the proposed model (as given by
equation (7)), we have the following:

v � (− 1)
N+1

× b
N

× 

N

i�1
xi + ti( . (9)

5.1. Scaling Factor in ProposedModel. /e issue of vanishing
gradient and nonconvergence in the previous πt-neuron

model has been resolved by our proposed neuronmodel. It is
because of the input dimension-dependent adaptable scaling
factor (given in equation (6)). /e effect of the scaling factor
is already discussed in the previous section (as depicted in
Figure 2(b)). We have seen that a larger scaling factor
supports BP and results from proper convergence in the case
of higher dimensional input. /e significance of scaling has
already been demonstrated in Figure 2(b). Figure 4 is the
demonstration of the optimal value of scaling factor ‘b’.

To illustrate the significance of the optimized value of
scaling factor ‘b’, we have plotted the gradient of sigmoid
function ‘ϕʹ(x)’ by considering variation in the values of ‘b’ in
Figure 3. It is observed from the plot that the scaling factor,
b� 1, has poor sensitivity for any change in the input. Also,
the sensitivity of the ‘ϕʹ(x)’ increases by increasing the value
of scaling factor ‘b’. However, as we increase the scaling
factor ‘b’ more than 6, we have poor sensitivity regions again,
causing gradient vanishing problems. Vanishing gradient
regions are shown by encircled areas in the plot. It shows an
optimal value is between (3 ∼ 6). For less than three, it has
smaller sensitivity, and for more than six, it again shows the
gradients vanishing problem. In our experiment, we have
empirically found that initializing the scaling factor ‘b’ with
the value ‘4’ for each input results in successful training.
However, we require to fine-tune the scaling factor
according to the input and its dimension.

/erefore, we have considered the optimization of the
scaling factor depending on the dimension and value of the
input in our model. /erefore, we have considered an
adaptable scaling factor (bi) which is associated with each
input (xi) in our proposed model (as given by Equation (6)).
Further, it has another advantage in that it helps in rapidly
achieving the optimized value of the scaling factor without
changing the learning rate in training the model. It even-
tually helps in achieving convergence using the BP algorithm
in training the model. Mathematically, the error gradient
(∇Ɛ) associated with our proposed neuron model (obtained
by equations (3)–(5)) is defined as follows:

zε(n)

zb(n)
� δ(n) × N × b

N− 1
×  xk(n) + tk(n)( ,

zε(n)

zti(n)
� δ(n) × b

N
×  xk(n) + tk(n)( ;∀(i≠ k). (10)

Here, the larger scaling factor ‘bN’ accurately compen-
sates for infinitesimally small gradient problems. /erefore,
the larger scaling factor enforces a sharper transition to the
sigmoid function and supports easier learning in case of
higher dimensional parity problems. In the proposed model,
the scaling factor is trainable and depends upon the number
of input bits. It has exponent term as the no. of input bits
means, for higher input we have sharper transition which
compensates for infinitesimally small gradient problems.
/erefore, the proposed enhanced πt-neuron model has no
limitation for higher dimensional inputs.

5.2. Sign-Manipulation in theProposedModel. /e enhanced
πt-neuron is based on the multiplicative neuron model. /e
multiplicative model suffers from a class reversal problem. It
is the reversal of class depending upon the number of input
bits. It is because of the sign change property of the mul-
tiplicative model according to even and odd input dimen-
sions. /is leads to severe confusion in classification. To
mitigate this issue, we have multiplied a sign-manipulation
factor as ‘(‒1)N+1’. /erefore, it introduces an extra negative
sign for the even number of input bits to maintain the input
combinations belonging to the same class./ese two (scaling
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factor and sign-manipulation) modifications in the existing
πt-neuron model have enhanced its performance for highly
dense XOR data distribution and higher-order N-bit parity
problems.

