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Abstract

Traditional Chinese medicine (TCM) has been practiced for thousands of years for treating human diseases. In comparison
to modern medicine, one of the advantages of TCM is the principle of herb compatibility, known as TCM formulae. A TCM
formula usually consists of multiple herbs to achieve the maximum treatment effects, where their interactions are believed
to elicit the therapeutic effects. Despite being a fundamental component of TCM, the rationale of combining specific herb
combinations remains unclear. In this study, we proposed a network-based method to quantify the interactions in herb
pairs. We constructed a protein–protein interaction network for a given herb pair by retrieving the associated ingredients
and protein targets, and determined multiple network-based distances including the closest, shortest, center, kernel, and
separation, both at the ingredient and at the target levels. We found that the frequently used herb pairs tend to have shorter
distances compared to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect neighboring
proteins in the human interactome. Furthermore, we found that the center distance determined at the ingredient level
improves the discrimination of top-frequent herb pairs from random herb pairs, suggesting the rationale of considering the
topologically important ingredients for inferring the mechanisms of action of TCM. Taken together, we have provided a
network pharmacology framework to quantify the degree of herb interactions, which shall help explore the space of herb
combinations more effectively to identify the synergistic compound interactions based on network topology.
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INTRODUCTION
The pathogenesis and progression of many complex diseases
are complicated such that the therapeutic effect of a single
drug may be modest and further hampered by various side
effects or drug resistance mechanisms [1]. Meanwhile, the
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pharmaceutical industry has begun to face the challenge of
‘more investments, fewer drugs’ in drug discovery. To reach the
goal of better treatment efficacies and fewer side effects, there
has been an increasing interest to investigate the synergistic
effects of drug combinations [2].
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Although high-throughput phenotypic assays have been
developed to screen potential drug combinations, an exhaustive
search for the top hits from the huge combinatorial space arising
from numerous agents remains a daunting task [3]. In contrast,
computational approaches that leverage the rapid accumulation
of pharmacological data may provide a cost-effective alternative
to enable more systematic analyses of drug combinations.
In particular, the advent of ‘omics’ technologies allow us to
measure the drug perturbations in biological pathways and
molecular interactions, resulting in an emerging systems-
level approach called network pharmacology [4]. Instead of
looking for one drug which acts solely on an individual target,
multi-target drugs or drug combinations are more promising
to achieve sustainable clinical response as many complex
diseases have been shown to include multiple disease-causing
genes [5–8]. In replacing the concept of ‘magic bullet’, this
so-called network pharmacology paradigm requires accurate
computational models that in many cases, can be used to predict
an effective drug combination in order to perturb robustly
disease phenotypes via targeting multiple pathways [9]. Ideally,
such a drug combination should work synergistically to achieve
stronger therapeutic effects with reduced doses of individual
agents, so that the side effects may be minimized [9–11].

To understand drug combinations better, we may look into an
empirical paradigm of multi-component therapeutics known as
traditional Chinese medicine (TCM) to search for insights [12, 13].
Having been developed for over 3000 years, TCM is characterized
by the use of herbal formulae that usually consists of two or more
medicinal herbs, which are capable of systematically preventing
and treating various diseases via potentially synergistic herb
interactions [14, 15]. Herb pairs involve a unique combination
of two specific herbs, which form the most fundamental com-
ponent of a multi-herb therapy [16]. By adding more herbs, a
formula may be used to treat different diseases with greater
flexibility [17–19]. For instance, Coptis chinensis (Huang Lian, used
part: rhizome) and Evodia rutaecarpa (Wu Zhu Yu, used part: fruit)
have been used together widely as formula ZuojinWan in clinical
prescriptions for treating gastric diseases as a basic herb pair
[20]. Depending on the additional herbs that are mixed with C.
chinensis and E. rutaecarp, they have been used for many disease
indications, including the inhibition of inflammation [21], as
well as treating hypertension [22] and obesity [23].

Considering the important role of herb pairs in the devel-
opment of TCM, it might be of great significance to investigate
the rationale of why certain herb pairs are commonly used for
treating a particular disease [24, 25]. However, there exists very
limited understanding at the molecular level on how the herb
pairs work synergistically to achieve stronger therapeutic effect
[12, 26, 27]. One of the major bottlenecks is that herb combination
is inherently more complex as herbs usually consist of multiple
ingredients. Recent studies suggested that synergistic effects
in herb combinations mainly rely on the interactions of their
ingredients, leading to boosted treatment effects compared to
single herbs [28]. One example is the cardio-protective effects
by the combination of Paeonol (isolated from the root cortex
of the Paeonia moutan [Syn Paeonia suffruticosa]) and Danshensu
(isolated from the root of the Chinese herb Salvia miltiorrhiza) [29].
Another example is the combination of icariin from aerial parts
of herb Epimedium brevicornum (Yin Yang Huo), berberin from the
bark of Phellodendron amurense (Huang Bai) and curculigoside from
rhizome of Curculigo orchioides (Xian Mao) in the Er-Xian decoc-
tion, which can produce synergistic effects on Osteoclastic bone
resorption [30]. Furthermore, ingredients within an herb might
also interact synergistically to induce pharmacological effects.
One example is the interaction of ginsenoside Rb1, ginsenoside

Rg1 and ginsenoside 20(S)-protopanaxatriol found in the root of
Panax ginseng, which can produce synergistic effects on their
antioxidant activity [31]. These individual studies on specific
herbs form the basis for developing a more systematic method to
model the interactions among TCM herbs at the molecular level,
which may hold the key to rationalize the herb combinations for
future drug discovery.

