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Abstract

Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal
immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic
stress interferes with bacterial community structure (specifically, a-diversity) and the integrity of the intestinal barrier. These
interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-a. Chronic stress, however,
produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-a,
exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release
mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent
on the commensal bacteria, and more specifically, lipopolysaccharide (LPS) shed from Gram-negative intestinal commensal
bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using
endotoxin inhibitor (EI) attenuates increases in some (inflammasome dependent, IL-1 and IL-18), but not all (inflammasome
independent, IL-6, IL-10, and MCP-1) inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock
stressor. Acute stress did not impact a- or b- diversity measured using 16S rRNA diversity analyses, but selectively reduced
the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced
inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and
chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1b and IL-18 responses may implicate
the inflammasome in this response.
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Introduction

The enteric mucosal immune system is a unique immunological

site that must maintain a balance between responding to harmful

pathogens and avoiding inappropriate immune responses to food

or symbiotic bacteria. During a brief developmental period,

ecological secession culminates in a relatively stable community of

commensal bacteria [1]. Regular interactions between the mucosal

immune system and these bacteria are critical for proper

regulation of mucosal as well as systemic immune function [2–

4]. Moreover, disruptions to the mucosal environment such as

changes in barrier function or microbial composition can lead to

severely dysregulated immunity [5,6].

Several diverse factors may impact the mucosal barrier or the

composition of the commensal bacteria including antibiotic use

[7,8], changes to diet or hygiene [7,8], and activation of the stress

response [9–14]. Dense sympathetic innervation of the intestine

[15], and stress-inducible, localized mast cell degranulation [5],

could facilitate stress-evoked changes to both the composition of

the commensal bacteria [9,11,16,17] and the integrity of the

intestinal barrier [13,18,19]. Importantly, stress-induced changes

to the intestinal barrier or the composition of the commensal

bacteria appear to drive some aspects of stress-evoked mucosal and

even systemic immune activity. Stress-induced disruptions to the

mucosal barrier, for example, are linked to increased serum

cytokine levels including tumor necrosis factor a (TNFa) [20].

Similarly, reducing the commensal bacteria via antibiotic admin-

istration attenuates chronic or repeated stress-induced enhance-

ments in splenic macrophage activity [18] and circulating levels of

the cytokine interleukin-6 (IL-6) [1].

Exposure to stressors, however, evokes a broad cytokine and

chemokine response beyond the few cytokines that manipulations

to the mucosal environment have been shown to modulate. Stress,

for example, increases circulating concentrations of several

inflammatory proteins including not only TNFa and IL-6, but

also interleukin-1b (IL-1b) [21–23], interleukin-18 (IL-18) [21],

interleukin-10 (IL-10) [24], and monocyte chemotactic protein-1

(MCP-1) [25–27]. Importantly, these and other cytokines operate

in networks with other inflammatory proteins to achieve immu-

nological effects [24]. Moreover, activation, synthesis, release, and
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mechanisms of various stress-responsive cytokines and chemokines

are different and could vary in their modulation by the intestinal

bacteria. Multiple stress-responsive cytokines must therefore be

considered when investigating the role of intestinal bacteria in

stress-induced alterations in immune activation.

Furthermore, previous studies implicating changes to the enteric

mucosal immune system in stress-evoked immune activity focus on

chronic or repeated stressors such as social defeat or repeated

restraint [1]. These stressors not only activate the stress response,

but can produce long-term changes to metabolic processes [28],

feeding [29], and grooming behavior [30], which could themselves

influence immune function or the role of intestinal bacteria in

stress-evoked immune activation. Stress-evoked cytokine and

chemokine secretion occurs in response to acute stressors. Thus

the acute stress response itself might affect the production of these

cytokines independent of other stress-evoked long-term adapta-

tions. Understanding the role of commensal bacteria in the acute

stress-induced production of a broad range of inflammatory

proteins could provide important new information about how

stress affects specific immunological pathways.

We therefore tested the hypothesis that acute stress-induced

immune modulation depends on commensal bacteria. We reduced

commensal bacteria using antibiotics, exposed rats to an acute tail

shock stressor, and measured cytokine and chemokine production.

