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Abstract

Several models have been employed to study human postural control during upright quiet stance. Most have adopted an
inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback
necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the
physiological mechanisms of important elements associated with the control of human posture. This paper studies
neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoske-
letal (NMS) model. It encompasses: i) conductance-based spinal neuron models (motor neurons and interneurons); ii)
muscle proprioceptor models (spindle and Golgi tendon organ) providing sensory afferent feedback; iii) Hill-type muscle
models of the leg plantar and dorsiflexors; and iv) an inverted pendulum model for the body biomechanics during upright
stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical
outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting
findings were that: i) an intermittent pattern of muscle activation emerged from this posture control model for two of the
leg muscles (Medial and Lateral Gastrocnemius); and ii) the Soleus muscle was mostly activated in a continuous manner.
These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities,
ordered recruitment), along with the modulation of afferent activity, may account for the mixture of intermittent and
continuous control that has been a subject of debate in recent studies on postural control. Another finding was the
occurrence of the so-called ‘‘paradoxical’’ behaviour of muscle fibre lengths as a function of postural sway. The simulations
confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but on the other hand
showed that this effect may arise without any anticipatory neural control mechanism.
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Introduction

The maintenance of upright quiet stance is a challenging task for

the central nervous system (CNS), and the objective is to achieve the

control of an intrinsically unstable biomechanical system under the

effect of gravity. Posture control is a position control problem in

which the CNS, leg muscles, and different sensory systems (e.g., the

muscle proprioceptors) interact to maintain the horizontal projec-

tion of the centre of mass (COM) within a region bounded by the

feet (for a review of the basics of posture control, see [1]). Sensory

systems, such as the vestibular, visual, and somatosensory, play a

significant role in the aforementioned motor task, so that disorders

in any of these systems may lead to postural instability [2,3].

A conceptual question under debate in the literature concerns

the manner the CNS controls upright stance in adults (i.e., human

beings who already learned to walk). Some researchers argue in

favour of a negative-feedback continuous control, with the leg

muscles reflexively activated in response to drifts or perturbations

away from an equilibrium position [4–6]. Conversely, others

suggest that an anticipatory (feedforward) mechanism is necessary

to explain some findings, such as the low feedback gains observed

in some experiments [7–9]. More recently, the view that human

upright stance is controlled by an intermittent mechanism has

grown [10–15]. The latter is based in part on results from an

experiment involving the manual balancing of a virtual inverted

pendulum controlled by a subject through a computer joystick

[13]. Additionally, other recent studies showed that motor units

(MUs) of the Medial Gastrocnemius (MG) muscle exhibited an

intermittent recruitment during upright quiet stance with a pattern

closely linked to COM and centre of pressure (COP) fluctuations
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[14,16]. It is noteworthy that the previously referred papers used a

wide-sense/physiological conceptualisation of intermittent postur-

al control, which is understood as one exhibiting discrete (bursty)

actions of the neuronal controller, producing ballistic-like (phasic)

muscle activations. In addition to this more qualitative/physio-

logical view of intermittency, there is a strict, quantitative,

definition of intermittent control that has also been used to

analyse motor control problems, such as stick balancing and

postural control [17]. In the present study we will adopt the former

(physiological) view of intermittency.

From a theoretical standpoint, mathematical models have been

developed to describe and to investigate human postural control.

These models explicitly incorporate the above-mentioned control

strategies hypothesised to be adopted by the CNS during upright

standing control, but do not identify which part of the CNS the

control resides, e.g. cortex, brainstem, cerebellum, spinal cord. For

instance, [4,5,18–20] represented the postural control system as a

negative-feedback continuous control system, so that propriocep-

tive information of body position and velocity were fed back to the

CNS. Alternatively, the models proposed by [21–23] adopted a

continuous predictive control system, while others [11,12,24,25]

represented the control of posture as an intermittent control

system. Despite these fundamental differences, all these models

were based on a control engineering framework, whereby the

whole system was simplified and the CNS was represented by a

PD/PID (proportional-derivative/proportional-integral-deriva-

tive) controller, an optimal continuous controller or an intermit-

tent controller that activated the muscles in discrete bursts. Despite

their advantages of a relative simplicity and the power of

explanation, it is not easy to translate their results in terms of

the underlying physiological mechanisms involved in the control of

human posture.

The present study aims at providing a complementary approach

to those mentioned above in that the fundamental focus is on

biology (anatomy and physiology). A large amount of physiological

knowledge, from the behaviour of neuronal ionic channels to the

dynamics of muscle contraction, was funnelled into a large-scale

mathematical model of the nervous, muscular, and biomechanical

systems involved in posture control. In this vein, a biologically

based large-scale neuromusculoskeletal (NMS) model was devel-

oped and used to investigate the problem of postural control from

a more neurophysiological standpoint. The model encompasses: i)

a spinal neuronal network, which includes conductance-based

models of both a motor neurons (MNs) and interneurons (INs); ii)

Hill-type muscle models to represent the viscoelastic properties of

the Soleus (SO), MG, Lateral Gastrocnemius (LG), and Tibialis

Anterior (TA) muscles; iii) models of both muscle spindle and

Golgi tendon organ (GTO); iv) afferent fibres providing Ia, II, and

Ib feedback; and v) an inverted pendulum model, which is a first

approximation of upright quiet stance [26]. Here the propriocep-

tive feedback is provided by muscular proprioceptors (i.e., spindles

and GTOs), since they seem to be largely responsible for the

position sense of the limb [27,28]. The first hypothesis of the

present study is that stance control might be properly achieved by

a spinal-like controller (SLC, approximated here by the developed

NMS model) based on a proprioceptive feedback. An associated

second hypothesis is that the activation of leg muscles by this SLC

is a continuous process yielding the maintenance of human body

equilibrium.

Another relevant issue related to postural control that the

present study analyses is related to recent experimental findings of

a ‘‘paradoxical’’ behaviour of the calf’s muscle fibre lengths during

postural sway [29,30]. The behaviour was called ‘‘paradoxical’’

because the muscle fibre lengths were negatively correlated with

COM/COP displacements [31]. These studies proposed that

reciprocal inhibition from antagonistic (TA) Ia afferents might be

responsible for this unexpected motor behaviour. With the

availability of the detailed NMS model employed in the present

study, the correlation between muscle fibre length and COM/

COP displacements could be tackled without much difficulty.

Therefore, a third hypothesis of the present study is that a model

structure without the reciprocal inhibition pathway (from TA Ia

afferents to Triceps Surae MNs) would exhibit positive correlation

coefficients between muscle fibre length and COM/COP

displacements. A complement of this hypothesis is that the

reciprocal inhibition neural circuit may increase the probability

of occurrence of the ‘‘paradoxical’’ relation mentioned above. This

combined third hypothesis is, therefore, evaluated here using the

complex NMS physiological model in order to verify a hypothesis

put forward by previous authors on the basis of heuristics and

experimental results from humans [29–31].

To the best of our knowledge, this is the first study to address the

control of an intrinsically unstable neuro-biomechanical system

associated with the maintenance of human quiet standing by

means of a complex large-scale system mostly based on known

physiology. However, others have also used biologically based

reductionist models of the NMS system to investigate how the

CNS controls other motor tasks [32,33]. A minor part of this

material was already published as conference abstracts [34,35].

Results

Model Validation in Terms of Postural Control
Typical biomechanical and neuronal outputs of the NMS model

are presented in Figure 1. The model’s responses resemble

qualitatively those frequently reported in postural control studies

(e.g., [9,29,36]). Irrespective of model structure (i.e., Model 1 or

Model 2 - see Methods for details), the inverted pendulum leaned

about 5 deg forward (equilibrium point), so that COM and COP

displacements oscillated around a basal value of 80 mm (see

Figure 1A). The basal plantar-flexion torque (negative torque) was

*10% of the maximum isometric torque produced by the model.

One can notice that COM and COP (Figure 1A) oscillated in anti-

Author Summary

The control of upright stance is a challenging task since
the objective is to maintain the equilibrium of an
intrinsically unstable biomechanical system. Somatosenso-
ry information is used by the central nervous system to
modulate muscle contraction, which prevents the body
from falling. While the visual and vestibular systems also
provide important additional sensory information, a
human being with only somatosensory inputs is able to
maintain an upright stance. In this study, we used a
biologically-based large-scale neuromusculoskeletal model
driven only by somatosensory feedback to investigate
human postural control from a neurophysiological point of
view. No neural structures above the spinal cord were
included in the model. The results showed that the model
based on a spinal control of posture can reproduce several
neuromechanical outcomes previously reported in the
literature, including an intermittent muscle activation.
Since this intermittent muscular recruitment is an emer-
gent property of this spinal-like controller, we argue that
the so-called intermittent control of upright stance might
be produced by an interplay between spinal cord
properties and modulated sensory inflow.

Large-Scale Neuromusculoskeletal Model of Human Upright Standing
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phase with respect to the muscle torque (Figure 1B), i.e. when the

body leaned forward from its equilibrium position the plantar-

flexion torque increased (more negative). Conversely, muscle

activations (EMG envelopes in Figure 1C-E) were modulated

approximately in phase with postural sway. In the simulations, TA

muscle was silent during postural sway (not shown).

A quantitative analysis was performed to validate the model

with respect to the available data from the literature. Typical time-

domain metrics were calculated from the COP time series and

compared to data from normal subjects and vestibular loss patients

standing on a force plate without visual information (see Table 1).