Recently, network pharmacology approaches have been
introduced for the study of drug interactions for a variety of
diseases [32, 33]. For example, Huang et al. [34] proposed a
novel tool called DrugComboRanker based on drug functional
network to prioritize potential synergistic drug combinations
and further validated their mechanisms of action in lung
adenocarcinoma and endocrine receptor positive breast cancer.
Cheng et al. [11] proposed a network-based methodology to
characterize the distance between two drugs according to their
target distributions in a protein–protein interaction network.
They demonstrated that clinically approved drug combinations
tend to have lower distance compared to random drug pairs,
and for a drug pair working synergistically for a given disease,
both of them need to hit the disease module but via non-
overlapping network neighborhood. Furthermore, a modularity
analysis of multipartite networks has suggested that network
modeling might be a promising method for understanding
the mechanisms of actions of traditional medicine [35]. With
the great success in understanding the interaction between
chemicals and diseases, network-based models warrant further
studies to make sense of the rationale of TCM herb interactions.

In this study, we hypothesized that network pharmacology
models on the underlying drug–target interactions behind the
herb combination may provide novel insights into herb pair’s
mechanisms of action, which are critical for the phenotypic-
based drug discovery from TCM [36–38]. We investigated the
frequencies of herb pairs that appear in the common TCM herb
formulas. We developed a network-based model to characterize
the distance of herbs within an herb pair in a protein–protein
interaction network. The model considered the interactions of
herbs at the herb, ingredient and target levels, and utilized five
distance metrics including the closest, shortest, separate, kernel
and center methods. In addition, area under curve (AUC) of
precision and recall (PR) as well as receiver operating charac-
teristics (ROC) were used to determine the best distance metric
for discriminating the most frequent herb pairs against non-
existing herb pairs. Finally, we found that a commonly used
herb pair tends to have smaller network distance compared
to non-existing herb pairs, suggesting that herb combinations
tend to achieve stronger protein–protein interactions. In addi-
tion, we found that the center ingredients of herbs tend to
play important roles. In a case study of an herb pair including
Astragalus membranaceus and Glycyrrhiza uralensis, we showed
that their network-based distance is significantly smaller than
random and further identified the center ingredients of the herb
pair. Taken together, the network modeling approach provides
a more systematic framework to characterize herb interactions
at the molecular level that may lead to the rationalization and
modernization of TCM herb combinations ultimately [27].

METHODS
Collection of herb pairs

We searched for existing herbal formulae from TCMID, a manu-
ally curated TCM database [39]. TCMID is by far one of the most
comprehensive TCM databases, including 46 914 prescriptions,
8159 herbs and 25 210 ingredients. The herbal formulae in TCMID
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Figure 1. Workflow of the network construction for herb pairs. Top frequent herb pairs were determined from existing herbal formulas. For each herb pair, the network

consists of three levels of interactions including herb–ingredient, ingredient–target and target–target interactions. The network proximity can be determined at either

the ingredient level or the target level by multiple metrics including the closest, shortest, separate, kernel and center distances. We aimed to determine the network

models that can separate the most frequent from the least-frequent herb pairs.

were extracted by text mining from ancient books and published
articles. More importantly, TCMID supports data download ser-
vice, which facilitates the effective integration of TCM data and
PPI data in our study. Therefore, for allowing a more systematic
analysis of the TCM herbs, we decided to use the data from
TCMID. After filtering out herbs and ingredients that are lack
of target information, 349 197 herb pairs were collected from 46
929 herbal formulae, including 4415 herbs, 4330 ingredients, 3171
targets, 17 753 herb-ingredient pairs as well as 25 050 ingredient-
target pairs. As the same herb pair may appear in multiple herbal
formulae, we considered the top 200 most frequent herb pairs
with target information for both herbs (frequencies between 358
and 3846) as a positive set (Figure 1, Supplementary Figure S1).
In contrast, we determined 10 000 randomly generated herb
pairs, out of which we considered 9459 herb pairs that were not

observed in the actual herbal formulae as a negative control data
set. Therefore, the positive set represents the common herb pairs
while the negative set represents the herb pairs that are not
used in any of the herbal formulae. To obtain an independent
validation set, we also collected 268 herb pairs that have been
considered as basic components of herbal formulae according
to traditional medicine literature [14, 16, 40].

Extraction of interactions between herbs, ingredients
and targets

We collected the herb-ingredient information from the TCMID.
Herbs that lack ingredient information were not considered.
Similarly, ingredient compounds without structural information
were discarded, as they could not be modeled in the PPI network
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analysis. For the remaining ingredient compounds, their targets
were extracted from the STITCH database [41]. Target–target
interactions were extracted from a manually curated human
interactome including 243 603 PPIs and 16 677 proteins [11],
which are assembled from commonly used databases including
IntAct [42], InnateDB [43], PINA [44], HPRD [45], BioGRID [46], HI-
II-14_Net [47, 48], PhosphositePlus [49], KinomeNetworkX [50],
INstruct [51], SignaLink2.0 [52] and MINT [53]. These databases
cover a wide range of protein–protein interaction data derived
from experimental and computational approaches. All the inter-
actions were denoted as undirected edges in the network.

Network proximity models of herb pairs

The herb–herb distance can be determined by considering the
ingredients as the nodes, where for a pair of ingredients their
distance can be further determined from their target profiles in
the PPI network. Denote that I(A) = (a1, a2, . . . ) is the ingredient
set for a herb A, where for an ingredient a the set of targets is
T(a) = (t1, t2, . . . ). For another herb B, its ingredient set and target
sets are defined similarly. We applied five measures introduced
by Cheng et al. [11] to determine the network distance between
two herbs, including closest, separation, shortest, kernel and
center.