6. Results and Discussion

We have used gradient–decedent algorithm for training the
proposed neuron model. /e binary cross-entropy loss
function is used for estimating loss between target and
trained threshold vectors training on a single ‘Nvidia Geforce
eXtreme 1080’ graphic card. /e efficacy of the proposed
neuron has been evaluated for generalized XOR problems.
We have considered a typical highly dense two-input XOR
data distribution, as shown in Figure 5. It is applied to both
models (i.e., the πt-neuron model and the proposed model)

to compare the efficacy of the model. /ere are many
popular loss functions to visualize the deviation in desired
and predicted values, such as L1 loss, L2 loss, and L∞ loss.
However, in our situation, data points vary between [0, 1],
and L1 loss renders the best visualization in such cases.
/erefore, we have considered the L1 Loss function, which is
the least absolute deviation, and used it to estimate the error.
/e L1 loss (L) is defined as follows:

L � 
N

i�1
(desired)i − (predicted)i


. (11)

Since random weights and biases are important in the
training of the model. /at is why we have considered He-
initialization [36] in our approach. It is a variant of Xavier-
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Figure 3: Proposed translated multiplicative neuron architecture.
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Initialization [37]. In He-initialization, the biases are ini-
tialized with 0.0 (zero value) and the weight is initialized
using Gaussian probability distribution (G) given as
(W) ∼ G(0,

���
2/rl


) for ‘lth’ layer. Here, ‘r’ denotes the

number of connections. Further, to assess the applicability
and generalization of our proposed single neuron model, we
have varied the input dimension and no. of input samples in
training the proposed model. We have considered three
different cases having 103, 104, and 106 samples in the
dataset, respectively. Results (in all three cases) have been
summarized in Table 2. Results show that the loss depends
upon the no. of samples in the dataset. It decreases by in-
creasing the number of samples.

Number of samples required in the XOR dataset for
appropriate training depends upon the input dimension. It is
given by the following equation:

p � 2N
. (12)

Here, ‘p’ is the number of required samples for ‘N’
dimensional input. To understand this relation, consider
two-dimensional datasets (i.e., N� 2). /erefore, the no. of
the required sample (i.e., p) is obtained by (9) as (p � 22 � 4).
It is the classical exclusive OR (XOR) dataset, represented as
{(0, 0), (0, 1), (1, 0), (1, 1)}. Similarly, if (N� 3), then
(p � 23 � 8), which indicates a three-input XOR dataset, and
so on. Lesser samples in the training dataset cause non-
convergence and inaccuracy.

Equation (12) tells the number of samples required in the
training dataset. /erefore, for ten-dimensional input, the
number of samples required for training should be
(p� 210 �1024). /erefore, approximately 1,000 samples are
sufficient for a ten-dimensional training dataset. However, if
we increase the dimension, it requires more no. of samples to
train the model appropriately. Otherwise model fails to get
converge. /e same is shown in Table 3. To assess the ac-
curacy of our proposed model, we repeated each experiment
25 times and provided accurate results. Here, the success rate
signifies the ratio of successful simulation over total simu-
lations for each case. In the case of ten-dimensional input for
1000 training samples, the success rate is 0.96, whereas it is
reduced to 0.76 in the case of thirteen-dimensional input
because of insufficient training samples. However, if we
increase the no. of training samples to 10,000, the model
report 100% of success ratio. Similarly, for 20 bits input
(p� 220 �1,048,576), samples are required. /erefore, by
training 1,000 samples, the success ratio is 0.0, while for
10,000 samples, it is 0.32. It increases further to 0.64 for one
million samples. /ese results furnish the importance of no.
of training samples for solving XOR type nonlinear prob-
lems. Also, by observing the results, we can easily under-
stand the capability of the proposed model for generalized
XOR type real problems.

Further, the proposed algorithm has been repeated 30
times to assess the performance of its training. /e standard
statistical indicators such as mean (μ) and standard devia-
tion (σ) are considered the assessment parameters of the
predicted values. Table 4 provides the prediction results (in
terms of threshold values (t1, t2) and scaling factor (b))

obtained by the proposed models. It also showcases the
mean and standard deviations of the predicted thresholds
and bias values.

