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The integrity of chromosome ends, or telomeres, depends on myriad

processes that must balance the need to compact and protect the telomeric,

G-rich DNA from detection as a double-stranded DNA break, and yet still

permit access to enzymes that process, replicate and maintain a sufficient

reserve of telomeric DNA. When unable to maintain this equilibrium, erosion

of telomeres leads to perturbations at or near the telomeres themselves,

including loss of binding by the telomere protective complex, shelterin, and

alterations in transcription and post-translational modifications of histones.

Although the catastrophic consequences of full telomere de-protection are

well described, recent evidence points to other, less obvious perturbations

that arise when telomere length equilibrium is altered. For example, critically

short telomeres also perturb DNA methylation and histone post-translational

modifications at distal sites throughout the genome. In murine stem cells for

example, this dysregulated chromatin leads to inappropriate suppression of

pluripotency regulator factors such as Nanog. This review summarizes these

recent findings, with an emphasis on how these genome-wide, telomere-

induced perturbations can have profound consequences on cell function

and fate.

This article is part of the theme issue ‘Understanding diversity in

telomere dynamics’.
1. Background
Cellular senescence, or the cessation of cell division and entry into a quiescent

but viable state, is an almost universally conserved stress response of eukaryotic

cells. It can be induced in a number of ways that include by genome-wide DNA

damage, critically eroded telomeres and activation of certain oncogenes [1]. For

example, in cells lacking a means to maintain telomeres, the gradual erosion of

this repetitive, G-rich DNA leads ultimately to loss of chromosome end-

protection. This ‘uncapping’ of telomeres leaves telomeres vulnerable to degra-

dation, recombination or end-to-end fusions, and leads prevalently, but not

exclusively, to senescence in normal cells, and to cell death in cancer cells

that have subverted certain DNA damage surveillance mechanisms [2,3]. To

avoid cellular senescence, many cell types express an RNA-dependent reverse

transcriptase that replenishes telomeric DNA, called telomerase reverse tran-

scriptase (TERT). A wealth of evidence in both unicellular and multicellular

organisms has established that telomerase activity acts to replenish telomeres

[4]. In mammals, the ability to maintain or even elongate telomeres is develop-

mentally regulated, and peaks during early development via both telomerase-

dependent and telomerase-independent elongation mechanisms [5]. Later in

development, transcriptional repression of the TERT gene occurs, and even

in cell types and tissues that retain some telomerase activity, telomere erosion

is evident with increasing age. In many genetic contexts, telomerase

is haploinsufficient; one functional copy of the telomerase RNA or TERT is

insufficient to prevent telomere erosion, uncapping or genome instability [6].
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Among the findings to establish a first link between telo-

mere erosion and cellular senescence were studies in the

baker’s yeast Saccharomyces cerevisiae and in human primary

fibroblasts. Many unicellular organisms express telomerase

constitutively; for example, S. cerevisiae populations are nor-

mally immortal and do not exhibit telomere erosion.

However, a genetic screen for mutations leading to ‘ever

shorter telomeres’ established that telomere erosion leads to

cellular senescence [7] and led to the identification of genes

encoding key telomerase and regulatory protein subunits

[8,9]. In human primary cells, telomere erosion was shown

to correlate with the ‘mitotic clock’ that limits the number

of times that cell populations double—thus providing a

potential molecular basis for the lifespan limit that was first

described by Leonard Hayflick in the 1960s [10–12]. Cellular

lifespan can be extended for a time via inhibition of certain

DNA damage checkpoints, but telomere erosion irrevocably

leads to genome instability and apoptosis [13], except in

rare clones that reacquire telomerase activity and become

immortal [14]. Indeed, ectopic over-expression of TERT is suf-

ficient to lengthen telomeres and immortalize many primary

cell types [4]. Although re-expression of TERT is the most

common mechanism for cells to overcome senescence, it is

not the only means of doing so. A subset of cancers resolves

the telomere-shortening problem by homologous recombina-

tion (HR)-based, alternative lengthening of telomeres (ALT)

[15]. The molecular mechanisms underlying ALT are still

not completely understood, however recent studies indicate

that protein complexes such as NuRD-ZNF827 serve as a scaf-

fold for homology-directed recombination [16]. In addition,

recruitment of PCNA and RFC-5 to a double-strand break

within telomeric DNA can promote telomere elongation via

the recruitment of POLd and the synthesis of new telomere

DNA from an existing telomeric DNA template [17].
2. Is there a Goldilocks zone for telomere
length?