The closest distance is defined as:

dclosest
I(A)I(B) = 1∣∣∣∣I(A)

∣∣∣∣ + | ∣∣I(B)
∣∣ |

⎛
⎝ ∑

a∈I(A)

minb∈I(B)di
(
a, b

) +
∑

b∈I(B)

mina∈I(A)di(a, b)

⎞
⎠ , (1)

where di(a, b) is the distance between two ingredient nodes in
herb A and herb B, and ||I(A)|| and ||I(B)|| are the numbers of
ingredients for herb A and B, separately. For each ingredient in
herb A, we considered its distance with all the ingredient nodes
in herb B, and determined the minimal distance as its closest
distance. As shown in Equation (1), we determined the mean
closest distance for all the ingredients in A and B, and used it
as the closest distance dclosest

I(A)I(B) between the two herbs.
The separation distance is defined as the closest distance

between A and B, subtracted by the average closest distances
within A and B:

dseparation
I(A)I(B) = dclosest

I(A)I(B) −
dclosest

I(A)I(A) + dclosest
I(B)I(B)

2
(2)

The shortest distance sums up all the distances between
nodes in A and B, and then normalized by the product of their
sizes:

dshortest
I(A)I(B) = 1∣∣∣∣I(A)

∣∣∣∣× | ∣∣I(B)
∣∣ |

∑
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di
(
a, b

)
(3)

The kernel distance is defined as the average of exponent-
based pairwise distance, normalized by their relative network
sizes:

dkernel
I(A)I(B) = −1∣∣∣∣I(A)
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(4)

The center distance identifies the centers of A and B as the
nodes with minimal sum of distances, and then determines the
distance between the two centers:

dcenter
I(A)I(B) = di

(
centreI(A), centreI(B)

)
, (5)

where

centreI(A or B) = argminu∈I(A or B)

∑
b∈I(B or A)

di
(
b, u

)
(6)

The Equations (1–6) involve the calculation of distances for
two ingredients (a, b), for which we again have five options based
on their target profiles T(a) and T(b) including:
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(a,b) = 1∣∣∣∣T(a)
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dikernel
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dicenter
(a,b) = dt

(
centreT(a), centreT(b)

)
(11)

As we considered five distance methods that can be applied
at both the target and the ingredient levels, the network prox-
imity can be defined by an exhaustive combination of them,
resulting in 25 distance models in total. For example, a model
can be constructed using closest (ingredient) – closest (target)
distance, defined as the closest distance for two herbs at the
ingredient level:

dclosest
I(A)I(B) = 1∣∣∣∣I(A)
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where di(a, b) for ingredient a and ingredient b is:

diclosest
T(a)T(b) = 1∣∣∣∣T(a)

∣∣∣∣ + | ∣∣T(b)
∣∣ |

⎛
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⎞
⎠ , (13)

where dt(i, j) is the shortest path length between the two targets
in the PPI network [54].

Discrimination performance of the proximity distances

We utilized the area under the ROC curve (AUC) to evaluate
discriminative ability of the network proximity models for sep-
arating the top-frequent herb pairs and non-observed random
herb pairs. True positive rate and false positive rate were deter-
mined at different thresholds of network proximity value. To
obtain a balanced data set with an equal number of positive
and negative cases, we randomly selected two herbs as non-
observed herb pairs from the 4415 herbs for 200 times, resulting
in a set of 200 negative herb pairs for comparison. To determine
the average AUC scores, we repeated the procedure 50 times. For
the 268 literature-mined herb pairs (described in the section of
‘Collection of herb pairs’ as an independent validation set), we
also repeatedly generated 268 random pairs as negative control.
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Figure 2. Patterns of pairing for the top 10 most frequent herbs. The frequency of the herbs is shown in the top panel while the number of unique herbs that are

co-administrated with them is shown in the left panel. The numbers inside the heat map show the frequencies of their pairwise combinations.

A case study on modeling the combination
of Astragalus membranaceus and Glycyrrhiza uralensis

It is reported that the herb pair Huang Qi (the root of A. mem-
branaceus) and Gan Cao (the root and rhizome of G. uralensis) can
be used for liver fibrosis and cirrhosis treatment, while neither
A. membranaceus nor G. uralensis shows therapeutic effects when
used alone [55, 56]. Therefore, it is important to identify the
synergistic interactions of the ingredients underlying the herb
pair for treating liver diseases. To explore the mechanisms of the
herb pair, we constructed the herb–herb network based on their
ingredients and targets. We first evaluated whether the distance
between A. membranaceus and G. uralensis is different from the
expectation of a random herb pair. Furthermore, we identified
the center ingredients that are more likely to explain the synergy
of the two herbs. To explore the potential mechanism of action
for liver fibrosis of center ingredients, we collected all the targets
of center ingredients from STITCH and built up the minimum
local PPI network for human species. All the proteins in this
PPI network were used for pathway enrichment analysis using
enrichr [57]. We mainly focused on the enriched Liver disease
related pathways from KEGG 2019 (Human).