Alterations in gut microbiota composition can influence immune

function. A second goal was to test if exposure to an acute stressor

would produce changes in microbiota diversity measured using

16S rRNA diversity analyses. Finally, the mechanism by which the

commensal bacteria communicate with the immune system during

stressor exposure, including acute stressor exposure, remains

unknown. LPS, a microbe-associated molecular pattern (MAMP),

is found in the cell membrane of some commensal bacteria and

can increase in the circulation [19] following intestinal barrier

disruption as occurs with chronic stress. Thus a third goal was to

determine whether LPS is an important signaling molecule for

communication between commensal bacteria and the immune

system. We administered endotoxin inhibitor (EI) to block LPS,

and measured circulating cytokines and chemokines after acute

stress. Our results make several novel contributions to the

literature in that they reveal an important role for intestinal

bacteria in acute stress-induced immune activation, and support

the presence of LPS-mediated signaling from the commensal

bacteria in stress-induced cytokine and chemokine production.

Furthermore, the results may reveal details of the signaling

pathway underlying stress-evoked cytokine and chemokine pro-

duction and could support the future development of therapeutics

designed to manipulate stress-induced immune activity.

Methods

Subjects and Housing
Adult male Fischer 344 rats (240–260 g) were divided equally

into four groups crossing stress and antibiotic (N = 64) or stress and

EI administration (N = 32). The Fischer Rat is a highly stress

responsive inbred rat, and was chosen for these experiments as the

stress response is robust and consistent across animals allowing us

to use fewer animals per group. To characterize the impact of

stress on the commensal bacteria, rats (N = 25) were divided into 3

groups to examine the effect of stress both immediately and

24 hours following stressor termination. All rats were maintained

on a 12:12-h light-dark cycle (lights on from 0700 to 1900) in a

specific pathogen free environment. Animals were allowed two

weeks to acclimate to the colony room prior to any experimental

manipulation. Rats were handled briefly each day for 1 week

before the start of the study. All animals were housed in Plexiglas

Nalgene cages and allowed ad libitum access to food (Harlan

Laboratories, Denver, CO) and water. Colony room temperature

was maintained at 23uC. The care and treatment of the animals

were in accordance with protocols approved by the University of

Colorado Institutional Animal Care and Use Committee.

Stress
On the day of the experiment, animals either remained in their

home cages (Control) or were exposed to 100, 1.5 mA, 5-second,

intermittent, (average trial interval = 60 seconds+/225 seconds)

inescapable tail shocks (Stress) as previously described [24,35–37].

During the stress procedure, rats were placed in a Plexiglas

restraining tube (23.4 cm long, 7 cm diameter). Electrodes were

then placed across the tail that protruded from the back of the

shock tube. The shocks were administered by an automated shock

system (Precision Calculated Animal Shocker; Colbourne Instru-

ments). This tail shock procedure is a well-established model of

acute stress that has been thoroughly characterized in terms of

both the stress response and the immune response. To examine

the role of the commensal flora in an immune response to an acute

stressor we selected this model of stress for its robust impact on

immune function [24,31–34]. Stress occurred between 0730 and

1130 to avoid differences in cytokine and chemokine production

due to circadian rhythms. Immediately after termination of stress,

all animals were sacrificed via rapid decapitation unless otherwise

noted.

Quantification of the stress response
Because the duration, intensity, and chronicity of a stressor

determines the immunological consequences of a stressor exposure

[35,38,39], and because the absence of the commensal bacteria in

germ-free rodents modulates HPA responses after stress [40], we

measured two important markers of activation of the stress

response to provide a characterization of tail shock. Corticosterone

and spleen weights were measured to demonstrate activation of the

stress response. Corticosterone is a measure of hypothalamic-

pituitary-adrenal axis (HPA) output, and reductions in spleen

weight are directly proportional to sympathetic nervous system

activity. Corticosterone was measured in 96-well microtiter plates

using commercially available ELISAs in accordance with manu-

facturer’s instructions (Enzo Life Sciences). Optical densities were

measured using a SpectraMax Plus 354 plate reader (Molecular

Devices) and concentrations were analyzed using a four-parameter

curve fitting software (SoftMax 5.4.1). Spleens were harvested

aseptically and weighed immediately.