Is there an optimal telomere length for cell function? This is a

complex question because the factors that influence telomere

length equilibrium are myriad [4,6], and can vary at the level

of individual telomeres, cells, tissues or organisms. Equilibria

are also dynamic, and may change with time, nutrient status,

stress, environmental or intrinsic cues, or with cell state (see

also [18,19]). There are known opposing forces that cooperate

or compete to maintain average telomere length within an equi-

librium range. Factors that erode telomeres include, but by no

means are limited to, the end replication problem, enzymatic

processing, oxidative stress, exogenous factors, genetic modi-

fiers, telomere trimming, telomere looping, HR-driven

telomeric rearrangements and impaired recruitment or the

dosage of telomerase itself [20,21]. As discussed above, critically

eroded telomeres can lead to a DNA damage response (DDR),

with concomitant impacts upon cell division or survival. In

some cases, these perturbations induce other catastrophic

events such as chromosome loss, fusion or other rearrange-

ments. These cellular aberrations may lead to organism-wide

disease that includes infertility, cancer, early mortality and gen-

etic anticipation (an increased risk of disease penetrance in

following generations; [22], see also [23,24]). Indeed, short telo-

meres are not just associated with adverse healthspan in humans

and other mammals, but emerging evidence also suggests
relationships to brood size, egg health, survival and early

mortality in other organisms such as birds and lizards [25–30].

The study of telomerase-deficient murine models in vivo
[31,32] has underscored that it is critically short telomeres, not

average telomere length per se, that affects genome stability.

However, it is not just critically eroded telomeres that may

harbour defects in telomere integrity; long telomeres can also

be problematic. Factors that are known to drive telomere

elongation are both telomerase-dependent and telomerase-

independent (i.e. recombination-dependent) [4,6,33,34]. Telo-

mere elongation can also be driven by environmental factors

[35]. Replication fork progression (and fork stalling) through

telomeres may affect both the length and integrity of chromo-

some ends [36–38]. Excessively long telomeres may also

affect the fraction of telomeric DNA bound by a six-subunit tel-

omere complex called shelterin [39]. Another complex required

for telomere maintenance and telomerase recruitment, called

CST (CTC1–STN1–TEN1), may become especially important

at longer telomeres [40,41]. There are numerous phenotypes

associated with excessively long telomeres in various organ-

isms; for example, in ALT or telomerase-positive cancer cells,

long telomeres lead to an increase in sensitivity to DNA

damage [42,43] and to increased telomere fragility [44,45].

Indeed, the DDR itself is critical to telomere length homeostasis,

and ataxia-telangiectasia mutant (ATM) activation stimulates

telomere elongation [46–48]. Telomere elongation may also be

a driving force in cancer progression. An increasing number

of human cancer types exhibit mutations in the TERT promoter

that lead to upregulated telomerase activity or mutations within

shelterin components such as POT1, both of which often result

in a longer average telomere length [49,50]. Thus, deviations

from the norm (too long or too short) may both signal a loss

of telomere integrity, although presumably through distinct

mechanisms (as below; see also [51]).

As important as telomerase is to counter-balance telomere

erosion, there exist equally important physiological mechanisms

to counter-balance excessive telomere lengthening. Telomere

recombination in yeasts, ciliates, plants and other organisms

can lead to both rapid telomere deletion and expansion

[52–55]. Mammalian telomeres are also subjected to active trim-

ming mechanisms that generate excised, circular telomeric

ssDNA called t-circles or c-circles (depending from which telo-

meric strand they are comprised) [45,56–58]. These circular

intermediates also appear to be a characteristic feature of yeast

strains lacking telomerase function [59–61]. In telomerase-posi-

tive cell types suchas murine tissues andhuman embryonic stem

cells (ESCs), telomere trimming is an important mechanism by

which cells can fine-tune their telomere length [45,57,62]. Mech-

anisms that mediate telomere trimming in humans are likely to

involve several factors, including Nbs1 and Xrcc3 [57,62–66],

and the recently identified telomere-associated protein

ZBTB48, or TZAP [67,68]. Thus, it appears that telomeres are

under a constant flux of both lengthening and shortening, a

process referred to as ‘telomere homeostasis’ [4,6].