RESULT
Frequency of single herbs and herb pairs

There are 8159 herbs and more than 25 210 herb ingredients
in the TCMID database in total. However, after filtering out

herbs and ingredients that lack target information, 349 197 herb
pairs were collected from 46 929 herbal formulae, including
4415 herbs, 4330 ingredients, 3171 targets, 17 753 herb-ingredient
pairs as well as 25 050 ingredient-target pairs. Most of the herb
formulae (97.9%) contain less than 20 herbs, with an average of
4.93 (Supplementary Figure S1). The herbs with top 10 highest
frequencies are Gan Cao (root and rhizome of G. uralensis, 12,518),
Dang Gui (root of Angelica sinensis, 7417), Ren Shen (root of P.
ginseng, 7390), Bai Zhu (5259, root of Atractylodes macrocephala
[Syn. Atractylis macrocephala]), Huang Qin (4163, root of Scutel-
laria baicalensis), Fang Feng (4074, root of Saposhnikovia divaricata
[Syn. Ledebouriella seseloides]), Chuan Xiong (4007, rhizome of
Ligusticum chuanxiong [Syn. Ligusticum wallichii]), Fu Ling (3666,
sclerotium of Poria cocos), Chen Pi (3650, from the dried peel of
Pericarpium Citri Reticulatae) (Supplementary Table S1). G. uralensis
is extensively used as a major component in the 12 518 pre-
scriptions, supported by its various pharmacological activities
including anti-inflammatory, anti-oxidative, antidiabetic, hep-
atoprotective and memory enhancing activities [58]. A. sinensis
is widely applied for menstrual disorders by enhancing the
blood circulation, and also has been reported to have multiple
immunomodulation and anti-inflammation, as well as cardio-
cerebrovascular effects [40]. P. ginseng is commonly used as a
functional food with a long medical history, which has shown
efficacy in multiple diseases, such as anti-cancer, neurodegen-
erative disorders, insulin resistance and hypertension. Another
important effect of P. ginseng is maintaining homeostasis of the
immune system [59–61]. All the top three most frequent herbs
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Figure 3. Network distances for the top herb pairs when comparing with random herb pairs. ‘I’ stands for the ingredient-level distance methods and ‘T’ stands for the

target-level distance methods.

tend to activate the immune system, suggesting the importance
of activating the immune system when prescribing TCM. This
observation is consistent with the TCM theory, where these
herbs are usually called tonifying (adjuvant) herbs that supple-
ment and strengthen the treatment effects in addition to the
major herbs.

These high-frequency herbs also tend to show higher
chances to be combined with the other herbs (Figure 2). For
example, P. ginseng and G. uralensis appear together in 3846 of
46 929 herbal formulae, followed by the pair of A. sinensis and
G. uralensis that are co-administered in 2907 herbal formulae.
However, the majority of the 349 197 herb pairs (99.4%) occurred
in less than 100 herbal formulae. Only 163 herb pairs of the
remaining 1950 (0.6%) herb pairs showed a frequency higher
than 500 (Supplementary Figure S2).

As shown in Supplementary Figure S2, there is a sharp
decrease of herb pair frequency after 200. Therefore, we
considered those herb pairs with frequency larger than 200 to
be the top herb pairs. In the following analyses, we focused on
these top herb pairs and searched for their target and ingredient
information (Supplementary Table S2). These herb pairs involve
61 unique herbs, for which the average number of ingredients is
16.80. There is at least one common ingredient for 43% (86) of the
top 200 herb pairs, while only 2.08% of randomly generated herb
pairs share at least one ingredient (Supplementary Figure S3).
Use of common ingredients tends to be a strategy of TCM

prescription, as it was found that synergistic effects may be
achieved by affecting the same pathways with common or
similar compounds [62]. For example, Qiang Huo (the rhizome
or root part of Notopterygium incisum) and Du Huo (the root
part of Angelica pubescens f. biserrata) share 10 common ingre-
dients (including gamma-amin.yri., camphor, columbianetin, guaiol,
guanidinium, isoimperatorin, isopimpinellin, nodakenin, scopoletin and
osthole) and have appeared in 522 herbal formulas. At the same
time, different ingredients in these herb pairs may play various
roles, such as optimization of pharmacodynamics and/or
pharmacokinetics to improve therapeutic efficacy and/or reduce
toxicity and adverse reactions [17], which can be explained by
the ‘Jun-Chen-Zuo-Shi’ theory in TCM system [63]. For example,
the combination of cacalol from plant Cacalia delphinifolia and
paclitaxel extracted from the yew trees can significantly suppress
tumor growth and overcome chemo-resistance [64].

Network distance for top-frequent herb pairs

We modeled the interactions for an herb pair at two levels
including the ingredient and the target levels. For each level, we
considered five distance methods including closest, separation,
shortest, kernel and center. In the next step, we examined all
combinations of distance metrics in both levels, resulting in
25 (5∗5) distance models in total. We focused on the top 200
most frequent herb pairs and determined their network-based
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Table 1. Comparing the network proximity models. The P-values are determined by the difference between the top 200 herb pairs and random
herb pairs. Distances 1, 2, 3, 4 are the average distance for top 200 herb pairs, top 10 000 herb pairs, top non-overlapping 114 herb pairs and
random herb pairs, respectively