Antibiotic Administration
For 4 days prior to Stress rats received either drinking water plus

4.0 mg/ml streptomycin and 2.0 mg/ml penicillin g (antibiotic) or

drinking water alone (water) ad libitum as previously described

[41,42]. Antibiotics were administered in the drinking water to

avoid the potential stress-response associated with other delivery

methods such as oral gavage [43,44]. The current antibiotic

regimen was selected for its broad-spectrum antibacterial effects

and because it is consumed by the rats without the addition of any

flavoring or sweetener. Each morning, antibiotic solution was

replaced because penicillin G has a short half-life at room

temperature. Water bottles were weighed daily to estimate water

intake of all rats and ensure equivalent doses between animals.

Body weights were recorded and fecal matter was examined to

monitor sickness or diarrhea in rats receiving antibiotics.

Commensal Bacteria/MAMPs in Stress-Evoked Immunity
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Endotoxin Inhibitor Administration
On the day of Stress, EI was prepared by dissolving 1.0 mg/ml

of EI into sterile PBS, which was stored on ice in the dark until use.

Fifteen minutes prior to Stress, rats received an intraperitoneal

injection (i.p.) of either 1.0 mg/kg EI (Bachem) or PBS alone. This

dose was adapted from previous investigations demonstrating that

this concentration of EI was sufficient to reduce LPS activity

[45,46]. The time between the injection of EI and the start of Stress

was necessary to achieve maximal efficacy of the drug based upon

the short half-life of EI.

Sample Collection
Immediately following sacrifice, whole blood was collected in

EDTA coated vacutainers using a polypropylene funnel and

centrifuged at 30006g for 15 minutes at 4uC to obtain plasma

samples. Fecal samples were collected from each animal imme-

diately prior to the beginning of stress in sterile, media free, dual

culture swabs (Becton Dickinson). Additional samples were taken

immediately following termination of stress and from animals

24 hours following the termination of stress in the same manner.

Following collection, all samples were frozen at 280uC.

Quantification of Bacteria
In order to confirm the efficacy of our antibiotic regimen, fresh

fecal samples were collected from a subset of rats immediately

prior to the beginning of stress. These samples were homogenized

in 2.0 ml PBS and plated at several dilutions on nutrient agar.

Plated samples were allowed to incubate at 37.0uC for 48 hours.

Following incubation, colony forming units (CFU) of bacteria were

counted, and dilution-corrected averages were recorded. Although

many anaerobic bacteria will not grow on nutrient agar, this

media was selected because it grows both Gram-positive and

Gram-negative bacteria. Because the selected antibiotic regimen is

broad spectrum, and targets both aerobic and anaerobic bacteria,

reduced CFU counted on nutrient agar confirms effective

reduction of commensal bacteria by the antibiotic regimen.

Endotoxin Measurement
In a separate experiment, whole blood was collected from Stress

and Control rats in endotoxin free tubes. After 1 hr at room

temperature, these samples were centrifuged at 30006g for

15 min at 4.0uC to separate serum. LPS was quantified in serum

using a Limulus amebocyte lysate (LAL) assay per manufacturer’s

instructions (Lonza).

16S rRNA microbial community analysis
Fecal samples and cecal contents were collected and prepared

for sequencing using previously established protocols [47,48].

Briefly, the MoBio 96 htp PCR clean up kit was used to triplicate,

combine, and clean each sample. The samples underwent the

PCR reaction with both forward and reverse primers (F515/R806)

n=8

Figure 1. Exposure to an acute stressor significantly increases circulating corticosterone. The increase in circulating corticosterone is
typical of acute activation of the hypothalamic-pituitary-adrenal axis such as that which occurs as part of activation of the stress response. Neither
antibiotics (A) nor endotoxin inhibitor (B) impacted the corticosterone response to tail shock. (*p,0.05).
doi:10.1371/journal.pone.0050636.g001

Figure 2. Exposure to an acute stressor causes significant splenic atrophy. This increase is not impacted by either antibiotics (A) or
endotoxin inhibitor (B). Splenic atrophy is typical of acute activation of the sympathetic nervous system such as that which occurs as part of
activation of the stress response. (*p,0.05).
doi:10.1371/journal.pone.0050636.g002