These and other data show that perturbations in telomere

equilibrium, either to shorter or longer telomeres, impact sev-

eral human diseases [20]. It has been proposed that telomere

equilibrium must exist within an equilibrium zone that bal-

ances the deleterious effects of telomeres that are too long

or too short [42]. By analogy to an astrophysics term for pla-

nets that might support life because they are neither too far

nor too close to a sun, there may be a context-dependent,

optimal telomere equilibria; a ‘Goldilocks zone’. This is an
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important question in the telomere field which has not yet

been fully addressed. One recent study addressed this ques-

tion in S. cerevisiae, using strains that possessed up to

fivefold longer telomeres than wild-type strains. There was

no measurable difference in lifespan or fitness under a variety

of conditions [69,70]. In summary, much research remains to

be done rigorously assess whether there is a ‘Goldilocks zone’

for telomere function.
pluri-
potency

telomere
erosion

cancer

Figure 1. Schematic of the interconnectivity among telomeres, methylome
maintenance and other fundamental cellular functions. A summary of
known, interconnected cellular processes such as telomere shortening, plur-
ipotency, cancer development, DNA methylation and changes in gene
expression (black lines). However, as discussed in this review, recent findings
uncovered a deeper and more direct relationship between telomere length
maintenance and the methylome (red line).
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3. Similar epigenetic alterations may occur in
senescence, cancer and cell fate

The changes that accompany cell senescence and cancer

progression are not limited only to telomeres. Other

genome-wide alterations occur that exert a profound effect

on gene expression and cell differentiation. As elaborated

below, recent findings show that epigenetic alterations that

affect the genome-wide expression patterns that contribute

to cell senescence and cell fate have more in common with

telomeres than previously appreciated.

One of the most critical ‘marks’ that affects gene

expression in many organisms is DNA methylation. Mamma-

lian gene promoters are enriched in the dinucleotide CpG,

and methylation of this sequence is an important and

dynamic regulator of gene expression and differentiation

status. CpG methylation promotes the recruitment of histone

methyltransferases and, at many genetic loci, these two epi-

genetic alterations establish a repressive state that stably

inhibits gene expression. Conversely, removal or exclusion

of DNA methylation at a promoter can result in chromatin

remodelling and a permissive state for gene expression.

Thirty years ago, an association between cancer, aging and

DNA hypomethylation was first described [71–73]. Abun-

dant evidence has since been accrued that genome-wide

DNA hypomethylation, often accompanied by regional

hypermethylation, is a shared phenotype of senescent and

cancer cells that is evolutionarily conserved from mouse to

human [74]. The methylomes in aged human tissues and

cancer have been profiled molecularly, revealing conserved

methylome ‘footprints’ that are potential biomarkers of

ageing and cancer [75–77]. Such age-associated signatures

in the DNA methylome have also been recently described

in dogs and wolves [78]. These findings have led to the

notion that there exists an ‘epigenetic’ or ‘methylome’ clock,

and that this dynamic, age-associated change in genome-

wide DNA methylation patterns could influence the ageing

process itself and in turn be influenced by therapeutic inter-

ventions [79–81]. While many tissues do indeed show

evidence of such age-associated alterations, some tissues,

such as the murine hippocampus, do not exhibit any detect-

able change in DNA methylation or the expression of

cytosine-modifying enzymes during ageing of either sex

[82]. While the associations are tantalizing, the causal

relationship between the methylome and ageing is still

unclear and under active investigation.