Ingredient-
level
distance

Target-level
distance

Distance 1 Distance 2 Distance 3 Distance 4 P-value AUROC AUPRC

Center Shortest 1.92 2.09 1.81 2.41 2.50E-28 0.85 0.87
Center Separation 0.32 0.04 0.47 0.48 9.91E-28 0.87 0.87
Closest Center 1.61 1.78 1.46 2.06 4.39E-24 0.84 0.84
Center Kernel 2.91 3.08 2.78 3.36 1.87E-23 0.82 0.83
Separation Kernel 0.5 0.63 0.18 1.7 6.36E-22 0.73 0.78
Separation Shortest 0.34 0.44 0.11 1.24 2.11E-21 0.73 0.79
Closest Closest 1.77 1.92 1.57 2.16 1.14E-20 0.81 0.8
Closest Separation 0.02 0.18 0.24 0.56 1.30E-18 0.81 0.81
Center Closest 1.67 1.84 1.53 2.13 1.82E-18 0.79 0.79
Separation Center 0.43 0.53 0.2 1.12 3.58E-16 0.73 0.79
Closest Kernel 3.13 3.23 3 3.4 3.93E-16 0.77 0.78
Center Center 1.62 1.75 1.49 2.05 1.76E-13 0.69 0.79
Closest Shortest 2.22 2.31 2.12 2.47 8.31E-13 0.74 0.76
Separation Closest 0.63 0.67 0.33 1.22 1.11E-11 0.71 0.76
Kernel Center 3.04 3.06 3.03 3.14 0.009391 0.56 0.67
Kernel Separation 1.52 1.55 1.47 1.68 0.029083 0.52 0.64
Shortest Center 2.1 2.1 2.1 2.16 0.126387 0.48 0.62
Shortest Separation 0.63 0.64 0.61 0.71 0.238476 0.48 0.61
Kernel Closest 3.21 3.22 3.18 3.24 0.337705 0.5 0.64
Separation Separation 0.46 0.46 0.3 0.51 0.358257 0.46 0.58
Kernel Kernel 4.46 4.47 4.45 4.47 0.463986 0.47 0.62
Kernel Shortest 3.53 3.54 3.53 3.54 0.488536 0.47 0.61
Shortest Kernel 3.49 3.49 3.49 3.48 0.503392 0.45 0.6
Shortest Closest 2.26 2.26 2.26 2.26 0.503841 0.45 0.6
Shortest Shortest 2.56 2.56 2.56 2.55 0.51079 0.45 0.6

distances, as compared to randomly selected herb pairs. We
found that the average network distance of the top herbs pairs is
mostly less than the average distance of random herb pairs, with
statistical significance in 16 of the 25 distance models (P-value
< 0.05) (Figure 3, Table 1). For example, the center-separation
model showed the best performance to differentiate the top
herb pairs from random pairs, with a difference of 0.489 (P-
value = 9.91E-28, t-test). As the herb–herb network is constructed
based on their interactions in ingredients and targets, a shorter
distance therefore indicates that herb pairs tend to affect sim-
ilar pathways in order to produce synergistic effects. We also
examined the likelihood of a top-frequent herb pair sharing the
same ingredients, which might explain why they have shorter
distance. These shared ingredients may contribute partly to the
closer distances of the herb pairs.

We found that 114 out of the 200 herb pairs did not
share any common ingredients, while a few herb pairs (n = 15)
shared more than three ingredients (Supplementary Figure S3).
However, when we considered the 114 herb pairs that did
not share any common ingredients, we still found that their
distances are significantly lower than that for random herb
pairs (Supplementary Figure S4). This result suggested that in
addition to the common ingredients, target interactions from
different ingredients within an herb pair remain a major mech-
anism of action to affect functionally related disease pathways.

Discrimination performance of the distance metrics

To evaluate the discrimination power of the network models, we
determined the ROC curve and PR curve using the top-frequent

herb pairs as positive cases and random herb pairs as negative
cases. In general, we found that the average area under the ROC
curve (AUROC) and area under the PR curve (AUPRC) for the 25
distance metrics reach 0.65 and 0.72, respectively, suggesting
the general validity of using the network-based distance metrics
to characterize the herb-pair interactions (Table 1). We found
that the top performance was achieved by two models that
utilize the center distance at the ingredient level, including the
center (ingredient) - separation (target) model and the center
(ingredient) - shortest (target) model. The ROC curves for these
two models were shown in Figure 4, confirming the superior
discrimination performance.

Interestingly, we found that the five models utilizing the
center distance at the ingredient level (i.e. center (ingredient)
– center (target), center (ingredient) – closest (target), center
(ingredient) – kernel (target), center (ingredient) – separation
(target) and center (ingredient) – shortest (target)) have a better
discrimination performance with mean AUROC of 0.80 and mean
AUPRC of 0.83, in contrast to that of the other models (Figure 5).
Different from using the other distance metric at the ingredient
level, the center-based models involve the identification of the
central ingredients that have a minimal sum of shortest path
lengths in the herb-ingredient network. The superior perfor-
mance of the center-based distance models therefore suggests
that the herb-pair interactions are mainly driven by few ingre-
dients as determined as the center nodes. These topologically
important ingredients may hold the key for understanding herb
pair interactions.

To validate our hypothesis, we also collected 268 known
herb pairs from the literature (Supplementary Table S3). We
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Figure 4. ROC curves and precision-recall curves of the (A-B) center-separation model and (C-D) the center-shortest model. Each curve is a result of one permutation

while the blue curve is the average value of all the permutations.

Table 2. The center ingredients for A. membranaceus and G. uralensis determined by models with different distance methods at the target level
while fixing the center distance method at the ingredient level

Center of A. membranaceus. Center of G. uralensis Method Distance Distance (top) Distance (random)

Isorhamnetin Glycyrrhizin; glycyrrhizic acid;
18beta-glycyrrhetinic acid; glycyrrhetinic acid;
monoammonium glycyrrhizinate;

Center 1 1.62 2.05

Astramembrannin i Glycyrrhizin; monoammonium glycyrrhizinate;
glycyrrhizicacid

Closest 1.17 1.67 2.13

Lupeol Isoorientin Kernel 2.78 2.91 3.36
Calycosin Isolicof lavonol Separation 0.33 -0.32 0.48
Lupeol Isoorientin Shortest 1.82 1.92 2.41

applied the 25 network models to evaluate how well these
268 known herb pairs can be separated from random pairs.
In line with the previous results, we found that the distance
between these known herb pairs is on average smaller
than random pairs (Supplementary Table S4). The average
AUROC and AUPRC across all the 25 models is 0.62 and
0.65, respectively. Furthermore, the center (ingredient) –
shortest (target) model can achieve the top accuracy of
AUROC 0.75 and AUPRC 0.73 (Supplementary Table S4 and
Supplementary Figure S5). Notably, the 268 known herb pairs
were extracted from the literature that was independent from
the datasets extracted from the TCMID. The overlap between
these two datasets is minimal (n = 32), suggesting a general valid-

ity of using network models to predict the potential of herb pairs
in TCM.