Root mean square (RMS) and mean velocity (MV) of simulated

COP were higher than the values observed experimentally in

normal subjects, but compatible with data from vestibular loss

patients. Another quantitative validation was based on a cross-

correlation analysis performed between the COM and COP time

series (Figure 2A-B), as well as between COP and EMG envelopes

(Figure 2C-D). COM and COP were highly correlated (r&1) at

lag zero. COP and EMG envelopes were positively correlated with

the correlation peak occurring at a positive lag. Correlation

coefficients (r) and cross-correlation peak lag values were

compatible with experimental data from healthy subjects (see

Table 1). In general, correlation coefficients were higher for

Gastrocnemii in comparison to the SO, and muscles’ activations

(EMGs) were advanced by approximately 200–300 ms in relation

to the postural sway (COP). The 50% power frequency (F50)

estimated from the COP power spectrum (see Figure 2E-F)

resulted quite similar to the value from healthy subjects (see

Table 1). COP power spectra of both model structures were

limited to *1 Hz.

A final quantitative validation was based on the pooled

histogram of COM displacements (1-mm bins) as shown in

Figure 3 (data are from the simulations of Model 2). The

histogram shape was bimodal, with two peaks around the

equilibrium position of the inverted pendulum (value 0 in the

abscissa). The Jarque-Bera goodness-of-fit test was applied to

verify if this histogram could be fitted by a typical Gaussian

probability density function [11]. The null-hypothesis (the

histogram comes from an unimodal Gaussian function) was

rejected (p~0:001). The same result was obtained for Model 1.

Intermittent Recruitment of the Motor Units
Figures 4 and 5 show how the spike trains from spinal MNs,

INs, and afferent fibres were modulated during postural sway. An

interesting qualitative finding was that MUs from the MG muscle

were intermittently recruited/de-recruited as the inverted pendu-

lum swayed forward/backward (Figure 4B). This intermittent

pattern of MU recruitment was similar for the LG muscle (not

shown), but less evident for the SO muscle (see Figure 5A). The

degree of intermittency for the MG and SO MUs was quantified

Figure 1. Neuromechanical outputs of the postural control model (Model 2) for a typical simulation. (A) Anteroposterior centre of mass
(COM; gray curve) and centre of pressure (COP; black curve) displacements. (B) Muscular torque produced during postural sway. The negative value
represents a plantar-flexion torque produced by the leg muscles (activation of the Triceps Surae muscle group) (C-E) Electromyogram (EMG)
envelopes from Soleus (SO), Medial Gastrocnemius (MG), and Lateral Gastrocnemius (LG) muscles.
doi:10.1371/journal.pcbi.1003944.g001

Large-Scale Neuromusculoskeletal Model of Human Upright Standing
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Figure 2. Cross-correlation functions and centre of pressure (COP) power spectra for typical simulations carried out on Model 1
(graphs A, C, and E) and Model 2 (graphs B, D, and F). (A-B) Cross-correlation functions between centre of mass (COM) and COP. Note that for
both models, cross-correlation peaks occurred at zero lag (dashed lines). (C-D) Cross-correlation functions between COP and muscle electromyograms
(EMGs). Black, red, and blue curves represent cross-correlation functions for Soleus (SO), Medial Gastrocnemius (MG), and Lateral Gastrocnemius (LG),
respectively. Irrespective of the model structure, there was a lag of about 300 ms between COP and EMG envelopes from the three muscles. (E-F) COP
power spectra. Dashed line represents the 50% power frequency (F50). It is noteworthy that for Model 2 there was a broader bandwidth in
comparison to Model 1.
doi:10.1371/journal.pcbi.1003944.g002

Table 1. Centre of Pressure (COP) metrics and cross-correlation analysis between COP and electromyogram (EMG) obtained from
the two model structures in comparison with experimental data reported in the literature.

Variable (Unit) Model 1 (n = 3) Model 2 (n = 3) Experimental Data (n) [Ref.]

COP RMS (mm) 9.24 + 0.92 9.75 + 0.99 3.82 + 1.54 (20) [42]

14.90 + 11.50 (10) [3]

COP MV (mm/s) 9.14 + 0.93 10.83 + 0.86 6.72 + 2.18 (20) [42]

60.20 + 59.90 (10) [3]

COP F50 (Hz) 0.29 + 0.01 0.31 + 0.03 0.30 + 0.09 (20) [42]

COP{EMGSO r (2) 0.39 + 0.11 0.15 + 0.13 0.57 + 0.20 (16) [43]

COP{EMGMG r (2) 0.63 + 0.11 0.40 + 0.09 0.71 + 0.12 (16) [43]

COP{EMGLG r (2) 0.62 + 0.16 0.40 + 0.08 0.59 + 0.20 (16) [43]

*0.45 (7) [9]

COP{EMGSO Peak Lag (ms) 213.50 + 25.50 247.80 + 73.60 200 + 20 (16) [43]

COP{EMGMG Peak Lag (ms) 351.50 + 50.40 322.30 + 25.80 190 + 40 (16) [43]

COP{EMGLG Peak Lag (ms) 311.70 + 86.20 268.80 + 49.40 210 + 30 (16) [43]

240–270 (7) [9]

Model 1 is the postural control model without reciprocal inhibition, whereas Model 2 is the complete postural control model (see Methods for details concerning model
structures). Data are expressed as Mean + Standard Deviation. F50 is defined as the frequency at which 50% of the total power of the COP is confined (see Data
Analysis). Values of r were measured as the peak values of the cross-correlation functions between COP and the EMGs of the Triceps Surae (TS) muscles (i.e., SO, MG, and
LG). Data from [9,42,43] were obtained from healthy young subjects standing on a stable surface without visual feedback, while [3] provided data from vestibular loss
patients standing on a stable surface without visual feedback.
doi:10.1371/journal.pcbi.1003944.t001

Large-Scale Neuromusculoskeletal Model of Human Upright Standing
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by the activation ratio (see [16] and Methods for details). The

median (range) activation ratios calculated for 90 randomly

selected MG MUs (30 MUs were chosen per simulation) from

Model 1 and Model 2 were 0.69 (0.44–0.80) and 0.65 (0.47–0.81),

respectively. For 90 randomly selected SO MUs the activation

ratios were 0.97 (0.75–1) and 0.96 (0.79–1) for Model 1 and Model
2, respectively. Because of these results, the MG and LG muscles

were considered to have ballistic-like activations (see EMG

envelopes in Figures 1D-E and 4B), while the SO muscle was

mostly tonically (continuously) active during the maintenance of

an upright posture (see Figures 1C and 5A).

In order to quantify the intermittent recruitment of MG MUs,

the interval between successive recruitments was computed for a

subset of 30 randomly chosen MUs (10 MUs were chosen per

simulation). In accordance with the method used by [14],

intermittent recruitment was considered if a given MU was

discharging at a rate lower than 4 Hz (i.e., interspike intervals

higher than 250 ms). For Model 1, 899 intervals of 30 MG MUs

were evaluated and the mean (modal) interval between successive

recruitments was equal to 511 (274) ms [i.e. a mean (modal) rate

equal to 1.96 (3.65) Hz]. Similarly, for Model 2, 846 intervals of 30

MG MUs had a mean (modal) value of 505 (277) ms [1.98 (3.61)

Hz]. Therefore, both model structures produced a similar

intermittent recruitment pattern on MG MUs. A low number of

LG MUs was recruited (less than 30) and the SO MUs were mostly

tonically active during the simulation of postural control (see the

activation ratios in previous paragraph), hence the intermittency of

the MUs from these muscles were not quantitatively evaluated

here.

Panels C-I in Figure 4 and panel B in Figure 5 show typical

results of how proprioceptive feedback (encompassing afferent

fibres and spinal INs) was modulated during sway (Model 2 was

used for this simulation). The activity of the Ia afferents from the

MG muscle (Figure 4C) was highly modulated, following approx-

Figure 3. Pooled histogram of centre of mass (COM) displace-
ments from the simulations performed on Model 2. The mean
values of COM displacement (mean equilibrium positions of the
inverted pendulum) were subtracted from each simulated COM time
series so that the data from different simulation runs could be pooled
and hence plotted in the same graph. Note that the histogram exhibits
a clear bimodal shape (see text for details).
doi:10.1371/journal.pcbi.1003944.g003

Figure 4. Intermittent recruitment of Medial Gastrocnemius (MG) motor units (MUs) and modulation of proprioceptive feedback
(typical simulation performed on Model 2). (A) Centre of mass (COM; gray curve) and centre of pressure (COP; black curve) displacements. (B)
Raster plots (black dots) of *40 MG MUs intermittently recruited during quiet standing. Red curve represents the global MG electromyogram (EMG)
envelope. Note the ballistic-like (phasic) activation of this muscle during postural sway. (C) Raster plots for the population of Ia afferents from the MG
muscle. Note the clear modulation in the recruitment of primary afferents. In addition, continuous curves show the instantaneous firing rate
(estimated by a Gaussian kernel convolved with the spike trains) for three Ia afferents (4, 16, 28). (D-F) Raster plots for group II excitatory interneurons
(INs), Ib inhibitory INs, and Ia inhibitory INs. Continuous curves in panels D and E represent the instantaneous firing rate for two type-specified INs (2
and 94 for group II INs; 24 and 94 for Ib INs). (G-I) Raster plots for type II afferents from MG muscle spindle, Ib afferents from MG muscle spindle, and
Ia afferents from TA muscle spindle. Continuous curves in panels G and H represent the instantaneous firing rate of two type-specified afferent fibres
(9 and 28 for type-II afferents; 22 and 39 for Ib afferents).
doi:10.1371/journal.pcbi.1003944.g004

Large-Scale Neuromusculoskeletal Model of Human Upright Standing
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imately the COM/COP displacement (note the firing rate

modulation for three different Ia afferents, as indicated by the

thin lines). Since there was little variation in the MG muscle torque

(RMS value *2.50% of the maximum MG muscle torque) and

the mean MG muscle fibre length was maintained at an

approximately steady value (i.e., there was little change in the

static component of the muscle fibre length - see below), the

activities of Ib and type II afferents were minimally modulated (see

panels G and H in Figure 4). The proprioceptive pathways

responsible for the reciprocal inhibition were also highly modu-

lated during postural sway (see panels F and I in Figure 4).