Epigenetic alterations of the genome may also be as impor-

tant to cancer development as they are to normal tissue

development, and can arise via alterations in DNA methyl-

ation and chromatin organization [83]. These genome-wide

changes drive transitions in cell lineage commitment that

include, for example, trans-differentiation [84] or the epi-

thelial-to-mesenchymal transition [85]. Cancer stem cells,
which comprise rare cells that emerge during cancer develop-

ment, also exhibit plasticity and heterogeneity in cell fate

[86]. Thus, changes to the DNA methylation status of the

genome (colloquially referred to as the ‘methylome’) can be

viewed as a cellular history that distinguishes an early precur-

sor cell fate from the fate of that cell type several divisions later.

In summary, a dynamic methylome is integral to normal

development, cancer development, cell differentiation and

cell senescence.

Until recently, it was thought that the genomic changes

that result in alteration of DNA methylation during senes-

cence represented a mechanism that was distinct from

telomere attrition. For example, although telomere erosion

was known to induce alterations in telomeric and sub-telo-

meric DNA heterochromatin, such as loss of histone

repressive marks and subtelomeric DNA hypomethylation,

these effects were considered constrained to sequences prox-

imal to the telomere [87–89]. Short telomeres were also

known to impair the establishment of a differentiated state,

for example, in neuronal stem cells, osteoblasts and induced

pluripotent stem cells (iPS) [90–92]. However, recent studies

in murine and human cell models suggest that the link

between eroded telomeres and the methylome is more

wide-reaching than appreciated previously (figure 1).
4. A direct link between short telomeres, DNA
methylation and stem cell pluripotency

A direct link between DNA methylation and telomere integ-

rity has been uncovered via the study of stem cell

differentiation. Pluripotent murine ESCs can differentiate

into cell types of all three germ layers and can efficiently

form teratocarcinomas. Pluripotency and self-renewal of

ESCs are maintained primarily by the core transcriptional fac-

tors Nanog, Oct4 and Sox2 [93], but require the cooperation of

other factors and coregulators [94] and an efficient telomere

maintenance mechanism [95]. Telomere maintenance is essen-

tial for ESC replicative potential [90,96–98] and, during the

reprogramming of differentiated cells into stem cells, an
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and could re-acquire pluripotency gene expression and resume cell proliferation after re-addition of the growth factor LIF (leukaemia inhibitory factor).
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increase in telomerase activity leads to telomere elongation

and the acquisition of epigenetic marks characteristic of

longer telomeres [91,95,98]. Surprisingly though, critically

short telomeres appear not only to compromise efficient

reprogramming, but also to impair the stability of ESC differen-

tiation [99]. In telomerase-deficient ESCs in fact, an increase in

expression of pluripotency factors, including Nanog and Tbx3,

is observed [95,99]. In addition, ESCs and iPS with short

telomeres exhibit a reduced expression of the de novo methyl-

transferases Dnmt3a and/or Dnmt3b [87,91,95,98–100].

Recently, it was found that Tert-deficient ESCs with short

telomeres exhibited an unstable response to differentiation-

inducing cues such as all-trans retinoic acid and, unlike

wild-type ESC, could resume proliferation after growth stimu-

lation with the pluripotent cell growth factor LIF [99]. In accord

with this apparent reversibility in differentiation status, Tert-
deficient ESCs cells also exhibited hypomethylation at the

Nanog and Oct4/Pou5F1 promoters, and the expression of plur-

ipotency factors was elevated. In fact, the total cellular level of

DNA methylation was significantly decreased in ESCs with

short telomeres. This unstable differentiation phenotype was

partially rescued after the elongation of short telomeres by

Tert reintroduction or by enforced expression of Dnmt3b [99].

These data establish a more wide-ranging impact of critically

short telomeres in genome-wide DNA methylation, and

suggest that the relationship between short telomeres, ageing,

cancer and the methylome might be more intricately linked

than originally supposed (figure 2).