The combination mechanism of herb pair Astragalus
membranaceus and Glycyrrhiza uralensis

We applied our network pharmacology modeling to the study
of herb pair A. membranaceus and G. uralensis. The combination
of A. membranaceus and G. uralensis has shown clinical efficacy to
treat liver diseases by the inhibition of notch signaling pathways
[65]. It was also reported that this herb pair is able to inhibit
bile acid-stimulated inflammation in chronic cholestatic liver
injury mice [56] based on transcriptomics profiling [55]. However,
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Figure 5. AUROC and AUPRC grouped by the distance models at the ingredient

level. The statistical significance is determined by t-test.

their active ingredients and the mechanisms of action of remain
poorly understood.

We retrieved 15 ingredients for A. membranaceus and 27 ingre-
dients for G. uralensis, separately, for which three ingredients
were common including formononetin, clionasterol and clionasterol
(Supplementary Table S5). Based on the conclusion that center-
based distance models tend to achieve better performance, we
considered the distance for the herb pair as the distance of their
center ingredients, which can be determined by five different
models at the target level. We compared the herb distances with
that of the top 200 herb pairs as well as the random herb pairs.
We found that the herb pair distances are much smaller than
that of the random herb pairs, suggesting a strong evidence for
the close network proximity of the two herbs (Table 2).

By applying the center (ingredient) – closest (target) model,
we found that astramembrannin i and glycyrrhizin were identified
as the center of A. membranaceus and G. uralensis, separately.
It was shown that glycyrrhizin from G. uralensis is effective on
ferroptosis by inhibiting oxidative stress during acute liver fail-
ure [66]. Interestingly, it was reported that the synergistic anti-
liver fibrosis actions by the A. membranaceus and G. uralensis can
be attributed to astragalus saponins from A. membranaceus and
glycyrrhizic acid from G. uralensis via TGF-β1/Smads signaling
pathway modulation [67], which is consistent with our analysis.

On the other hand, to apply the center (ingredient) – short-
est (target) model, we first determined the shortest distance
for each ingredient pair using the target interaction network,
with which we can determine lupeol and isoorientin as the
central ingredients of A. membranaceus and G. uralensis, sepa-
rately. We found that the distance is 1.82, which is lower than
the average (1.92) of the top herb pairs, and much lower than
the average (2.41) of the random herb pairs. Interestingly, we
found that the same center ingredients were also identified by
the center (ingredient) – kernel (target) model. It was reported
that isoorientin might protect alcohol induced hepatic fibrosis
in rats by reducing the levels of inflammation-related path-
ways [68]. On the other hand, lupeol was known for protecting

oxidative stress-induced cellular injury of mouse liver by down-
regulating anti-apoptotic Bcl-2 and upregulating pro-apoptotic
Bax and Caspase 3 [69].

To illustrate further the potential combinational effects of
lupeol and isoorientin, we performed pathway analysis by the
targets of these two ingredients (NFE2L2, AKT1 from isoorientin,
CTNNB1, MITF, LSS, PTEN and TP53 from lupeol) as well as other
10 closely associated proteins in the PPI network (Figure 6). We
found that these target genes are associated with pathways
related to liver disease, especially the cholesterol biosynthesis
pathway, the hepatocellular carcinoma pathway, the IL-5 signal-
ing pathway as well as the ethanol metabolism resulting in pro-
duction of ROS by the CYP2E1 pathway. Therefore, it is plausible
that the anti-liver fibrosis effects of herb pair A. membranaceus
and G. uralensis can be attributed to the combination of lupeol
and isoorientin. Taken together, this case study exemplified
the feasibility and rational of applying the network model to
pinpoint potential ingredient interactions and their mechanisms
of action.

DISCUSSION
Understanding the mechanisms of actions of TCM requires a
more systematic investigation of the herb interactions. In this
paper, we proposed a novel PPI-based network model to char-
acterize the interaction of herb pairs. To illustrate the complex
nature of TCM pharmacology, we developed network distance
metrics by integrating the relationships between herb, ingredi-
ents and targets. We defined the herb–herb distance based on
a multiple partite network which is commonly used for biolog-
ical network modeling [35]. The components of such a multi-
modal network include bipartite networks of herb–ingredient
and ingredient–target interactions. We considered the network
proximity distance at two levels, where the nodes of the net-
works can be either ingredients or targets. The two-level net-
work modeling allows the characterization of herb–herb and
ingredient–ingredient interactions with greater flexibility. In this
study, we have provided a panel of 25 distance models, based
on which we achieved a comprehensive evaluation of herb–
herb interactions. Compared to the existing methods that are
mainly focusing on single herbs, our network modeling can
provide more insights on the mechanisms of action of TCM
herb formulae, which by principle mainly involve multi-herb
combinations.

We found that commonly used herb pairs tend to have
smaller network proximity distance, suggesting stronger PPI
interactions between them. Moreover, using the center distance
at the ingredient level, the network model tends to achieve
higher accuracy of discriminating the commonly used herb
pairs from random herb pairs with the best AUROC of 0.87 and
AUPRC of 0.87. In general, we found that the center distance
at the ingredient level improved the prediction accuracy,
suggesting that ingredients that are located in the center of
the herb PPI network play important roles when combined
with the other herbs. These center ingredients showed a
minimal sum of shortest path lengths within the herb PPI
network, and therefore are more likely to activate a cascade
of multiple pathways. Prioritization of these center ingredients
for further functional studies shall help us understand the
synergistic effects of herb pairs. Using the herb pair A.
membranaceus and G. uralensis as a case study, we confirmed
that its network distance was shorter than that of random
herb pairs. More interestingly, the potential synergistic effects
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Figure 6. PPI network and pathway enrichment of the combination of isoorientin of G. uralensis and lupeol of A. membranaceus. The targets of the two center ingredients

and their associated pathways are listed.

of the center ingredient lupeol from A. membranaceus and the
center ingredient isoorientin from G. uralensis were supported
by the literature [67–69], which warrants more experimental
validation.