Inhibitory Ia INs discharged phasically when the inverted

pendulum swayed backward and this contributed to a decrease

in the ankle joint torque generated by the plantar flexor muscles.

Conversely, Ia afferents from the SO muscle spindles were poorly

modulated in the posture control task (see Figure 5B).

The intermittent recruitment of MG MUs was evaluated on the

basis of two phase plots that relate angular velocity and muscle

torque with ankle angle data obtained from the postural control

model (Figure 6). Figure 6A shows that most of the MG MUs

(*60%) were recruited when the inverted pendulum was leaning

forward from its equilibrium position irrespective of its velocity

(first and fourth quadrants of the angle-velocity phase plots).

Nonetheless, a large number of MUs (*28%) were recruited when

the inverted pendulum was at a backward position but with a

positive velocity (second quadrant), i.e., the pendulum was starting

to return to a forward position. Similarly, most of the MG MUs

(*50%) were recruited when the pendulum was leaning forward

and producing a higher plantar flexion torque (fourth quadrant in

the Figure 6B), i.e., the pendulum was at a forward position and

decelerating. Almost 35% of the MUs were recruited when the

pendulum was at a backward position and with a lower (more

positive than the mean value) plantar flexion torque. In general,

the discharges in the first and third quadrants were mainly

involved in the generation of a basal torque, while the discharges

in the second and fourth quadrants represented the phasic

corrective torque control produced by the MG muscle.

Effect of Reciprocal Inhibition
Two model structures were adopted to investigate the effect of

the reciprocal inhibition pathway on postural control (see Methods

for details). According to the data presented in the previous

section, there were no dramatic differences in the time- and

frequency-domain metrics, as well as in the MU recruitments. The

COP power spectrum calculated from the model without

reciprocal inhibition (Model 1) was slightly narrower than that

from Model 2. In addition, correlation coefficients between COP

and EMG envelopes were lower when the reciprocal inhibition

pathway was included in the model. Nonetheless, both model

Figure 6. Recruitment phase plots. (A) Phase plot showing the
recruitment of Medial Gastrocnemius (MG) motor units (MUs) in angle-
velocity bi-dimensional graph. The point (0,0) is a reference due to the
subtraction of the mean value of each variable obtained in the
simulations. Circle diameters are proportional to the number of
recruited MUs (see Methods). It is noteworthy that MUs seem to be
preferentially recruited in the first quadrant, i.e., when the pendulum is
leaning forward as it comes from a backward position. (B) Phase plot
showing the recruitment of MG MUs in angle-torque bi-dimensional
graph. Again, the point (0,0) is a reference that was used because each
simulation produced slightly different mean torques and angles. Note
that MG MUs are mostly activated in the fourth quadrant, i.e., when the
pendulum is leaning forward and the plantar-flexion torque produced
by Triceps Surae (TS) is higher than the mean.
doi:10.1371/journal.pcbi.1003944.g006

Figure 5. Typical behaviour of Soleus (SO) motor units (MUs)
and Ia afferents. (A) Raster plots (black dots) and SO electromyogram
(EMG) envelope (red curve). Note that the SO muscle has an
approximately steady activation during postural sway (not too much
recruitment and de-recruitment). (B) Raster plots from SO muscle
spindle Ia afferents and instantaneous firing rate for two selected
afferents (continuous curves for afferents 15 and 51). Note the small
modulation in Ia afferent recruitment and firing rate.
doi:10.1371/journal.pcbi.1003944.g005

Large-Scale Neuromusculoskeletal Model of Human Upright Standing

PLOS Computational Biology | www.ploscompbiol.org 6 November 2014 | Volume 10 | Issue 11 | e1003944



structures produced fluctuating outputs that resembled experi-

mental data, suggesting that reciprocal inhibition from TA Ia

afferents is not a strict requisite for the control of upright standing.

In the present study, we tested the hypothesis that reciprocal

inhibition may be responsible for the negative correlation between

muscle fibre length and COM/COP displacement [29–31]. This

was tested by performing a correlation analysis between COM

displacements and muscle fibre lengths for the SO, MG, and TA.

Typical signals representing these variables are shown in Figure 7.

For this typical simulation (Model 2) one can notice that MG

muscle fibre length was positively correlated with COM, while TA

muscle fibre length and COM displacement were negatively

correlated. The latter results are a typical ‘‘orthodox’’ behaviour

that has been shown for some healthy subjects during upright quiet

standing [29]. For the SO muscle, a more quantitative analysis was

performed (see Figure 8). Correlation analysis between SO muscle

fibre length and COM displacement was performed on 3-s

windows (see dashed vertical lines in Figure 7) according to the

method adopted in [29]. Correlation coefficients calculated from

Model 1 and Model 2 were pooled into two groups: positively

correlated (rw0) and negatively correlated (rv0). For Model 1
most of the intervals (*80%) showed a positive correlation

between SO muscle fibre length and COM displacement (i.e.,

‘‘orthodox’’ behaviour), whereas for Model 2 the number of

negatively correlated intervals increased to *50%. x2-test

revealed a statistically significant difference (pv0:05) between

the responses of the two model structures. This suggests that, at

least for the SO muscle, reciprocal inhibition might be involved in

the genesis of the ‘‘paradoxical’’ behaviour of muscle fibre length.

Nonetheless, a small percentage of negatively correlated intervals

(*20%) might also be generated in the absence of any reciprocal

inhibition from antagonistic Ia afferents.

Discussion

A large-scale NMS model was applied in the present study to

the problem of controlling upright standing in humans. A different

feature of this approach in comparison with most of the previous

studies in the literature (e.g., [4–6,10–12,18,19,22–24]) is that the

structure and behaviours of each element were based on known

physiology, anatomy, and biomechanics encompassing important

parts of the postural control system. Therefore, the control strategy

employed by the modelled CNS emerged from the interaction

between several neuromechanical elements involved. While the

overall mechanisms that control the inverted pendulum sway are

beyond an analytical understanding, the increased biological

realism provides important clues regarding some putative neuro-

physiological mechanisms underlying the posture control task. In

the following sections, the results presented earlier shall be

discussed with respect to relevant experimental findings reported

in the literature.

Postural Control in Quiet Standing
The results presented here showed that a SLC was effective in

maintaining the equilibrium of an intrinsically unstable biome-

chanical system (see Figure 1 for an illustrative example). This

leads to the first contribution of this study, which is to support the

hypothesis that human upright quiet standing may be properly

controlled by spinal mechanisms, for example, without any cortical

involvement. This view is consistent with several studies, which

suggest that cortical control is decreased or may be absent when a

motor task is well trained (e.g., [30–40]). Normal quiet postural

control, under no special restrictions (as standing on a narrow

beam or during dual tasks), is certainly a candidate for a well-

trained task that would not require cortical control. Since the

scope of the present study is limited to the investigation of

neurophysiological mechanisms underlying the control of quiet

standing, the assumed lack of supraspinal neural structures should

not limit the ensuing interpretations. A separate section below (see

Model Limitations and Future Research) presents and discusses

the limitations both of the modelling as well as the conclusions

derived from the simulations.

Time- and frequency-domain metrics obtained from the NMS

model were compatible with experimental data (see Table 1). The

equilibrium values of the inverted pendulum (mean angle, torque,

and COM/COP displacements) varied slightly both within and

between simulations due to programmed (randomised) changes in

system configuration. Between-simulation changes occurred due to

changes in neuronal connectivities and intrinsic properties (e.g.,

action potential thresholds) that were randomly attributed at the

beginning of each simulation [41]. On the other hand, within-

simulation variations were mainly related to the number of

recruited MUs, which varied stochastically due to neuronal noise.

Therefore, the mean equilibrium position of the body depends on

the overall instantaneous configuration of the postural control

system. The analysis of the COP time series showed that the model

was less stable (i.e., presented a larger postural oscillation) than

healthy young subjects [42]. Notwithstanding, simulated data were

compatible with those from vestibular loss subjects standing on a

stable surface without visual information [3]. As a consequence,

the simulation results reinforce that the increased postural

oscillation observed in patients may be due to the lack of other

sensory inputs providing information to the CNS, such as

vestibular and visual sources. Or, in other words, the propriocep-

tive feedback gain in such patients is not sufficient to replace the

other missing sensory feedback modalities. Interestingly, the

variability observed in the simulated postural sway was exclusively

generated by the variability in sensory afferents and descending

commands, which results in random fluctuations of motoneuronal

discharges. Therefore, it is predicted that most of the biomechan-

ical variability (sway) observed during upright standing has a

neuronal origin and is less influenced by internal disturbing forces

(e.g., heartbeats and respiration) as proposed elsewhere

[4,6,8,11,25].