Additional recent findings have underscored the link

between DNA hypomethylation and unstable differentiation,

because knockdown of de novo DNA methyltransferases,

resulting in genome-wide DNA hypomethylation, prevents

consolidation of differentiation programmes and permits

reversion to a pluripotent state [101,102]. These data further

support the hypothesis that impaired ability to maintain

stable differentiation in ESC with short telomeres acts via per-

turbation of de novo DNA methylation, which in turn

influences genome-wide chromatin organization and the
ability to repress pluripotency factors such as Nanog. However,

not all epigenetic changes induced by short telomeres lead to

DNA hypomethylation. For example, Roberts et al. [103] noted

that gene silencing of a GFP transgene, concomitant with pro-

moter DNA hypermethylation, was observed in mTerc2/2

mice with short telomeres. Regardless of the precise influence,

these data argue that short telomeres may contribute to the

already known link between chromatin alterations and

ageing [104].
5. Alterations in genome-wide expression and
cell senescence in yeast

A recent study in yeast also found a marked impact of loss of

telomere integrity on gene expression throughout the

genome. Using an S. cerevisiae strain lacking the telomerase

RNA to induce senescence, Platt et al. [105] found that telo-

mere attrition resulted in the relocation of the telomere

binding protein Rap1 away from telomeres to the promoters

of hundreds of genes dispersed throughout the genome,

including genes encoding the core histones. This relocation

resulted generally in the activation of gene expression, but

specifically led to repression in the case of histone genes, con-

comitant with the onset of senescence. In fact, modulation of

Rap1 or core histone levels directly impacted the pace of

senescence. The relocation of Rap1 depended on the activity

of the DNA damage checkpoint kinase, Mec1, which is acti-

vated during senescence concomitant with critical telomere

attrition [105]. Other components known to be involved in

telomere end-protection, such as the SIR and Ku complexes,

are also diverted away from telomeres in response to DNA

damage [106], however modulation of SIR activity did not

impact the Rap1-dependent alteration of core histone

expression in response to imminent senescence [105].

Rap1 is an interesting protein with diverse cellular func-

tions. In yeast, it was first discovered based on its role as a

Repressor/Activator Protein that acts to regulate gene



3¢
5¢ 3¢

5¢
Trf2

Pot1

Rap1

Tpp
1

Trf1
Tin2

ATM

g-H2AX

53BP1heterochromatic sub-
telomeric region

Rap1

3¢
5¢

5¢
3¢

ATM

g-H2AX

53BP1

Trf2

Trf1
Tin2 Pot1Tpp

1

loss of chromatin
condensation

(b)

(a)

Figure 3. Hypothetical representation of the effects of short telomeres on genome-wide gene expression profiles. Rap1 relocalizes upon cell senescence in yeast
[105], and there is also a non-telomeric, transcriptional role of Rap1 in mice [114 – 116]. Together with other evidence presented in the review, these findings
suggest that eroded telomeres might affect genome-wide chromatin rearrangements through a persistent DDR and relocalization of Rap1, or both. In this hypothe-
tical model, at functional telomeres (a) the shelterin protein complex (Trf1, Trf2, Rap1, Pot1, Ttp1, Tin2) forms a t-loop and prevents the ATM-dependent activation
of DNA DDR mechanisms on the 30 overhand of telomeres. When telomeres become critically eroded (b), changes in the telomeric and sub-telomeric chromatin may
lead to a DDR that induces genome-wide alterations in gene expression, e.g. at histones, pluripotency genes or other targets.
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expression at diverse loci including the mating-type locus

[107]. It is also a critical mediator of transcriptional silencing

at telomeres and other loci via modulation of chromatin struc-

ture [108,109]. Its mammalian counterpart is a component of

the telomere protective complex shelterin, and contributes to

end-protection and in the suppression of homology-directed

repair at telomeres [110,111]. Mice disrupted for Rap1 (in a

genetic background with normal average telomere lengths)

reveal an extra-telomeric role of Rap1 in gene expression

induced by NF kB signalling [112] and in gene regulation at

other subtelomeric and non-telomeric loci [113]. The signalling

networks controlled by Rap1 play key roles in metabolic

homeostasis, glucose tolerance and adipocyte differentiation

[114,115]. Thus, one intriguing possibility raised by these

studies is that telomere attrition in mESC with short telomeres

might divert Rap1 away from telomeres, and its redistribution

to other genomic loci could then lead to changes in DNA

methyltransferase expression (figure 3). Indeed, compelling

support for this notion was provided by Martinez and col-

leagues, who found that Rap1 relocalized to other

non-telomeric loci in late-generation telomerase-deficient

mice [116].