On the other hand, the stronger network proximity distance
between the TCM herb pairs might be due to the overlapping
ingredients. Indeed, we found that 86 out of 200 top-common
herb pairs shared at least one common ingredient. However,
using the 114 herb pairs that do not share any common ingre-
dients, we retained the same level of top prediction accuracy
(AUROC 0.75 and AUPRC 0.73). Therefore, the strong PPI inter-
actions were largely attributed by functionally related ingredi-
ents that may share common or similar targets. For example,
the ingredient nodakenin from herb N. incisum and ingredient
limonene from herb A. pubescens f. biserrata have five common
targets, including NOS1, NOS2, NOS3, POR and MTRR. Targeting
the same disease proteins with multiple ingredients is in fact an
important strategy of TCM formula, as it may achieve the same
level of efficacy while lowering the side effects that are caused
by the high doses of single ingredient [15].

Previously, Li et al. [14] have proposed a distance-based-
mutual-information (DMIM) approach to determine an inter-
action score between herb pairs based on their frequencies.
Based on the concept proposed by DMID, many potential
ingredient combinations were predicted and validated. For
example, using the interaction networks, Chen et al. [70] found
that the main effective ingredients in Scabiosa comosa and

Scabiosa tschilliensis for treating liver diseases are flavonoids
which were experimentally validated. Based on the compound-
target network of Cistanche tubulosa, the top ingredients with
strong synergy potential for anti-inflammatory effect were
predicted and validated by experiments in vitro [71]. Compared
to DMIM, our method is based on the information at deeper
molecular levels such as herb–ingredient, ingredient–target
and target–target relationships, which shall provide a more
refined characterization of herb-interactions. However, there
are several limitations in our study to be improved in the future.
For example, despite the knowledge of existing ingredients
in an herb, their actual concentrations are largely unknown.
Therefore, the current model treats each ingredient equally,
which might lead to certain bias. Moreover, we empirically
determined the common herb pairs by their frequencies of
use, which might be suboptimal. In addition, there might be
some combinations whose mechanisms of action may not
be captured by our network methods that focus on protein–
protein interactions. Furthermore, pharmaceutical evidence on
the compatibility rationale of TCM has been reported [17]. Our
network model may help identify the first three mechanisms
of action (complementary action, neutralizing action and
facilitating action) but not the pharmacokinetic potentiation.
Although oral bioavailability (OB) or drug-likeness (DL) have
been widely used for filtering druggable ingredients in the
TCM studies [25], we did not filter the ingredients by OB and
DL in our study, as OB and DL values are generally predicted
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by computational models rather than from experiments [25].
Moreover, the OB and DL properties might be changed due to the
interactions of the ingredients in TCM formula [17]. Although
we selected the TCMID database as the main source of data,
more information from other databases should be considered
as a future step. For example, the TCMSP [72] database is a
comprehensive network pharmacology database that consists
of interactions among 499 herbs, 29 384 ingredients, 3311 targets
and 837 associated diseases. Furthermore, TCMSP provides the
ADME properties of these ingredients which can greatly help
to filter druggable ingredients. Another limitation is the lack
of target information for certain ingredients. In our model,
we discarded the herbs and ingredients without any target
information, as their biological roles remain unclear. In the
future, computational methods, such as the similarity ensemble
approach (SEA) [73], and experimental methods such as thermal
proteomics profiling (TPP) [74] can help the TCM research in the
aspect of targeted discovery of herb ingredients. Furthermore,
in this study, we focused on the network model construction to
define the relationship of herb pairs by their network distances.
Our next step is to build up a more complex combination model
to include higher order combinations, e.g. by calculating all the
pairwise network distances among herb formula to identify the
most synergistic herb combinations.

In conclusion, TCM formulae provide important resource
of drug combinations in natural products. In this study, we
proposed a network-based model to understand the rational
of herb pairs in TCM. By qualifying the distances between herb
pairs based on herb–ingredient–target interactions, the network
model can identify the potential synergistic ingredients for
which the mechanisms of action can be further explored. The
modeling strategy itself not only helps us explore the space
of herb combinations more effectively, but also can be used
for prioritizing synergistic compound interactions that shall
facilitate the drug discovery from TCM.

Key Points
• We proposed a network-based modeling approach to

quantify the degree of interactions of herb pairs by the
integration of herb–ingredient, ingredient–target and
protein–protein interaction data.

• Based on a total of 46 929 herbal formulae that consists
of 349 197 herb pairs, we found that frequently used
herb pairs tend to have shorter distance compared to
random herb pairs, suggesting that a therapeutic herb
pair is more likely to affect neighboring proteins in the
human interactome.

• We found that the network models based on the
center distance at the ingredient level achieves the
best prediction accuracy, suggesting the importance of
identifying the main active ingredients from individ-
ual herbs to understand herb interactions.

• Compared to the existing methods, which are mainly
focusing on single herbs, our network pharmacology
approach can provide more insights on the mecha-
nisms of action of herb combinations.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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47. Rolland T, Taşan M, Charloteaux B, et al. A proteome-
scale map of the human interactome network. Cell
2014;159(5):1212–26.