The cross-correlation analysis (Figure 2) showed that EMGs

from the Triceps Surae (TS) muscles were positively correlated

with postural sway (as measured by the COP). Simulation results

are in accordance with experimental data that showed higher

correlation coefficients between EMGs from Gastrocnemii and

COP [9,43]. Additionally, the time lags between COP and EMGs

were within a range of 200–300 ms, which is also compatible with

experimental data [9,43]. This is in some sense a remarkable result

that emerged from the NMS model since the sum of the afferent

and efferent action potential propagation delays is much smaller

than this time lag between COP and EMG. Albeit qualitative, or

semi-quantitative, this is a relatively strong sign that the model was

able to capture at least a part of the overall system dynamics. In

[9] it is argued that the existence of this lag between the

mechanical and neuronal responses would be due to an

anticipatory action of the neuronal controller, i.e., the postural

control is mediated by a feedforward mechanism. However,

theoretical and computer simulation studies [19] showed that even

in the absence of any feedforward mechanism, lags between

neuromechanical signals may be obtained depending on the

parameters of the continuous feedback system and stochastic

features of the input signals. The results presented here

corroborate the latter view, since no feedforward mechanism

was incorporated into the NMS model.

Large-Scale Neuromusculoskeletal Model of Human Upright Standing

PLOS Computational Biology | www.ploscompbiol.org 7 November 2014 | Volume 10 | Issue 11 | e1003944



Another experimental finding from human postural control

studies that was reproduced by the model was the bimodal

distribution of COM displacements (see Figure 3). In [11] most of

the data from young subjects exhibited double-peaked histograms

of COM displacements with a local minimum in between (see

their Figure 5). The authors of the above-mentioned study [11]

showed that the bimodal distribution of COM displacements was

only obtained when they represented the postural control system

by a mixture of both continuous and intermittent (with a phasic

controller operating at a 3–4 Hz burst rate) control mechanisms.

A continuous postural control model produced unimodal

Gaussian-like histograms. Therefore, they argued that the

postural control in humans is not mediated exclusively by a

continuous control mechanism. Our results corroborate this

proposal. However, in our approach the control structure (e.g.,

continuous, intermittent, or a mixture of both) was not imposed a
priori. The mixture of continuous (SO motor nucleus and muscle

fibres) and intermittent (mostly Gastrocnemii motor nuclei and

muscle fibres) control behaviours was a result of the interactions

of the several interconnected neuromusculoskeletal elements of

the model and their respective dynamics. Further discussion on

the issue of continuous and intermittent control mechanisms

operating during postural control shall be presented in a separate

section below.

It is worth mentioning that a key parameter for stabilizing the

inverted pendulum model was the constant level of the fusimotor

activity that adjusted the sensitivity of muscle spindles for each

simulation. Without a proper value for both static and dynamic

fusimotor activities the pendulum fell at the beginning of the

simulation. As previously mentioned, some parameters were

randomly distributed in each simulation run [41], hence

producing a different set of initial conditions in different runs.

This explains why the mean values of fusimotor activities vary

(slightly) across the different simulation trials (see Methods). In the

context of human postural control, the dependence of an effective

control upon the fusimotor activity suggests that the CNS must

properly set the muscle spindle sensitivity for the performance of

the task [27,44,45].

Figure 7. Modulation of muscle fibre lengths during postural sway (typical simulation performed on Model 2). (A) Centre of mass
(COM; gray curve) and centre of pressure (COP; black curve) displacements. (B-D) Muscle fibre lengths from Soleus (SO), Medial Gastrocnemius (MG),
and Tibialis Anterior (TA) muscles. Lateral Gastrocnemius (LG) was not shown here because its behaviour is quite similar to that of the MG muscle.
Dashed lines represent the 3-s duration windows used to perform the correlation analysis between COM and muscle fibre lengths (see Methods for
details and Figure 8).
doi:10.1371/journal.pcbi.1003944.g007
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Another point that should be stressed is that the NMS model

was not stabilised without the neuronal activity, i.e., the pendulum

fell when the SLC was turned off. This is compatible with the

current view that the viscoelastic properties of the muscles around

the ankle joint are not sufficient to control upright standing [8,46–

48]. In the model, the intrinsic passive ankle joint stiffness was

about 70% of the critical toppling torque (see Methods for details),

which is in accordance with the experimental estimates at ankle

joint rotation angles similar to those obtained in our model (about

0.60 deg on average) [46,48]. The adoption of a constant passive

stiffness is a typical simplification (see for instance [5,11]) that was

also adopted in the present study. In an analytical study [49], the

conclusion was that the feedback provided by the muscle spindles

and GTOs is not sufficient to stabilize an inverted pendulum

representing the human body. However, the authors did not

considered any passive mechanism at the joint level and, hence,

the total torque was generated by the active neural controller.

Here, as the passive properties were included, the demand of the

CNS was about 30% of the necessary stabilizing torque, which is

compatible with the experimental estimates [11,46].

Intermittent Recruitment of the Motor Units
The most remarkable result obtained from the proposed NMS

model is shown in Figure 4. The intermittent recruitment of MG

MUs is a phenomenon recently observed in human experiments

[14,16] and the postural control model reproduced this behaviour

with a high degree of fidelity. The experimental study in [14]

reported that MG MUs were intermittently recruited with a modal

frequency of *2 Hz (pooled data from 7 subjects), which is similar

to the value observed in [13] for actions of a human subject

manually controlling an inverted pendulum. A central hypothesis

raised by several recent studies postulates the involvement of an

intrinsic predictive mechanism used by the CNS in the perfor-

mance of postural control [13,15,50]. This intrinsic mechanism,

sometimes named as a ‘‘refractory response planner’’ [51] and

involving a ‘‘psychological refractory period’’ [15,50,51], would be

responsible for the intermittent actions of the neural controller

during the equilibrium maintenance of an unstable load. The

simulation results showed that even in the absence of any

predictive mechanism (or an internal time setting neural circuit),

actions of the neuronal controller occurred at a mean (modal) rate

of *2 (4) Hz, i.e., MUs from the MG muscle were recruited with a

mean (modal) interval of *500 (250) ms, irrespective of model

structure (i.e. Model 1 and Model 2). The models adopted in this

study are interpreted as representing a single subject instead of a

population of subjects, and the MU intermittence rates observed in

the simulations are within the experimental range (2–4 Hz)

reported elsewhere (e.g., [11,13,14]). These data suggests that

the interplay between a SLC and the muscles involved in the task

being performed is sufficient to provide a mechanism underlying

the intermittent actions of the CNS during postural control. No

complex central mechanism (e.g., predictive, response planner)

was needed in our model for the genesis of this control pattern.

As discussed in [14,16], the MG muscle seems to be mostly

involved in balance control during standing, while the SO muscle

provides a basal torque due to its mostly continuous activity (see

Figure 5 and Figure 1C). Regarding the LG muscle, a recent

finding showed that this muscle has a minimal or absent activation

during the postural control task [16]. The simulation data are in

agreement with these experimental results, and suggest that the

differences in the organisation of the MG and SO motor nuclei

might be responsible for their different actions during postural

control. Additionally, the LG muscle was minimally activated

during the simulations (the reason why we performed quantitative

analysis only on MG MUs), although the recruited LG MUs (less

than 30 per simulation) followed a pattern similar to the MG MUs.

This different behaviour between the lateral and medial parts of

the Gastrocnemius might be explained by a different number of

MNs innervating each muscle. The LG muscle has approximately

60% less MUs than the MG muscle (see Methods), and hence for a

similar effective synaptic current the number of recruited MUs

with similar intrinsic characteristics would be lower for the LG

muscle in comparison to the MG. In the model, the SO muscle is

more homogeneous, having a high number of low-threshold and

smaller twitch amplitude MUs, while MG and LG muscles have

an equal proportion of low- and high-threshold MUs generating

higher twitch amplitudes (and mostly briefer twitches). The lower

proportion of low-threshold MUs (with a similar recruitment range

- see [16]) might naturally produce the intermittent recruitment

due to fluctuations in sensory feedback. The rationale is that for a

similar lower sensory inflow (or effective synaptic current), a low

number of MG/LG MUs are recruited, hence producing a low

torque at the ankle joint. Conversely, a higher number of SO MUs

are recruited producing a basal torque sufficient to counterbalance

the static toppling torque. During a forward sway, any small

modulation of sensory inflow is sufficient to recruit additional

higher-threshold MG/LG MUs, counterbalancing the postural

perturbation. As the inverted pendulum returns to a backward

position, sensory inflow decreases and the recruited MUs are de-

recruited (see Figure 4). For the SO, these oscillations in sensory

inflow seem to be lower during postural sway (see Figure 5B).