Table 5 provide values of the threshold obtained by both
the pt-neuronmodel and proposedmodels. In experiment #2
and experiment #3, the pt-neuron model has predicted
threshold values beyond the range of inputs, i.e., [0, 1]. /is
is because we have not placed any limit on the values of the
trainable parameter. It only reflects that the πt-neuronmodel
has been unable to obtain the desired value in these
experiments.

L1 loss (L) obtained in these three experiments for the
πt-neuron model, and the proposed model is provided in
Table 3. /is loss function is only used to visualize the
comparison in the model. As mentioned earlier, we have
used the binary cross-entropy loss function to train our
model.

It is observed by the results of Tables 5 and 6 that the πt-
neuron model has a problem in learning highly dense XOR
data distribution. However, the proposed neuron model has
shown accurate classification results in each of these cases.
Also, the loss function discerns heavy deviation as predicted
and desired values of the πt-neuron model.

Further, we have monitored the training process for both
models by measuring the binary cross-entropy (BCE) loss
versus the number of iterations (as shown in Figure 6). We
should remember that it is the cross-entropy loss on a
logarithmic scale and not the absolute loss. It supports
backpropagation error calculation which is an issue with
smaller errors. It is generally considered an appropriate loss
metric in classification problems. /erefore, we have used
BCE as a measure to observe the trend of training to
compare the πt-neuron model with our proposed model. As
observed, the proposed model has achieved convergence
which is not obtained by the πt-neuron model. We have
examined the performance of our proposed model over N-
bit parity problems. We have considered similar data dis-
tribution (as that in Figure 5) for parity problems as well.
Further, we have compared the training performance of the
πt-neuron model with our proposed model for the 10-bit
parity problem. Training results of both models have been
represented in Figure 7 (by plotting binary cross-entropy
loss versus the number of iterations).

We have examined the performance of our proposed
model for higher dimensional parity problems. It is to assess
the applicability and generalization of our model. We have
randomly varied the input dimension from 2 to 25 and
compared the performance of our model with πt-neuron.
Results are tabulated below. Table 7 provides the scaling
factor and loss obtained by both πt-neuron and proposed
neuron models.

As mentioned earlier, we have measured the perfor-
mance for the N-bit parity problem by randomly varying the
input dimension from 2 to 25. L1 loss function has been
considered to visualize the deviations in the predicted and
desired values in each case. /e proposed model has shown
much smaller loss values than that of with πt-neuron model.
Also, the proposed model has easily obtained the optimized
value of the scaling factor in each case. Tessellation surfaces
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formed by the πt-neuron model and the proposed model
have been compared in Figure 8 to compare the effectiveness
of the models (considering two-dimensional input).

/is is observed here that the proposed model has
formed an enhanced tessellation surface than that of the πt-
neuron model. It is merely because of the optimal scaling. In
the case of the πt-neuronmodel, the scaling factor is (bπ‒t � ‒
1.7045), whereas ourmodel has obtained the scaling factor as

Table 6: L1 loss (L) Obtained by Πt-Neuron Model and Proposed
Model.

Experiment no. L (πt) L (Ours)
1 0.1744 0.003
2 0.9818 0.0015
3 8.0435 0.001
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Figure 6: Training progress of both models (i.e., πt-neuron model
and proposed model). Here, we have considered a typical highly
dense two-input XOR data distribution. /e result shows that the
πt-neuron model has an issue in training while the proposed model
has achieved convergence.

Table 4: Predictions /rough the Proposed Model (in terms of
threshold values (t1, t2), and scaling factor (b)).