Commensal Bacteria/MAMPs in Stress-Evoked Immunity
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to target the V4 variable region of the 16S rRNA. The reverse

primer contained an error-correcting 12-base Golay code allowing

correct demultiplexing of ,1,500 samples even when sequencing

introduces errors in the barcode region. After gel purification and

ethanol precipitation to remove PCR artifacts, a composite sample

containing equimolar ratios of the amplicons were sequenced with

the Illumina HiSeq 2000 (average sequences per sample

34,664613,577 standard deviation (SD)). The open-source

software package QIIME 1.3.0 [49] was used to process the

sequences and conduct statistical analysis. Sequences were

clustered into operational taxonomic units (OTUs) based on

97% sequence similarity using Uclust [50]. Taxonomy was

assigned to OTUs using the Ribosomal Database Project classifier

[51] against the GreenGenes 16S rRNA database [52].

Alpha diversity of samples was assessed with the Phlyogenetic

Diversity metric, and results confirmed with Chao1 and observed

species metrics (data not shown). Each sample was randomly

subsampled 10 times, without replacement, at sequence depths

from 2,000 to 30,000 sequences per sample at steps of 2,000

sequences per sample. The error bars on graphs depicting alpha

diversity measures indicate the range of alpha diversity values at

each sampling depth. ANOVA was used to determine whether

any bacterial taxa significantly changed in abundance as a result of

stress, with a p-value ,0.05 following false discovery rate (FDR)

correction.

Cytokine measurement
Circulating concentrations of cytokines (IL-1b, IL-6, IL-10,

MCP-1, IL-18, IL-15) were measured from plasma in 96-well

microtiter plates using commercially available ELISAs in accor-

dance with the manufacturer’s instructions. IL-1b, IL-6, and

MCP-1 were measured in ELISAs from R&D Systems. IL-10 and

IL-18 were measured in ELISAs from Invitrogen. Optical densities

were measured using a SpectraMax Plus 354 plate reader

(Molecular Devices) and concentrations were analyzed using a

four-parameter curve fitting software (SoftMax 5.4.1).

Statistical Analyses
A two-tailed independent t-test was used to determine whether

antibiotic affected numbers of colony forming units of commensal

gut bacteria. Two-way repeated measures analyses of variance

(ANOVA) were used to test for differences body weight between

all groups of rats. Two-way ANOVAs were run to analyze the

effect of stress or antibiotic on individual cytokines and

chemokines. Data points were treated as outliers if they failed

Grubb’s test for outliers [53] and were also recorded as affected by

experimental procedures by the experimenter. Data are presented

as means 6 the standard error of the mean. P,0.05 was

considered statistically significant.

Results

Single exposure to tail shock activated the stress
response

Consistent with prior work using this stressor [54–56], exposure

to acute tail shock stress resulted in increased plasma corticoste-

rone over control levels (p,0.001) (Figure 1). Reduced spleen

weight, indicating sympathetic nervous system activity [57,58],

was observed following stress independent of antibiotic or EI

treatment (p,0.001) (Figure 2). These values represent large

changes from baseline and are indicative of a severe acute stressor.

Figure 3. The efficacy of antibiotic administration is shown by
successful reduction of colony forming units of bacteria in the
absence of gross physiological changes such as a reduction in
body weight gain. Figure 3A shows colony forming units of bacteria
cultured on nutrient agar were significantly reduced in rats receiving
antibiotic treatment. Although many species of commensal bacteria
cannot be cultured on nutrient agar, the reduction produced by
antibiotics is indicative of successful depletion of commensal bacteria
by antibiotics, as neither the agar or the antibiotic regimen are specific
for any particular group of bacteria. (*p,0.05). Figure 3B: depicts body
weight changes across antibiotic treatment regimen. Body weights
increased in all groups across time and were unaffected by antibiotic
treatment. (*p,0.05).
doi:10.1371/journal.pone.0050636.g003

Figure 4. Stress evokes a significant increase in circulating
concentrations of LPS. The systemic or circulating increased
concentration of LPS is indicative of leakage of the commensal bacteria
and their byproducts. (*p,0.05).
doi:10.1371/journal.pone.0050636.g004
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Antibiotic administration effectively reduced commensal
bacterial load

The number of colony forming units measured in the fecal

samples of rats receiving antibiotics was significantly lower than

control rats (p,0.001) (Figure 3A). In fact, in all but one rat, the

number of CFU observed in rats receiving antibiotics was below

the detectable limit. This decrease in CFU count suggests that

antibiotic administration significantly reduced the commensal

bacteria, as expected. No decrease in body weight was observed,

suggesting that antibiotics did not create other gross physiological

changes that could confound the interpretation of the results

(Figure 3B).