However, the analysis is quite complex since the system is

operating in closed loop, so that any argument based on causality

may lead to logical difficulties. In spite of this limitation, the

simulation results indicate that upright standing could be

controlled by means of proprioceptive sensory information

feedback and a mixture of continuous (SO muscle) and intermittent
(mostly MG and LG muscles) action of the CNS. Therefore, the

second working hypothesis raised in the present study (that efferent

Figure 8. Correlation analysis between centre of mass (COM)
displacement and Soleus (SO) muscle fibre length. Each bar
represents the percentage of intervals (3-s duration windows) with
positive (gray) and negative (black) correlation coefficients for each
model structure. For Model 1, *80% of intervals (17/21) had positive
correlation coefficients, while for Model 2 this proportion was lower
than 50% (10/21). Statistically significant difference was observed
between the results from the two model structures (Model 1 vs. Model 2,
x2-test, pv0:05). These results suggest that reciprocal inhibition may
contribute significantly to the ‘‘paradoxical’’ behaviour (negative
correlation between COM and muscle fibre length) reported in the
literature [29–31].
doi:10.1371/journal.pcbi.1003944.g008
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actions of the CNS are continuous during postural control - see

Introduction) turned out to be half true, i.e., the leg muscles are

activated by a combination of both continuous and intermittent

processes.

The results in Figure 6 showed that MG MUs were preferen-

tially recruited when the body leaned forward (panel A in

Figure 6) and decelerated (panel B in Figure 6), i.e., MG MUs

were mostly recruited in order to counteract the toppling torque

due to gravity, pushing the body to a backward position. These

simulation results are similar to those obtained from human

subjects, as reported in [14]. The authors of the referred study

proposed that a strategy of MU recruitment instead of MU rate

modulation during upright standing would be generated by the

CNS due to the postural task demands. The data from the

simulations in Figure 6 reinforce this view. The preference for

recruitment coding would be due to the same mechanisms

discussed in the previous paragraph, i.e., structural features of

the MG motor nucleus and modulation of sensory information due

to perturbation from a mean equilibrium position. On the other

hand, recent experimental and computer simulation studies have

shown that during isometric contractions, the TS torque control

relies mainly on rate coding [52] and the variability observed in

both torque and EMGs is highly dependent on the MU discharge

rate variability. Therefore, the same muscle group (i.e., the TS) is

probably being driven according to two different laws depending

on the motor task: rate coding for isometric torque control in a

very stable condition, and recruitment coding (for the MG/LG

muscles) in a more challenging condition, such as erect posture.

Interestingly, recent experimental data relating postural sway with

isometric torque variability (at similar mean torque values) in

young subjects found that they have a positive correlation [53]

albeit the first is much larger in magnitude than the latter. As the

isometric torque control (seated subjects) involved almost certainly

only continuous feedback (mostly from the SO) this experimental

result gives support to the dual control mode (continuous and

intermittent) that was found in the present simulations for standing

posture control.

The Role of Reciprocal Inhibition
Two model structures were simulated in order to investigate

whether postural control may be influenced by the reciprocal

inhibition pathway (see Methods for details). Recent studies have

discussed the importance of reciprocal inhibition in movement

control. For instance, [29,30] hypothesised that this inhibitory

pathway may be a better source of feedback control since TA

proprioceptive activity is unmodulated by the homonymous

muscle activation during postural sway.

An interesting result was that in comparison to the model

without reciprocal inhibition (Model 1) the complete model (Model
2) showed an increased number of intervals in which SO muscle

fibre length was negatively correlated with the COM displacement

(see Figure 8). This ‘‘paradoxical’’ behaviour was reported in some

experimental studies [29–31] and was used as evidence to

postulate the significant role of reciprocal inhibition in the control

of upright quiet standing [29]. The simulation results corroborate

the hypothesis that the ‘‘paradoxical’’ behaviour of muscle fibre

lengths may be generated by the reciprocal inhibition pathway.

Nevertheless, no interval with negative correlation was found

between MG and LG muscle fibre lengths and COM. In [29], the

authors reported that two out of eight subjects showed a larger

number of positively correlated intervals for the MG muscle, and

they discussed that these subjects oscillated in a more forward

position. For the physiologically-constrained set of parameters

adopted in the present model the mean equilibrium position was

*5 deg forward, which is similar to experimental findings [36].

Therefore, further studies are necessary to better understand the

real significance of ‘‘paradoxical’’ muscle fibre behaviour and how

it emerges during upright stance control. Yet, it is interesting that a

highly complex and unexpected biological phenomenon may be

partly explained/reproduced by a biologically plausible NMS

model, and, therefore, providing neurophysiological clues to its

genesis.

Regarding basic postural sway metrics (e.g., COP RMS, MV,

and spectral contents) the simulation results did not show large

differences between the two model structures (see Table 1),

suggesting that reciprocal inhibition is not a fundamental

mechanism for postural control.

In spite of the suggestion that TA muscle spindles must be a

better (‘‘cleaner’’) source of ankle angle feedback than TS muscle

spindles [29] the simulation results from Model 1 (without

reciprocal inhibition) showed that even ‘‘noisy’’ sensory feedback

from the TS muscle receptors is sufficient for an adequate postural

control. The TS spindle feedback is ‘‘noisy’’ in the sense that the

TS muscle receptors are signalling a mixture of information from

ankle angle changes as well as changes in muscle length and

tension due to the MN pool activation.

Model Limitations and Future Research
One conclusion that can be reached from the present simulation

results is that mechanisms beyond those included in the model are

not strictly necessary to reproduce experimental data from other

studies. However, it is not possible to exclude that, despite

theoretically not necessary, such mechanisms play a role in human

postural control. Specifically, contributions from additional

sensory modalities, such as foot soles, joint and skin receptors,

vision, and vestibular system, certainly contribute by varying

degrees to postural control depending on the particular experi-

mental conditions [2,3,42,54]. Additionally, one cannot rule out

the involvement of supraspinal centres (e.g., brainstem, basal

ganglia, primary motor cortex) [51,55], specially if the mainte-

nance of upright standing is being learned, such as in infants and

adults recovering from a serious medical/neurological disease.

Modulations of fusimotor [44,56] and presynaptic inhibition

activities [57,58] are examples of important spinal-related

mechanisms that certainly play relevant roles too.

In a general context, proprioceptive information from the legs is

provided by muscle, joint and cutaneous receptors [54,59].

However, in the NMS model presented here the proprioceptive

information was provided exclusively by muscle receptors (i.e.

muscle spindles and GTOs), which are postulated as being

primary sources of sensory information in response to limb

movement [27,28]. The degree of influence of joint and cutaneous

receptors on postural control is a controversial issue in the

literature. Some experimental findings showed little change in

postural sway after ischemia or anaesthesia [60,61], while others

showed that stimulation of cutaneous afferents evoked postural

changes during quiet standing [54]. The simulation results

presented here are in accordance with the former view, but

further theoretical/computational and/or experimental studies are

required to investigate what is the relative contribution of

additional neuronal structures for the maintenance of human

upright standing.

Regarding the biomechanics of the human body, it is well

known that the inverted pendulum is an approximation for the

human body during quiet standing [4,26]. Other expansions, for

instance, multi-link and/or multi-dimensional (e.g., including

medial-lateral oscillations) models and analyses [24] are very

interesting research avenues. However, any biomechanical
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expansion in large-scale models such as that used in the present

study should envisage an increasing number of neuronal and

musculoskeletal elements, along with the complexities of their

interactions.

Finally, it is noteworthy that we simulated postural control

during relatively brief periods (about 30 s). Prolonged uncon-

strained standing is associated with large changes in body

equilibrium position along time [62]. A NMS model to provide

approximate postural control during prolonged standing would

probably require a reasonably higher complexity than the one

employed in the present model and this is certainly an interesting

challenge for future research.

Concluding Remarks
Large-scale modelling has been adopted in several fields of

modern neuroscience research (e.g., [32,33,63–67]). To our

knowledge this is the first study aimed at modelling the NMS

system involved in the control of human upright standing from a

more neurophysiological perspective. The main conclusion drawn

from the simulation results is that posture control might be, at least

in part, mediated by spinal mechanisms, with proprioceptive

information being fed back to the spinal neuronal circuitry.

Additionally, the results provided evidence that complex phenom-

ena observed in human experiments, such as intermittent actions

of the CNS, might not depend on intricate control strategies of

complex structures within the CNS. The structure and organisa-

tion of the spinal cord, i.e., the types of MUs, synaptic

connectivities, the ordered recruitment of MUs, as well as the

modulation of proprioceptive information could be sufficient to

explain how the CNS controls body position during upright quiet

standing in a general sense.

Methods

Mathematical Models
The model proposed in this study encompasses four main

subsystems (neuronal controller, muscles, proprioceptors, and

body biomechanics) that were interconnected to represent the

NMS system involved in the control of human upright stance. An

overview of this large-scale model is depicted in Figure 9. It is

worth mentioning that the model is aimed to study body sway in

the sagittal plane during unperturbed stance. In this condition, the

posture control task relies mainly on afferent and efferent activities

associated with the muscles around the ankle joint (ankle strategy)

[9]. Figure 9A shows a schematic view of the neuronal circuitry

composed of groups of spinal MNs and INs (see mathematical

description below), referred to as the SLC (Spinal-Like Controller).

MNs were assembled in motor nuclei associated to the TS (i.e.,

SO, MG, and LG) and TA muscles, which is the most relevant

antagonist group of muscles involved in postural control during

ankle strategy [9,29,36]. Stochastic descending commands repre-

sented part of the synaptic inputs from the brain that drive the

spinal MNs during the maintenance of upright standing.