Experiment no. t1 t2 b
1 0.4982 0.5097 3.9651
2 0.5049 0.5079 3.97
3 0.4958 0.5113 3.9869
4 0.5099 0.4967 3.98
5 0.5015 0.4967 3.969
6 0.4903 0.5014 3.9693
7 0.5002 0.5076 3.9652
8 0.504 0.511 3.9638
9 0.4973 0.5138 3.9872
10 0.4995 0.4887 3.9773
11 0.5031 0.497 3.9777
12 0.4945 0.497 3.9802
13 0.5019 0.4989 3.9773
14 0.4974 0.4895 3.9688
15 0.4921 0.5024 3.9807
16 0.4943 0.5106 3.9858
17 0.5074 0.5101 3.9697
18 0.5075 0.4975 3.9686
19 0.4914 0.4959 3.9702
20 0.4974 0.4888 3.9772
21 0.5019 0.5138 3.9628
22 0.5084 0.5005 3.9631
23 0.5085 0.5055 3.964
24 0.5138 0.4993 3.9742
25 0.5063 0.5026 3.9634
26 0.5022 0.4901 3.9702
27 0.503 0.5147 3.9866
28 0.4992 0.4831 3.9636
29 0.512 0.4983 3.9696
30 0.4968 0.4975 3.9706
Mean (μ) 0.5014 0.5013 3.9726
Standard deviation (σ) 0.00614 0.00849 0.00781

Table 5: Comparison of Πt-Neuron Model and Proposed Model
(in terms of threshold values).

Experiment no.
Desired Predicted (pt)

Predicted
(ours)

t1 t2 t1 t2 t1 t2
1 0.5 0.5 0.6023 0.1546 0.5024 0.5037
2 0.580 0.672 0.5567 2.6124 0.579 0.674
3 0.460 0.084 0.4679 ‒15.9951 0.459 0.085

Table 3: Success Rate (through variation in dimension and no. of training samples).

Dimension (N) 103 104 106

2 1.0 1.0 1.0
5 1.0 1.0 1.0
7 1.0 1.0 1.0
10 0.96 1.0 1.0
13 0.76 1.0 1.0
15 0.32 0.96 1.0
18 0.0 0.40 0.92
20 0.0 0.32 0.64
25 0.0 0.0 0.24
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(b� 4.6900). As we have discussed earlier, the value of the
scaling factor associated with input should be around (4) for
each input (described in Figure 4). Further, because of the
two-dimensional problem, the effective scaling factor in our
case is (bN � 21.9961). We have plotted the effective values of
the scaling factor in our proposed model and the πt-neuron
model on a logarithmic scale to visualize the effect of scaling
with increasing input dimension in Figure 9.

/e trend of variation of the effective scaling factor with
an increasing dimension of input discerns that the proposed
model can rapidly increase the required value of the scaling
factor to compensate for the effect of miniaturization of
errors within higher dimensional input. However, the
previous πt-neuron model has no such ability. /is is
possible in our model by providing the compensation to
each input (as given in our proposed enhanced πt-neuron
model by equation (6)). We have considered the input
distribution similar to Figure 5 (i.e., the input varies between

[0, 1]) for each dimension. Results show that the effective
scaling factor depends upon the dimension of input as well
as the magnitude of the input. /erefore, our proposed
model has overcome the limitations of the previous πt-
neuron model.

Further, the computational complexity of the proposed
model is obtained from the investigation of Schmitt in [38].
Schmitt has investigated the computational complexity of
multiplicative neuron models. /ey have used the Vapnik-
Chervonenkis (VC) dimension and the pseudo dimension to
analyze the computational complexity of the multiplicative
neuron models. /e VC dimension is a theoretical tool that
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Figure 8: Tessellation surface formed by πt-neuron model and
proposed model for two-dimensional input.
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Figure 7: Results show the training progress of both models (i.e.,
πt-neuron model and proposed model) for the 10-bit parity
problem. /e proposed model has achieved convergence while the
πt-neuron model has not.

Table 7: Scaling Factor and loss Obtained by Πt-Neuron and
Proposed Models with Increasing Input Dimension of N-bit Parity
Problem.