Stress increased circulating LPS
Levels of LPS in the circulation are quite low at baseline

reflecting adequate barrier function of the mucosal surfaces that

contain the commensal flora. Exposure to acute stress increases the

concentration of LPS measured in plasma (p,0.01) (Figure 4).

Levels of LPS measured in the circulation changed from

0.270860.0361 EU to 0.708460.1700 EU possibly reflecting

changes to the mucosal environment in response to stress.

Acute-stress alters the relative abundance of Prevotella
but does not impact overall diversity

16S rRNA analysis can reveal the relative abundance of all

genera in the microbiome (including genus-level clusters of DNA

sequences that have not yet been formally described). Stress caused

a decrease in the relative abundance of a single genus, Prevotella.

The decrease was detectable immediately following stress

(p,0.05), and persisted for 24 hours after stressor termination

(p,0.01), in fecal samples taken from the colon (Figure 5a). The

relative abundance of Prevotella also decreased in cecal samples

(p,0.01), although this decrease was only statistically significant

24 hrs after stressor termination (Figure 5b). There was no

change a-diversity (the mean species diversity on a local scale, such

as within a fecal sample) created by acute tail shock stress

(Figure 5c). Similarly, stress did not impact b-diversity (differen-

tiation in mean species diversity between collection sites).

Antibiotic administration attenuated the production of
some cytokines

Stress increased circulating levels of IL-1b (p,0.001), IL-6

(p,0.001), IL-10 (p,0.001), IL-18 (p,0.001), and MCP-1

(p,0.001) (Figure 6). Administration of antibiotics attenuated

the stress-induced production of IL-1b (p,0.01) and IL-18

(p,0.05) (Figure 6). However, administration of antibiotics failed

to attenuate the stress-induced production of IL-6, IL-10, and

MCP-1 (Figure 6). Interestingly, although antibiotics reduced the

impact of stress on some cytokines, they increased circulating levels

of IL-6 following stress (p,0.05).

EI administration attenuated the production of the same
cytokines as antibiotics

Stress again increased circulating levels of IL-1b (p,0.001), IL-6

(p,0.001), IL-10 (p,0.001, IL-18 (p,0.001), and MCP-1

(p,0.001) (Figure 7). As with antibiotic administration, admin-

istration of EI attenuated the stress induced production of IL-1b
(p,0.01) and IL-18 (p,0.05) (Figure 7). Administration of EI

also failed to attenuate the stress-induced production of IL-6, IL-

10, and MCP-1 (Figure 7).

Discussion

The results support the hypothesis that commensal bacteria and

LPS release contribute to stress-evoked increase in cytokines and

chemokines in the blood. Adult male rats exposed to acute tail

shock displayed robust elevations in plasma concentrations of

several cytokines and chemokines including IL-1b, IL-6, IL-10, IL-

18, and MCP-1. The administration of oral antibiotics or

endotoxin inhibitor reduced the stress-induced elevation of IL-

Figure 5. The impact of stressor exposure on the commensal
flora. Figure 5A depicts the relative abundance of Prevotella decreased
in fecal samples immediately following termination of the stressor.
These changes persisted for at least 24 hours after the rats were
returned to their home cages. (*p,0.05). Figure 5B shows the relative
abundance of Prevotella decreased in cecal content samples. Although
there was an immediate trend following the termination of the stressor,
the difference in the relative abundance of Prevotella was only
significant 24 hours later (*p,0.05). Figure 5C reveals no effect of
stress on a-diversity in fecal samples. Cecal samples similarly showed no
changes in overall diversity attributable to stress (data not shown).
doi:10.1371/journal.pone.0050636.g005
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1b and IL-18, but interestingly, not IL-6, IL-10, or MCP-1. Thus,

another signal beyond the commensal bacteria or released LPS is

sufficient for synthesis and release of cytokines and chemokines

such as IL-6, IL-10, and MCP-1 following stressor exposure.