Musculotendon units (MTUs) were represented by Hill-type

models (see mathematical description below), which were driven

by the spike trains from the spinal MNs (Figure 9B). Muscle

spindles were placed in parallel with the muscle fibres and received

commands from Gamma motor neurons (c-MNs), while GTOs

were placed in series with the tendon. Proprioceptive feedback was

provided by Ia, II and Ib axons mediating: i) monosynaptic Ia

excitation; ii) di-synaptic Ib inhibition; iii) di-synaptic II excitation;

and iv) reciprocal inhibition from antagonistic Ia afferents. These

are fundamental pathways frequently associated with different

motor tasks, including upright standing [58]. An inverted

pendulum was adopted to represent the body biomechanics

(Figure 9C), which is a first approximation for unperturbed quiet

standing [4,5,10,11,20,25,26]. In the following sections, the

mathematical details concerning each of these models will be

provided.

Spinal neuron models. The MN pool model has been

extensively described elsewhere [41,52,68,69]. Briefly, ach type-

specified MN (i.e., S-, FR-, and FF-type) was modelled as a two-

compartment conductance-based neuron model. Geometrical and

electrotonical parameters followed those reported in the literature

for lumbar MNs of anaesthetised cats. The somatic compartment

included ionic conductances responsible for the genesis of action

potentials (Naz and fast Kz) and afterhyperpolarization (slow

Kz). Voltage-gated ionic channels were not included in the

dendritic compartment (passive-dendrite model) because they are

mainly involved in the generation of persistent inward currents

(PICs) and the bistable behaviour of MNs [68,69]. It is out of the

scope of this study to evaluate the possible role of PICs on human

postural control. Motor axons were represented as simple spike

conductors, i.e., if a MN generates a spike it is transmitted to the

motor end-plate with a given delay depending on the axon

conduction velocity (S-type: 44–51 m/s; FR-type: 51–52 m/s; FF-

type: 52–53 m/s) and the distance between the spinal cord and the

muscle (0.80 m). IN models were represented as point neurons

(single-compartment) with the same ionic channels adopted in the

MN models [41]. IN passive properties were based on the

estimation reported in [70]. For simplicity, all IN models were

supposed to have the same dynamical behaviour irrespective of the

group they belong (i.e., Ia, II and Ib INs). However, spike

thresholds varied linearly along the IN pool (from 10 mV to

20 mV) in order to represent the scattered recruitment of these

cells within a given group. The time course of each conductance

included in both MN and IN models was simplified [71] in order

to speed up the simulation of thousands of neuronal elements. The

models have been previously validated with respect to their

biophysical properties, for instance, frequency-to-current (f-I)

curve, afterhyperpolarization time course, and response to

synaptic inputs [41,52,69]. Synaptic conductances followed the

kinetic model proposed by [72] with parameters adjusted so that

amplitude and duration of excitatory and inhibitory post-synaptic

potentials matched the values reported in animal experiments (see

[68,69] for details).

As mentioned earlier, MNs were divided in four motor nuclei

depending on the muscle they command. Table 2 shows the

number and types of MNs adopted for each motor nucleus. These

values and proportions follow estimates from the literature [73,74]

Since there is a lack of information regarding the exact number of

spinal INs mediating each pathway represented in the present

model, a fixed number of 350 INs was adopted for each group.

Model of the musculotendon units. MTUs produce both

muscle torque and the surface electromyogram (EMG) (see

Figure 9A). The phenomenological model of muscle EMG was

extensively reported and validated in other studies [41,52,68].

Biomechanical properties of the muscles were represented by

Hill-type models [75–77] containing elements as depicted in

Figure 9B. A non-linear in-series elastic element (cT ) accounted

for the passive property of tendon and distal aponeurosis. Two

passive parallel elements (KPE and b) were adopted so as to

represent the viscoelastic properties of the muscle fibres. In

addition, the contractile properties of type-I (slow) and type-II

(fast) muscle fibres were represented by two contractile elements

(CEI and CEII), which produce active force in response to MN

activation. The pinnation angle between the muscle fibres and

tendon (a) was also represented in the model. A mass (m) was
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introduced to provide computational stability. The Supplemental

Material shows the frequency response of the SO muscle model

that was estimated according to the experimental procedures

reported in [78]. The results presented in this Supplemental are

useful as a complementary validation for the modelling described

in what follows.

Activation dynamics. Activation signals to the muscles were

obtained by a filtering process (second-order critically-damped

Figure 9. Overview of the postural control model. (A) Schematic view of the Spinal-Like Controller (SLC) and the biomechanics of the human
upright standing. Mathematical models of spinal a motor neurons (MNs) and interneurons (INs) make up the motor nuclei associated with the Triceps
Surae (TS) and Tibialis Anterior (TA) muscles. MNs from the TS motor nuclei receive constant intensity descending commands during the maintenance
of upright stance. Proprioceptive feedback is provided by Ia, II and Ib afferents from muscle spindles and Golgi tendon organs (GTOs). The
information carried through these afferents is fed back to the spinal cord representing fundamental pathways (or neuronal circuits) involved in the
postural control task, such as Ia monosynaptic excitation, Ib di-synaptic inhibition, group II di-synaptic excitation, and reciprocal inhibition from
antagonistic Ia afferents. Activity from Gamma motor neurons (c-MNs) set the sensitivities of the muscle spindles. Ankle joint torque (TA) that drives
the body biomechanics (to compensate for the gravitational toppling torque) is given by the sum of the torques produced by the muscles (Tm) and
the passive ankle joint torque, represented by the passive ankle joint stiffness (KA) and viscosity (BA). The body angle (hA) is the resultant output of
the inverted pendulum acted on by gravity and by TA. It indirectly (by means of Equations 8 and 9) defines moment arms (mx) and musculotendon
(MTU) lengths (LMT ), which are used to define the dynamics of both MTUs and muscle receptors (see dashed lines). Additionally, hA is fed back
without delay to account for the intrinsic passive joint impedance (stiffness and viscosity). (B) Hill-type model used to represent the viscoelastic and
contractile properties of the MTUs. Muscle fibres are represented by parallel passive elements (muscle fibre stiffness, KPE , and viscosity, b) and two
contractile elements (CE) representing the contractile properties of type-I and type-II muscle fibres. A pinnation angle (a) is adopted to represent the
angle between the muscle fibres and the aponeurosis. In addition, a mass (m) is used to increase the computational stability. Passive properties of
tendon and distal aponeurosis are represented by a lumped non-linear stiffness (cT ). Muscle spindle is placed parallel to the muscle fibres, while the
GTO is in series with the tendon. (C) Inverted pendulum model used to represent the body biomechanics during the upright quiet stance. Arrows
indicate the positive direction of each variable (see the description of each variable in the text).
doi:10.1371/journal.pcbi.1003944.g009

Table 2. Number and types of spinal motor neurons (MNs) adopted for each motor nuclei represented in the model.

Motor nuclei S-type FR-type FF-type

Soleus (SO) 800 50 50

Medial Gastrocnemius (MG) 300 150 150

Lateral Gastrocnemius (LG) 130 65 65

Tibialis Anterior (TA) 250 50 50

These values were based on estimates from the literature [73,74].
doi:10.1371/journal.pcbi.1003944.t002
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linear system) applied on the MN spike trains. The filter output

was followed by a non-linear function that provided a smooth

saturation [52,79,80]. The non-linear function (Equation (1))

accounted for the mechanisms responsible for the muscle force

saturation (e.g. Cazz release saturation in the sarcoplasmic

reticulum):

aMU SAT
(t)~

1{ exp½{c:aMU (t)�
1z exp½{c:aMU (t)� ð1Þ

in which, aMU SAT
(t) is the saturated activation signal produced by

a given MU; aMU (t) is the activation signal of a given MU before

the saturation (i.e., after the second-order linear filter); and c is the

shape parameter of the saturation function.

For each MU the parameter c was adjusted so that the tetanic

activation was achieved at a given firing rate (see [52]), i.e., a

low (high) threshold MU achieved its tetanic activation at a low

(high) firing rate. There was also an amplitude scaling

depending on the MU type, i.e., S-type MU produced activation

signals with amplitudes relatively lower than F-type MU. For

more details regarding the distribution of parameter values, see

[52].

The sum of all activation signals produced by S-type MUs

resulted in the activation signal to the CEI [aI (t)]. Similarly, the

activation signal to the CEII [aII (t)] was generated by the sum of

all activation signals produced by FR- and FF-type MUs. These

global activation signals were normalised with respect to the

maximum muscle activation, which was calculated as the sum of

all tetanic activations produced by the MUs of a given muscle. A

similar approach was adopted in [75].

Passive properties. Force-length relationships for the elastic

elements were adopted from [76,77], while the viscous force was

simply proportional to the muscle fibre stretch velocity. The total

parallel passive force (Equation (2)) was normalised by the

maximum muscle force (F0) estimated from the physiological

cross-sectional area of each muscle [75]. Muscle fibre length was

normalised by the optimal fibre length (L0). For the tendon, the

adopted passive force-length relationship (Equation (3)) was the

one reported by [75]. Similarly, the in-series passive force was

normalised by F0 and the tendon length was normalised by LT
0 ,

which is the value at which the force produced by the tendon

equals F0.

~FFPE~

exp KPE
~LLM{1

EM
0

� �� �

exp(KPE)
zb ~VV ð2Þ

in which, KPE and b are the elastic (in F0=L0) and viscous (in

F0:s=L0) parameters, respectively; ~LLM is the normalised muscle

fibre length (in L0); EM
0 is the normalised muscle strain; and ~VV is

the normalised muscle fibre velocity (in L0=s).

~FFT~kT cT ln exp
~LLT{LT

r

kT

� �
z1

� �
ð3Þ

in which, kT is a constant that defines the curvature of the toe

region in the force-length relationship; cT is the tendon stiffness (in

F0=LT
0 ); LT is the normalised tendon length (in LT

0 ); and LT
r is the

length at the onset of the linear region.