48. Rual J-F, Venkatesan K, Hao T, et al. Towards a proteome-
scale map of the human protein–protein interaction net-
work. Nature 2005;437(7062):1173–8.

49. Hornbeck PV, Zhang B, Murray B, et al. PhosphoSitePlus,
2014: mutations, PTMs and recalibrations. Nucleic Acids Res
2015;43(D1):D512–20.

50. Cheng F, Jia P, Wang Q, et al. Quantitative network map-
ping of the human kinome interactome reveals new clues
for rational kinase inhibitor discovery and individualized
cancer therapy. Oncotarget 2014;5(11):3697.

51. Meyer MJ, Das J, Wang X, et al. INstruct: a database of
high-quality 3D structurally resolved protein interactome
networks. Bioinformatics 2013;29(12):1577–9.

52. Fazekas D, Koltai M, Türei D, et al. SignaLink 2–a signaling
pathway resource with multi-layered regulatory networks.
BMC Syst Biol 2013;7(1):1–15.

53. Licata L, Briganti L, Peluso D, et al. MINT, the molecu-
lar interaction database: 2012 update. Nucleic Acids Res
2012;40(D1):D857–61.

54. Cherkassky BV, Goldberg AV, Radzik T. Shortest paths algo-
rithms: theory and experimental evaluation. Math Program
1996;73(2):129–74.

55. Zhang G-b, Song Y-n, Chen Q-l, et al. Actions of Huangqi
decoction against rat liver fibrosis: a gene expression pro-
filing analysis. Chinas Med 2015;10(1):1–11.



Network-based modeling of herb combinations 13

56. Li W-K, Wang G-F, Wang T-M, et al. Protective effect of herbal
medicine Huangqi decoction against chronic cholestatic
liver injury by inhibiting bile acid-stimulated inflammation
in DDC-induced mice. Phytomedicine 2019;62:152948.

57. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and
collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics 2013;14(1):128.

58. Zhang Q, Ye M. Chemical analysis of the Chinese
herbal medicine Gan-Cao (licorice). J Chromatogr A
2009;1216(11):1954–69.

59. Yun T-K. Panax ginseng—a non-organ-specific cancer preven-
tive? Lancet Oncol 2001;2(1):49–55.

60. Kang S, Min H. Ginseng, the’immunity boost’: the
effects of Panax ginseng on immune system. J Ginseng
Res 2012;36(4):354.

61. Tang W, Eisenbrand G. Panax ginseng. In: Mey CA (ed). Chinese
Drugs of Plant Origin. Springer Berlin Heidelberg, 1992, 711–37.

62. Liu J, Liu J, Shen F, et al. Systems pharmacology analysis of
synergy of TCM: an example using saffron formula. Sci Rep
2018;8(1):1–11.

63. Duan DD, Wang Z, Wang Y-Y. New omic and network
paradigms for deep understanding of therapeutic mecha-
nisms for Fangji of traditional Chinese medicine. Acta Phar-
macol Sin 2018;39(6):903–5.

64. Liu W, Furuta E, Shindo K, et al. Cacalol, a natural sesquiter-
pene, induces apoptosis in breast cancer cells by modulating
Akt-SREBP-FAS signaling pathway. Breast Cancer Res Treat
2011;128(1):57–68.

65. Zhang X, Xu Y, Chen J-M, et al. Decoction prevents BDL-
induced liver fibrosis through inhibition of notch signaling
activation. Am J Chin Med 2017;45(01):85–104.

66. Wang Y, Chen Q, Shi C, et al. Mechanism of glycyrrhizin on
ferroptosis during acute liver failure by inhibiting oxidative
stress. Mol Med Rep 2019;20(5):4081–90.

67. Zhou Y, Tong X, Ren S, et al. Synergistic anti-liver fibrosis
actions of total astragalus saponins and glycyrrhizic acid via
TGF-β1/Smads signaling pathway modulation. J Ethnophar-
macol 2016;190:83–90.

68. Huang QF, Zhang SJ, Zheng L, et al. Protective effect of
isoorientin-2′′-O-α-L-arabinopyranosyl isolated from Gyp-
sophila elegans on alcohol induced hepatic fibrosis in rats.
Food Chem Toxicol 2012;50(6):1992–2001.

69. Prasad S, Kalra N, Shukla Y. Hepatoprotective effects of
lupeol and mango pulp extract of carcinogen induced
alteration in Swiss albino mice. Mol Nutr Food Res
2007;51(3):352–9.

70. Chen Q, Wang Y, Ma F, et al. Systematic profiling of the effec-
tive ingredients and mechanism of Scabiosa comosa and S.
tschilliensis against hepatic fibrosis combined with network
pharmacology. Sci Rep 2021;11(1):2600.

71. Liu J, Zhu J, Xue J, et al. In silico-based screen synergistic drug
combinations from herb medicines: a case using Cistanche
tubulosa. Sci Rep 2017;7(1):16364.

72. Ru J, Li P, Wang J, et al. TCMSP: a database of systems
pharmacology for drug discovery from herbal medicines. J
Chem 2014;6:13.

73. Gu S, Lai L-H. Associating 197 Chinese herbal medicine with
drug targets and diseases using the similarity ensemble
approach. Acta Pharmacol Sin 2020;41(3):432–8.

74. Mateus A, Kurzawa N, Becher I, et al. Thermal proteome
profiling for interrogating protein interactions. Mol Syst Biol
2020;16(3):e9232.


	Network-based modeling of herb combinations in traditional Chinese medicine
	INTRODUCTION
	METHODS
	RESULT
	DISCUSSION
	Supplementary Data
	Funding
	Data availability