N
Scaling factor L1 loss (L)

πt-neuron (bπ‒t) Ours (b) πt-neuron Ours
2 ‒1.7045 4.6900 0.3281 0.0093
5 0.3911 4.2760 2.1059 0.0093
7 72.1092 4.2208 0.8367 0.0058
10 ‒42.6576 4.0720 0.5690 0.0047
13 33.9146 4.0548 1.0349 0.0037
15 64.4870 3.9516 0.8966 0.0079
18 ‒20.1572 3.8317 0.9393 0.0072
20 ‒79.3860 3.9426 0.8311 0.0072
25 83.9456 3.7275 0.9855 0.1431
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Figure 9: Trend of scaling factor variation for (N)-bit parity
problem is compared in both of the models (i.e., πt-neuron model
and proposed model). Here, the effective scaling factor for a πt-
neuron model is ‘(bπ‒t)’, whereas for the proposed model ‘bN.’
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quantifies the computational complexity of neuron models.
According to their investigation for a single product unit the
VC dimension of a product unit with N-input variables is
equal to N.

7. Discussion and Conclusions

Translated multiplicative (πt) neuron model has been sug-
gested by past researchers to solve the XOR and N-bit parity
problems. However, it has an issue in backpropagation for
densely distributed XOR and higher dimensional parity
problems. It is an indigenous problem associated with
multiplicative neuron models. /ough the πt-neuron model
has a scaling factor in subduing this problem, however,
without suitable initialization, it is unable to obtain the
appropriate scaling factor for higher-dimensional input.
/erefore, a generalized solution is still required to over-
come these issues. In this paper, an enhanced translated
multiplicative neuron modeling has been proposed to en-
hance the performance of the πt-neuron model. /e pro-
posed model can obtain the optimized value of the scaling
factor for any input dimension. It has solved the existing
backpropagation issue of the πt-neuron model. We have
considered an adaptable scaling factor associated with each
input in our proposed model. /is helps in achieving op-
timal scaling factor value for higher dimensional input. We
have assessed the efficacy of our model by randomly in-
creasing input dimensions and considered a magnitude
variation between [0, 1] for each input. /e proposed model
has outperformed the πt-neuron model in each case. It has
shown more than an 80% reduction in absolute loss as
compared to the previous neuron model in similar exper-
imental conditions. Also, the proposed model has formed a
more accurate tessellation surface as compared to the pre-
vious model for two-dimensional input. Further, there are
multiple real-world implementations involving the time
series forecasting and classification such as trends analysis,
seasonal (weather) predictions, cycle, and irregularity pre-
dictions. /ese real-world problems are associated with
forecasting and classifications of time-series data. A mul-
tiplicative neuron model is commonly employed in such
predictions and renders superior results. Our proposed
single multiplicative neuron model has overcome the lim-
itations of dimensionalities. /erefore, it can be easily
employed in such prediction tasks as well.
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[3] A. Özdemir and M. M. İnal, “Only one neuron either N-bit
parity rule based modified translated multiplicative or
McCulloch-pitts models for some machine learning prob-
lems,” International Journal of Intelligent Systems and Ap-
plications in Engineering, vol. 4, pp. 67–72, 2016, https://
dergipark.org.tr/en/download/article-file/233567.

[4] B. E. Rosen, J. M. Goodwin, and J. J. Vidal, “Transcendental
functions in backward error propagation,” in Proceedings of
the 1990 IEEE International Conference on Systems, Man, and
Cybernetics Conference, pp. 239–241, Los Angeles, CA, USA,
1990.

[5] A. Kaveh and J. Vogh, “Influence of different nonlinearity
functions on Perceptron performance,” in Proceedings of the
SPIE Proceedings,Applications of Optical Engineering: Pro-
ceedings of OE/Midwest ’90, pp. 215–225, Rosemont, IL, USA,
1991.

[6] Z. Zhang and M. Sarhadi, “A modified neuron activation
function which enables single layer perceptrons to solve some
linearly inseparable problems,” in Proceedings of the 1993
International Conference on Neural Networks, pp. 2723–2726,
Nagoya, Japan, 1993.