Muscle fibre length and tendon length are related by Equation

(4). The pinnation angle varied with muscle fibre length (Equation

(5)) so as to maintain the muscle thickness constant [81].

LMT~LTzLMcos½a(~LLM )� ð4Þ

in which, LMT is the MTU length (in m), whose value is given by

inverse kinematics data (see below); and a(~LLM ) is the pinnation

angle as a function of the normalised muscle fibre length.

a(~LLM )~arcsin
sin(a0)

~LLM

� �
ð5Þ

in which, a0 is the initial pinnation angle (in rad).

Values for the passive parameters of each muscle are presented

in Table 3. These values were based on several data reported in

the literature [75–77,82].

Contraction dynamics. The force generated by contractile

elements is given by Equation (6). Force-length (FL) and force-

velocity (FV ) relations followed the proposal by [75] for type-I and

type-II muscle fibres (see their Table 1 for details).

~FFCE~

aI (t):FLI (~LLM ):FVI (~LLM , ~VV )zaII (t):FLII (~LLM ):FVII (~LLM , ~VV )
ð6Þ

Muscle fibre velocity was calculated by integrating muscle fibre

acceleration (Equation (7)), which was obtained by applying the

Newton laws to the mechanical system described above (see

Figure 9B for a schematic view). It is worth noting that positive

velocity means muscle fibre stretch. Accordingly, muscle fibre

length was calculated by integrating muscle fibre velocity.

_VV~
F0

m
~FFT cos a ~LLM

� �� 	
{ ~FFCEz~FFPE
� �

cos2 a ~LLM
� �� 	
 �

ð7Þ

Musculoskeletal geometry. MTU lengths (LMT ) and moment

arms with respect to the ankle joint (mx) were calculated according

to the approach proposed by [83]. For each muscle, fourth-order

polynomials were used to adjust the relations between MTU

length and ankle joint (Equation (8)), as well as moment arm (mx)

and ankle joint angle (Equation (9)). The coefficients of these

functions are presented in Table 4. Relations for the MG and LG

(biarticular muscles) were obtained for the knee angle at zero

degree (fully extended). Inverse kinematic data were reported in

[82].

LMT~
X4

k~0

Akhk
A ð8Þ

mx~
X4

k~0

Bkhk
A ð9Þ

Models of proprioceptors and afferent fibres. A muscle

spindle model previously reported by [84] was placed parallel to

the muscle fibres (see Figure 9B). It represents the dynamics of bag

1, bag 2 and chain intrafusal muscle fibres. Ia mean firing rate is a

non-linear function of all three instrafusal fibre outputs, hence

conveying both static and dynamic information about muscle

stretch. On the other hand, type II mean firing rate is produced by

Large-Scale Neuromusculoskeletal Model of Human Upright Standing
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a contribution of bag 2 and chain intrafusal fibre outputs, which

are dependent on the static component of muscle fibre stretch

[84]. Normalised muscle fibre length (~LLM ) is the input to the

muscle spindle model. In addition, bag 1 intrafusal fibre is sensitive

to dynamic fusimotor activity (cd ), while bag 2 and chain intrafusal

fibres are sensitive to static fusimotor activity (cs). In this study,

biophysical properties of c-MNs were not represented. Static and

dynamic fusimotor activities were both modelled as Gaussian

random processes with variance equal to 3% of the mean value

(empirically chosen). The mean value was adjusted in order to

stabilize the biomechanical system (see Simulation Protocol

below). Almost all model parameters were maintained equal to

those reported by [84] (see their Table 1); however, the gain of

each intrafusal fibre was adjusted (Gbag1~7000, Gbag2~3800, and

Gchain~3000) in order to produce Ia and type II firing rates

compatible with experimental data from humans [59].

A GTO model reported by [85] was in-series with the tendon

(see Figure 9B). It represents the lumped dynamics of a population

of Ib afferents in response to the force produced by the tendon

(FT ). Basically, this model encompasses a static non-linear

function (Equation (10)) in series with a linear dynamics (Equation

(11)) resulting in the afferent firing rate [fIb(t)]. The transfer

function that represents the linear dynamics was transformed to a

digital filter (bilinear transformation) so as to reduce the

computational complexity of the system. Individual Ib afferent

activity was obtained by dividing the GTO model output by the

total number of Ib afferents in each muscle. Model parameters

were chosen to produce individual Ib firing rates compatible with

those reported in the literature [59].

R(t)~G1ln
FT (t)

G2
z1

� �
ð10Þ

in which, G1 and G2 are adjustable parameters, chosen equal to

60 Hz and 4 N, respectively.

fIb(s)

R(s)
~40:

1:70s2z2:58sz0:40

s2z2:20sz0:40
ð11Þ

in which, s is the Laplace variable; R(s) is the Laplace transform of

R(t) (Equation (10)); and fIb(s) is the Laplace transform of the

global Ib firing rate.

Table 3. Passive parameters of the musculotendon units (MTUs).

Parameter (Unit) SO MG LG TA

F0 (N) 3586 1306 606 674

L0 (cm) 4.90 5.70 6.40 6.80

m (kg) 0.53 0.22 0.12 0.15

KPE (F0=L0) 5

b (F0:s=L0) 0.005

EM
0 (2) 0.50

a0 (deg) 28.30 9.90 12 9.60

LT
0 (cm) 28.90 42.40 41.30 24.90

kT (2) 0.005

cT (F0=LT
0 ) 27.80

LT
r (LT

0 ) 0.96

These values were based on data from several studies [75–77,82].
doi:10.1371/journal.pcbi.1003944.t003

Table 4. Coefficients of equations (8) and (9).

Parameter (Unit) SO MG LG TA

A0 (cm) 32.30 46.40 45.50 30.60

A1 (cm/deg) 7.22 |10{2 7.48 |10{2 7.62 |10{2 27.44 |10{2

A2 (cm/deg2) 22.24 |10{4 21.13 |10{4 21.25 |10{4 21.41 |10{4

A3 (cm/deg3) 23.15 |10{6 23.50 |10{6 23.55 |10{6 2.42 |10{6

A4 (cm/deg4) 9.27 |10{9 7.35 |10{9 7.65 |10{9 1.50 |10{8

B0 (cm) 24.10 24.30 24.40 4.30

B1 (cm/deg) 2.57 |10{2 1.30 |10{2 1.44 |10{2 1.66 |10{2

B2 (cm/deg2) 5.45 |10{4 6.08 |10{4 6.18 |10{4 23.89 |10{4

B3 (cm/deg3) 22.22 |10{6 21.87 |10{6 21.94 |10{6 24.45 |10{6

B4 (cm/deg4) 25.50 |10{9 21.02 |10{8 21.02 |10{8 24.34 |10{8

These values were estimated from inverse kinematics data (least-squares curve fitting) reported in [82].
doi:10.1371/journal.pcbi.1003944.t004
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The outputs of the modelled muscle receptors are continuous

functions of time that represent the instantaneous firing rate of Ia,

II, and Ib afferents. These continuous functions [AfMR(t)] (with

MR being either, Ia, II, or Ib muscle receptor afferent) were

converted into independent stochastic point processes to repre-

sent the spiking activity travelling along a bundle of afferent fibres

with a given conduction velocity. The i-th spike train was

modelled as a non-homogeneous Gamma point process with a

mean intensity [Afi(t)] modulated by the output of a muscle

receptor (spindle or GTO) and with an order (or shape factor)

adjusted to produce a variability compatible with experimental

data [86]. The total number of afferents for each muscle (see

Table 5) and conduction velocities (see Table 6) were based on

estimates from the literature [58,87,88]. Afferent fibres were

recruited according to a recruitment law given by Equation 12

[79].

Afi(t)~AfMR(t){RTizIFRi ð12Þ

in which, Afi(t) is the mean firing rate (intensity) of the i-th
afferent; AfMR(t) is the output of the muscle receptor models

(spindle or GTO) for a given afferent type; RTi and IFRi are the

recruitment threshold and the initial firing rate of the i-th afferent,

respectively.

The i-th afferent was recruited when the output produced by a

specific muscle receptor afferent [AfMR(t)] crossed a recruitment

threshold (RTi). Irrespective of the afferent type (i.e., Ia, II, and Ib)

the RTi was linearly varied along the afferents from 0–50 Hz, i.e.,

when the specific muscle receptor output reached 50 Hz all

afferent fibres of a given type were recruited. At the time of

recruitment the i-th afferent fibre discharged with an initial firing

rate (IFRi) that was randomly varied along the bundle of afferents

following a Gaussian random number (mean = 5 Hz; standard-

deviation = 2.50 Hz). The values of RTi and IFRi were

empirically chosen so as to produce the recruitment behaviour

of afferent fibres observed in human experiments [59,89]. Table 6

shows the connectivity ratios between sensory afferents and the

spinal neurons (MNs and INs), with values based on data reported

in [58]. Maximum synaptic conductances (see Table 6) were

empirically adjusted in order to produce a stable and meaningful

model response.

Body biomechanics. As mentioned above, body biomechan-

ics during the upright quiet stance was represented by an inverted

pendulum (Figure 9C). Equations of motion of body COM with

respect to the ankle joint (fixed pivot point) are given by Equations

(13) and (14). It is noteworthy that our analysis was restricted to the

sagittal plane, which represents the anteroposterior displacement

of the body COM. Anthropometric parameters were empirically

chosen to represent a young adult with mb = 60 kg and hb

= 0.85 m.