Chronic stressors can create shifts in commensal bacterial

diversity [9], and this change can impact peripheral immunity, as

well as render the intestine vulnerable to pathogenic bacteria

infection. Our results suggest that although intact commensal

bacteria are necessary for stress-evoked increases in IL-1b and IL-

18, these increases are not correlated with decreases in overall

bacterial community diversity. Exposure to acute tail shock did not

impact overall diversity (either a-diversity or b-diversity) in either

fecal or cecal samples. Tail shock did, however, reduce the relative

abundance of Prevotella. Prevotella is a highly prevalent genus of

Gram-negative bacteria in the normal commensal bacterial

community and has been reported to drive the overall composition

of the flora [59]. Changes in the relative abundance of this genus

may have broad physiological and immunological consequences.

Figure 6. Stress evokes a significant increase in circulating IL-1b, IL-6, IL-10, IL-18, and MCP-1. Administration of antibiotics significantly
attenuated the impact of stress on IL-1b and IL-18. Antibiotics, however, did not attenuate IL-10 or MCP-1, and actually increased levels of circulating
IL-6. (*p,0.05 vs. control, water; F p,0.05 vs. stress, water).
doi:10.1371/journal.pone.0050636.g006

Figure 7. Stress evokes a significant increase in circulating IL-1b, IL-6, IL-10, IL-18, and MCP-1. Administration of endotoxin inhibitor
significantly attenuated the impact of stress on IL-1b and IL-18. Endotoxin inhibitor, however, did not attenuate IL-6, IL-10, or MCP-1. (*p,0.05 vs.
control, water; F p,0.05 vs. stress, water).
doi:10.1371/journal.pone.0050636.g007

Commensal Bacteria/MAMPs in Stress-Evoked Immunity
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Reduced abundance of Prevotella can impact immunological

inflammatory disease states such as inflammatory bowel disease

[60], eczema [61], and rheumatoid arthritis patients [62]. Thus

the stress-induced reduction in Prevotella may reduce anti-

inflammatory status of the mucosal immune system and potentially

contribute to the pro-inflammatory state produced by stress.

Alternatively, the stress-induced reduction in Prevotella may result

from death of these bacteria and which would result in the release

of pro-inflammatory MAMPs, such as LPS as observed following

stressor exposure.

Another goal of the current studies was to determine the specific

role of LPS as a signaling molecule important for communication

between commensal bacteria and the immune system. The current

data support a signaling pathway involving LPS, released from the

commensal bacteria in stress-induced cytokine and chemokine

responses. Because stress increased circulating concentrations of

LPS, leakage of LPS from the commensal bacteria may be

important in stress-induced cytokine and chemokine production.

Inhibiting LPS by administering EI produced the same effects as

antibiotic administration, reducing stress-induced increases in IL-

1b and IL-18 but not attenuating IL-6, IL-10, or MCP-1.

Although the magnitude of the EI induced attenuation of stress

induced IL-1b and IL-18 production was smaller than that

observed with antibiotics, EI only inhibits the signaling action of

LPS, whereas antibiotic treatment should also reduce other

MAMPs such as peptidoglycans [63]. As in the antibiotic study,

another signal was sufficient for stress-induced synthesis and

release of IL-6, IL-10, and MCP-1.

The present study goes beyond prior work in several important

respects. First, it examined a greater number of cytokines and

chemokines than previous investigations, providing a broader view

of the immune response. Second, it demonstrated that the

commensal bacteria have a role in stress-induced inflammatory

protein production following a single exposure to an acute stressor.

Third, it described no effect of acute stressor exposure on intestinal

diversity and a selective reduction in Prevotella. And finally, for the

first time, it directly examined the mechanism by which the

commensal bacteria (via LPS release) influence stress-induced

cytokine and chemokine production. Our results thus reveal a

novel role for the gut commensal bacteria in selective modulation

of inflammatory proteins. This selectivity of the flora to impact IL-

1b and IL-18 may help to fully reveal the mechanisms by which

stress and the commensal flora impact immune function.