[7] R. Labib, “New single neuron structure for solving nonlinear
problems,” in Proceedings of the IJCNN’99. International Joint
Conference on Neural Networks. (Cat. No.99CH36339),
pp. 617–620, Washington, DC, USA, 1999.

[8] Y. Wu, M. Zhao, and X. Ding, “A new kind of neuron model
with a tunable activation function and its applications,”
Science in China - Series E: Technological Sciences, vol. 40,
no. 1, pp. 105–112, 1997.

10 Computational Intelligence and Neuroscience

mailto:ashutoshmishra@yonsei.ac.kr
mailto:chajae42@yonsei.ac.kr
mailto:shiho@yonsei.ac.kr
mailto:shiho@yonsei.ac.kr
https://dergipark.org.tr/en/download/article-file/233567
https://dergipark.org.tr/en/download/article-file/233567


[9] Y. Wu and M. Zhao, “A neuron model with trainable acti-
vation function (TAF) and its MFNN supervised learning,”
Science in China, Series A: Information Sciences, vol. 44, no. 5,
pp. 366–375, 2001.

[10] Z. Yanling, D. Bimin, and W. Zhanrong, “Analysis and study
of perceptron to solve XOR problem,” in Proceedings of the
Fe 2nd International Workshop on Autonomous Decentral-
ized System, 2002, pp. 168–173, Beijing, China, 2002.

[11] T. Nitta, “Solving the XOR problem and the detection of
symmetry using a single complex-valued neuron,” Neural
Networks, vol. 16, no. 8, pp. 1101–1105, 2003.

[12] Y. Shen, B. Wang, F. Chen, and L. Cheng, “A new multi-
output neural model with tunable activation function and its
applications,” Neural Processing Letters, vol. 20, no. 2,
pp. 85–104, 2004.

[13] M. F. Amin and K. Murase, “Single-layered complex-valued
neural network for real-valued classification problems,”
Neurocomputing, vol. 72, pp. 945–955, 2009.

[14] N. Tsapanos, A. Tefas, N. Nikolaidis, and I. Pitas, “Neurons
with paraboloid decision boundaries for improved neural
network classification performance,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 1,
pp. 284–294, 2018.

[15] A. Sagheer, M. Zidan, and M. M. Abdelsamea, “A novel
autonomous perceptron model for pattern classification ap-
plications,” Entropy, vol. 21, no. 8, p. 763, 2019.

[16] E. M. Iyoda, H. Nobuhara, and K. Hirota, “A solution for the
N-bit parity problem using a single translated multiplicative
neuron,” Neural Processing Letters, vol. 18, no. 3, pp. 233–238,
2003.

[17] E. M. Iyoda, H. Nobuhara, and K. Hirota, “Translated mul-
tiplicative neuron: an extended multiplicative neuron that can
translate decision surfaces,” Journal of Advanced Computa-
tional Intelligence and Intelligent Informatics, vol. 8, no. 5,
pp. 460–468, Apr. 2004.

[18] R. Bland, Learning XOR: Exploring the Space of a Classic
Problem, Stirling: Department of Computing Science and
Mathematics, University of Stirling, Stirling, Scotland, 1998.

[19] R. Durbin and D. E. Rumelhart, “Product units: a compu-
tationally powerful and biologically plausible extension to
backpropagation networks,” Neural Computation, vol. 1,
pp. 133–142, 1989.

[20] L. R. Leerink, C. L. Giles, B. G. Horne, and M. A. Jabri,
“Learning with product units,” Advances in Neural Infor-
mation Processing Systems, vol. 7, pp. 537–544, 1995, https://
clgiles.ist.psu.edu/papers/NIPS94.product.units.pdf.

[21] S. Haykin, “Multilayer perceptrons,” in Neural Networks: A
Comprehensive Foundation, Prentice-Hall, Hoboken, New
Jersey, United States, 2nd ed edition, 1999.

[22] M. H. Bakr and M. H. Negm, “Modeling and design of high-
frequency structures using artificial neural networks and
space mapping,” in Advances in Imaging and Electron Physics,
vol. 174, pp. 223–260, Elsevier, 2012.