Jb
€hhA(t)~TA(t)zmb:g:hb: sin½hA(t)� ð13Þ

in which, Jb is the body inertia (in kg.m2) given by Jb~4=3:mb:h
2
b;

mb is the body mass excluding the feet (in kg); hb is the COM

height with respect to the ankle joint (in m); TA(t) is the restoring

torque around the ankle joint (see Equation (13)); and g is the

gravity (set to 9.81 m/s2).

TA(t)~Tm(t){BA
_hhA(t){KAhA(t) ð14Þ

in which, Tm(t) is torque produced by the leg muscles (in Nm);

BA and KA are the viscoelastic coefficients that represent the

passive property of the joint (in Nm.s/rad and Nm/rad,

respectively).

Muscular torque (Tm(t)) is given by the net torque produced

by the TS and the TA muscles multiplied by two (for simplicity,

we have assumed that both legs produce the same torque and

have the same control mechanism). The torque produced by

the TA muscle was defined as positive, so that activation of the

TS tends to restore the body from the toppling torque produced

by gravity. The viscoelastic passive torque was introduced in

the model because Hill-type muscle models cannot properly

produce muscle stiffness [47]. A preliminary simulation was

performed in order to estimate the ankle joint stiffness due to

the passive properties of the modelled Hill-type MTUs. In this

simulation the neuronal controller was turned off and the ankle

joint angle [hA(t)] was randomly varied (Gaussian stochastic

process). The resultant (passive) muscle torque [Tm(t)] was

measured at the output of the model. A spectral analysis was

carried out to estimate the resultant passive ankle joint

impedance (see [90,91]), and the passive ankle joint stiffness

due to the Hill-type MTUs was estimated as the mean

impedance value in the range 0–1 Hz (static component).

The passive ankle joint stiffness produced by the Hill-type

MTUs was estimated to be only about 5% of the critical

stiffness (mb:g:hb). An additional passive ankle stiffness (KA) was

adopted equal to 65% mb:g:hb, resulting in a total passive ankle

joint stiffness of about 70% [46,48]. A small viscosity (BA equal

to 5.81 Nm.s/rad [46]) was also included in the model. These

viscoelastic intrinsic properties of the ankle joint accounted for

part of the postural control through a mechanism frequently

referred to as preflexes [92] (see Figure 9A).

COM and COP displacements. Typically in human experi-

ments, both COM (yG ) and COP (yP) displacements (projected on

the anteroposterior axis in the present study) have been recorded

to evaluate the body sway during upright stance. Here, these

biomechanical variables were calculated according to Equations

(15) and (16).

Table 5. Number and types of afferent fibres adopted for each muscle represented in the model.

Muscle Ia II Ib

Soleus (SO) 400 500 300

Medial Gastrocnemius (MG) 160 200 120

Lateral Gastrocnemius (LG) 160 200 120

Tibialis Anterior (TA) 280 350 140

These values were based on estimates from the literature [58,88].
doi:10.1371/journal.pcbi.1003944.t005
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yG~hb:sin½hA(t)� ð15Þ

yP~hbsin½hA(t)�z Jb

mb:g
sin½hA(t)� _hh2

A(t){cos½hA(t)�€hhA(t)
n o

ð16Þ

Simulation Protocol
The models described above were written in Java programming

language (Oracle Corp) and simulated in an open-source web-

based application developed in the Eclipse IDE (The Eclipse

Foundation). Model source code is available for download at the

website http://remoto.leb.usp.br/ and at a public repository

(http://dx.doi.org/10.6084/m9.figshare.1029085). Differential

equations were numerically solved by a fourth-order Runge-Kutta

method with a 50 ms time step.

Recent experimental studies argued that the reciprocal

inhibition from antagonistic Ia afferents (from TA muscle spindles

to TS MNs - see Figure 9 A) has an important role in the postural

control due to the ‘‘orthodox’’ modulation of TA length and the

lack of TA contraction during standing [16,29]. To investigate

this potential role of reciprocal inhibition pathway, two different

model structures were used in this study. The first one, hereafter

referred to as Model 1, excluded the reciprocal inhibition

pathway so that all proprioceptive information was provided

exclusively by the TS sensory afferents (autogenic pathway).

Conversely, Model 2 is the complete model fully described above.

All common parts in both models have the same parameter

values.

Three independent simulations (30-s duration) were carried

out with each model. During the first second of simulation, the

movement of the inverted pendulum was restricted so that the

neuromuscular system reached its steady-state condition. This

prevented instabilities due to the lack of neural activity. In order

to provide a basal activation, descending commands were

modelled as 400 homogeneous stochastic Gamma point

processes with an individual mean rate equal to 50 Hz and a

shape factor equal to 25 (coefficient of variation equal to 20%).

With this descending drive (without any feedback information)

the MN pools produced a small basal muscle torque equal to

approximately 2% of the maximum torque. As mentioned

earlier, the fusimotor drive was modelled as a Gaussian

stochastic process with a small variance. The mean values of

static and dynamic fusimotor activities were adjusted for each

simulation so as to produce outputs in which the inverted

pendulum was oscillating around an equilibrium point for the

whole simulation duration. For Model 1 the values of static

(dynamic) fusimotor activities were 31.10 (33.30), 31.20 (33.30),

and 31.50 (33.60). Similarly, for Model 2 the values of static

(dynamic) fusimotor activities were set to 32 (33.80), 32 (33), and

31.70 (32.70).

Data Analysis
Several output variables were analysed in the present study: i)

Spike trains from MNs, INs and afferent fibres; ii) EMGs from the

TS muscles; iii) COM and COP anteroposterior displacements; iv)

Muscular torque; v) Muscle fibre lengths; vi) Joint angle and

angular velocity. These raw variables are available for download at

a public repository (Model 1 - http://dx.doi.org/10.6084/m9.

figshare.1027609; Model 2 - http://dx.doi.org/10.6084/m9.

figshare.1029084). Analyses were performed on 22.50-s duration

time series, so that the initial 5 s and final 2.50 s were removed

due to transient responses and data filtering (see below).

COM, COP, joint angle, angular velocity, muscle fibre length,

and torque time series were detrended and downsampled to

2 kHz. In order to compare model behaviour with experimental

data recorded with force plates, time- and frequency-domain

metrics were estimated from the COP, for instance, RMS, MV

and 50% power frequency [42]. Power spectra were estimated by

Welch’s method. EMGs were downsampled to 2 kHz, rectified,

and lowpass filtered at 2 Hz (zero-phase fourth-order Butterworth

filter).

Table 6. Sensory feedback parameters adopted in the model.

Parameter Value Unit

Conduction velocity: Ia afferents{ 62–67 m/s

Conduction velocity: Ib afferents{ 56–62 m/s

Conduction velocity: type II afferents{ 30–35 m/s

Connectivity: Ia afferents to MNs (homonymous muscle) 80 %

Connectivity: Ia afferents to MNs (synergist muscle)` 15 %

Connectivity: Ia afferents to INs 70 %

Connectivity: Ib and type II afferents to INs 30 %

Connectivity: Ia inhibitory INs to MNs 15 %

Connectivity: Ib inhibitory INs to MNs 10 %

Connectivity: group II excitatory INs to MNs 20 %

Maximum conductance: Ia afferents to MNs 600 nS

Maximum conductance: Ia afferents to INs 600 nS

Maximum conductance: type II afferents to INs 450 nS

Maximum conductance: Ib afferents to INs 300 nS

Maximum conductance: INs to MNs 300 nS

{These values varied linearly along the bundle of sensory afferents.
`There is no connection between Ia afferents from MG and SO MNs [58].
doi:10.1371/journal.pcbi.1003944.t006
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Similar to the studies reported in [9,19,43], cross-correlation

analysis was performed between COM and COP time series, as

well as COP and EMGs. In addition, similar to the analysis

reported in [29], correlation coefficients were computed between

COM and muscle fibre lengths. For the latter analysis COM and

muscle fibre length time series were binned to 3-s duration

intervals (without overlap) so that the correlation coefficients were

calculated for each bin (see Figure 7).

In order to quantify the degree of intermittency of a given

muscle, the activation ratio of individual MUs was measured. This

ratio was calculated as the percentage of time a given MU had

interspike intervals lower than 250 ms [16]. An activation ratio

equal to 0 indicates that the MU was inactive during the whole

simulation time, whereas a ratio equal to 1 indicates a continuous

activity. Therefore, lower activation ratios represent an intermit-

tently discharging MU. Additionally, phase plots were constructed

to evaluate the MU recruitment during quiet standing. Recruit-

ment phase plots were constructed by binning joint angle, angular

velocity, muscular torque and spike trains in 100-ms non-

overlapping windows. Within each window, the number of

recruited MUs was counted and a circle with diameter propor-

tional to the counting number was plotted in 2-dimension angle-

velocity (see Figure 6A) or angle-torque graphs (see Figure 6B).

Data from the three simulations were pooled together in the same

phase plot. A similar analysis was performed in [14].

When applicable, statistical analysis was performed with a

significance level set at 0.05. All analyses were performed in

Matlab (The MathWorks Inc) and SPSS Statistics (IBM Corp).

Supporting Information

Supporting Information S1 Frequency response of mus-
cle model. This supporting information file provides additional

validation data for the muscle model.

(PDF)
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