Recent studies highlight several features unique to the synthesis

and release of IL-1b and IL-18 that are not necessary for the

production of other cytokines and chemokines such as IL-6, IL-10,

or MCP-1 [64]. The unique features in the synthesis pathways of

these proteins result in different signaling requirements for these

two families of inflammatory proteins [65] and could, thus, explain

the selectivity of the antibiotic or EI induced attenuation in the

stress-induced cytokine and chemokine response. Of particular

importance, while IL-6, IL-10, MCP-1, and the majority of other

cytokines and chemokines are synthesized in their releasable form,

IL-1b and IL-18 are synthesized as inactive precursors [64,66].

Processing, therefore, is required in the complete synthesis and

release pathway for IL-1b and IL-18. This post-translational

processing is predominately mediated by caspase-1, an enzyme

activated upon the assembly of a multimeric signaling complex

called the inflammasome [67–69]. Recent data suggests that the

inflammasome is involved in stress-evoked cytokine and chemo-

kine production [70]. Given that antibiotics and EI selectively

affect IL-1b and IL-18, these data suggest an interaction between

the stress response, the commensal bacteria, and the inflamma-

some in stress-induced cytokine and chemokine production.

Investigations examining the inflammasome have highlighted

the necessity of two signals for inflammasome assembly or

activation. The first signal leads to synthesis of components of

the inflammasome, as well as pro-IL-1b, and pro-IL-18 [71,72].

Inflammasome independent cytokines are also completely synthe-

sized in response to a single signal [73]. The second signal leads to

final inflammasome assembly and caspase-1 activation [67,74]. In

vitro, the requirement for two signals has been demonstrated using

a MAMP and a danger associated molecular pattern (DAMP) such

as ATP, Hsp72, Uric Acid, or even elevated concentrations of

glucose [65,71,75]. Administration of a MAMP [65,76,77] or

DAMP [78] alone is not capable of activating the inflammasome,

however, co-administration of both ligands is sufficient for

inflammasome and cytokine production.

Although the exact nature of the requirement for the

combination MAMPs and DAMPs is unknown, neutralizing only

a single MAMP was sufficient to selectively suppress the

inflammasome dependent cytokines in vivo. Because MAMPs from

the commensal bacteria were only necessary for stress-induced

synthesis of inflammasome dependent cytokines, MAMPs likely

Figure 8. Exposure to a stressor activates the hypothalamic-
pituitary-adrenal axis and sympathetic nervous system result-
ing in changes to the commensal flora (including a decrease in
prevotella) and the release of microbe associated molecular
patterns (MAMPs) as well as the the release of danger
associated molecular patterns (DAMPs) either actively or via
cell death. DAMP and MAMP signals then converge upon the
inflammasome to yield IL-1b and IL-18 production. DAMPs may also
act to drive responses from inflammasome independent inflammatory
proteins including IL-6, IL-10, and MCP-1.
doi:10.1371/journal.pone.0050636.g008
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provide the second signal necessary for inflammasome activation.

Although speculative, it seems probable that in vivo after exposure

to an acute stressor, DAMPs likely act as the first signal in stress-

evoked cytokine and chemokine production. DAMPs such as

Hsp72 and uric acid are known to increase in response to many

stressors [79–81] including tail shock [55,56,70,82–84]. Further-

more, DAMPs, as well as stress-evoked IL-6, IL-10, or MCP-1

responses are not impacted by either antibiotic or EI treatment.

Thus, DAMPs may underlie the stress-induced release of the

inflammasome independent cytokines and chemokines and hence,

act as the first signal in the inflammasomal pathway of stress-

evoked cytokine and chemokine production. Other secretions of

the stress response such as catecholamines may also act as the first

signal in stress-evoked cytokine and chemokine production

[85,86].

The present study is the first to demonstrate that release of

stress-inducible inflammasome dependent inflammatory proteins

depend on commensal bacteria. It is also the first to establish that

commensal bacteria mediate acute stress-induced immune activity,

and to directly demonstrate a role for MAMPs in this process.

Each of these findings provides a novel mechanistic description of

how exposure to stressors elevates blood concentrations of

cytokines and chemokines. Furthermore, the aggregate of these

findings alludes to a novel, inflammasomal pathway for stress-

induced cytokine and chemokine production as summarized in

Figure 8. Further examination of the interplay between the

commensal bacteria and the inflammasome is important and may

result in the development of therapeutic candidates that can

suppress the cytokine storm evoked by severe stressors or trauma

[70,87,88].
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