Another non-mutually exclusive possibility, also suggested

by Platt et al. [105], is that a telomere-induced DDR [117] would

trigger changes in the DDR signalling cascade that would

lead to a genome-wide change in heterochromatin organiz-

ation. In support of this notion, a recent study in S. cerevisiae
showed that a DDR induces global chromatin remodelling

and decompaction through loss of histones from chromatin

[118]. In human cells, oncogene-induced senescence also

induces a DDR, and the concomitant activation of ATM leads

to a dramatic relocalization of the histone variant macroH2A1

that, in turn, promotes the senescence-associated secretory
phenotype (SASP) and paracrine-induced senescence [119].

Collectively, these results suggest intriguing mechanisms that

might underlie the changes in heterochromatin observed in

ES and iPS cells with short telomeres. For example, a persistent

telomere-induced DDR could gradually lead to loss of histones

at widespread chromatin loci, leading to subsequent chromatin

decompaction and concomitant changes in genome-wide

expression profiles.
6. Telomeres could be a missing link between
DNA hypomethylation and cell senescence

The above studies establish that telomere shortening can

affect DNA methylation elsewhere in the genome, and

indeed a reciprocal relationship also exists in murine cells,

whereby defects in DNA methylation lead to telomere

lengthening [120]. Despite these relationships, it remains to

be determined whether critically short telomeres are suffi-

cient to induce the type of methylome changes that have

already been described in human aged or cancer cells and tis-

sues. For example, it will be interesting to determine whether

some of the footprints associated with the ‘aged methylome’

are directly linked to telomere instability [75].

In human cell culture models, hints at such a link have

begun to emerge with recent observations that senescent

cells exhibit overall DNA hypomethylation with focal DNA

hypermethylation [121], as well as gene silencing and trans-

posable element activation [122]. In one study, senescence-

associated DNA hypomethylation occurred at late-replicated

genomic regions and was linked to mislocalization of lamin-

associated domains that perturbed the expression of the main-

tenance DNA methyltransferase gene Dnmt1 [121]. In a
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separate study, reintroduction of hTERT into human primary

cells led to cellular immortality that was accompanied by a

wide-scale reacquisition of DNA methylation and large

changes in genome-wide expression profiles [123]. Intrigu-

ingly, oncogene-induced bypass of cellular senescence and

telomerase-induced bypass result in significantly different

DNA methylation and genome-wide expression profiles

[123,124]. It is important to note, however, that not all studies

found a direct link between telomere status and the epigen-

ome. In one recent study by Lowe and Horvath, the authors

found that even telomerase-immortalized cells exhibited evi-

dence of epigenetic ‘ageing’ [125]. With the advent of new

methods to measure, modulate and edit the genome/epigen-

ome (such as CRISPR-based gene editing), it should be

possible to tease out these complex genetic and epigenetic

interrelationships [126,127].

Dysfunctional telomeres also clearly have an impact on

cellular phenotypes that arise due to misregulation of genes

proximal to short telomeres. As an example, loss of a repres-

sive chromatin state of critically short telomeres in human

cells leads to upregulation of DUX4, a primary pathogenic

candidate in facioscapulohumeral muscular dystrophy,

suggesting that telomere attrition may contribute to disease

via perturbation in the ‘telomere position effect’ (TPE: the

ability of functional telomeres to impose transcriptional

repression of adjacent loci) [128]. Long-range telomere loop-

ing has been described in yeast, human and murine cells

[129]. Thus, one area of future investigation will be whether

the loss of TPE at critically short telomeres could also affect

the expression of telomere-distal loci.

It is also worth considering how extracellular secretory

mechanisms affected by dysfunctional telomeres may alter

global chromatin conformation and gene expression.