[23] B. Karlik and A. V. Olgac, “Performance analysis of various
activation functions in generalized MLP architectures of
neural networks,” International Journal of Artificial Intelli-
gence and Expert Systems, vol. 1, pp. 111–122, 2011.

[24] A. N. Yildirim, E. Bas, and E. Egrioglu, “/reshold single
multiplicative neuron artificial neural networks for nonlinear
time series forecasting,” Journal of Applied Statistics, vol. 48,
no. 13-15, pp. 2809–2825, 2021.

[25] O. C. Yolcu, E. Bas, E. Egrioglu, and U. Yolcu, “Single
multiplicative neuron model artificial neural network with

autoregressive coefficient for time series modelling,” Neural
Processing Letters, vol. 47, no. 3, pp. 1133–1147, 2018.

[26] E. Egrioglu, U. Yolcu, C. H. Aladag, and E. Bas, “Recurrent
multiplicative neuron model artificial neural network for
nonlinear time series forecasting,” Neural Processing Letters,
vol. 41, no. 2, pp. 249–258, 2015.

[27] R. N. Yadav, P. K. Kalra, and J. John, “Time series prediction
with single multiplicative neuron model,” Applied Soft
Computing, vol. 7, no. 4, pp. 1157–1163, 2007.

[28] W. Pan, L. Zhang, and C. Shen, “Data-driven time series
prediction based on multiplicative neuron model artificial
neuron network,” Applied Soft Computing, vol. 104, Article ID
107179, 2021.

[29] E. Egrioglu and E. Bas, “A new automatic forecasting method
based on a new input significancy test of a single multipli-
cative neuron model artificial neural network,” Network:
Computation in Neural Systems, pp. 1–16, 2022.

[30] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang,
“Dendritic neuron model with effective learning algorithms
for classification, approximation, and prediction,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 2, pp. 601–614, 2018.

[31] Z. H. Zhang, F. Min, G. S. Chen, S. P. Shen, Z. C. Wen, and
X. B. Zhou, “Tri-partition state alphabet-based sequential
pattern for multivariate time series,” Cognitive Computation,
pp. 1–19, 2021.

[32] X. Ran, X. Zhou, M. Lei, W. Tepsan, and W. Deng, “A novel
k-means clustering algorithm with a noise algorithm for
capturing urban hotspots,” Applied Sciences, vol. 11, no. 23,
p. 11202, 2021.

[33] H. Cui, Y. Guan, H. Chen, and W. Deng, “A novel advancing
signal processing method based on coupled multi-stable
stochastic resonance for fault detection,” Applied Sciences,
vol. 11, no. 12, p. 5385, 2021.

[34] W. Deng, X. Zhang, X. Zhou et al., “An enhanced fast non-
dominated solution sorting genetic algorithm for multi-ob-
jective problems,” Information Sciences, vol. 585, pp. 441–453,
2022.

[35] E. Q. Wu, M. Zhou, D. Hu et al., “Self-paced dynamic infinite
mixture model for fatigue evaluation of pilots’ brains,” IEEE
Transactions on Cybernetics, pp. 1–16, 2020, https://ieeexplore.
ieee.org/document/9285173.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: surpassing human-level performance on imagenet
classification,” in Proceedings of the IEEE international con-
ference on computer vision, pp. 1026–1034, NW, Washington,
DC; United States, 2015.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256, Sardinia, Italy, May 2010.

[38] M. Schmitt, “On the complexity of computing and learning
with multiplicative neural networks,” Neural Computation,
vol. 14, no. 2, pp. 241–301, 2002.

Computational Intelligence and Neuroscience 11

https://clgiles.ist.psu.edu/papers/NIPS94.product.units.pdf
https://clgiles.ist.psu.edu/papers/NIPS94.product.units.pdf
https://ieeexplore.ieee.org/document/9285173
https://ieeexplore.ieee.org/document/9285173