Mosteiro et al. [130] showed that senescence can enhance

reprogramming in a mouse model engineered to express

the Yamanaka reprogramming factors [131], through the

release of inflammatory cytokines, such as interleukin 6,

from senescent cells. Interesting, among the murine models

used in this study, the authors used mice deficient for the

RNA component of telomerase, Terc, to induce cellular

senescence in vivo. Compared to telomerase wild-type

mice, Terc2/2 mice showed a substantial increase in the

number of cells undergoing reprogramming following

expression of the Yamanaka factors [130]. These data

reinforce earlier findings that the alterations in chromatin

induced by critically short telomeres clearly do impact

pluripotency, both in vitro [99] and in vivo [130].
7. Potential implications for cancer cell
differentiation

Because most cancer types often possess a sub-set of critically

short chromosome ends within the population [132,133], it is

possible that short telomeres would contribute to greater

plasticity in cancer cell fate, and may promote resistance to

normal differentiation-inducing cues. Drugs or agents that

promote differentiation, such as all-trans retinoic acid, have

become a standard cancer treatment for many different

types of cancer, including blood (leukaemia), breast, prostate,

and glioblastoma [86]. Despite the success of this approach, a

fraction of cancers relapse due to the emergence of prolifera-

tive cells that are differentiation-resistant, for example, in
acute promyelocytic leukaemia [86]. Similarly, prostate

cancer cells, which possess very short average telomere

lengths, exhibit an alteration in gene expression profiles and

morphology not unlike those of their lineage-committed, dif-

ferentiated epithelial cell precursors [134]. These data support

the hypothesis that the differentiation resistance of cancers

may be influenced directly by telomere integrity. In one pros-

tate cancer cell line, enforced telomere elongation via ectopic

expression of TERT promoted the acquisition of expression

patterns reminiscent of more differentiated lineages when

injected into nude mice in vivo. This effect depended on the

catalytic competence of TERT and was not observed when

catalytically inactive TERT was introduced into the same

cell line [134].

Cell-based studies have their merits, but it is whole

animal genetic models that will permit a direct test of the

hypothesis that critically short telomeres induce DNA

methylation changes that impact cell and tissue physiology.

An age-associated increase in heterochromatic modifications

has been noted in murine and primate models, but the role

of telomeres in this process is still unknown [135]. The phys-

iological consequence of DNA methylation changes induced

by short telomeres could be tested in telomerase knockout

mice, in which telomere loss culminates in wide-scale

declines in stem cell and tissue function that lead to sterility

and early mortality [136]. These changes are reversible via

genetic or chemically inducible rescue of endogenous

TERT expression, which results in re-extension of telomeres,

reduced DNA damage signalling and associated cellular

checkpoint responses and the amelioration of degenerative

phenotypes in several tissues including brain, testes,

spleen and intestines [137–139]. However, reintroduction

of Tert can also promote aggressive cancer development

and bone metastasis in Tert knockout mice [140]. It will be

interesting to determine whether this rescue of TERT func-

tion is also accompanied by reprogramming of the

epigenome in normal and pre-neoplastic cell types, similar

to the changes observed during replicative senescence in

human cells, or whether there is a methylome footprint

associated with age or cancer that is conserved between

mice and humans [75]. For example, although critically

eroded telomeres do accelerate haematopoietic stem cell

(HSC) exhaustion in vivo during serial bone marrow trans-

plantation [141], in ageing human HSCs, large-scale

changes in the DNA methylation landscape occurred in an

age-dependent manner, but these changes did not correlate

with detectable alterations in telomere length (although it

should be noted that the PCR-based technique used to

measure telomere length does not detect critically short

telomeres) [142]. Nonetheless, it would be naı̈ve to assume

that all age-associated changes in the genome are linked to

telomere status.

In summary, we have outlined a recent sampling of the

unusual consequences of excessive telomere erosion or

elongation that may affect cell function. These discoveries

underscore the importance of continual re-examination of

what we may have previously considered to be well-

examined or ‘answered’ questions in biology. ‘Look and

you will find it—what is unsought will go undetected’

(Sophocles). With the advent of sophisticated technologies

to assess genome-wide changes in histone post-translational

status, DNA methylation and RNA expression, who knows

where the contribution of telomeres will end?
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