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Abstract: Innate and adaptive immune responses lead to wound healing by regulating a complex
series of events promoting cellular cross-talk. An inflammatory response is presented with its
characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive
polymers like chitosan, polyvinylpyrrolidone, alginate, and poly(ε-caprolactone) can be used to
create biocompatible and biodegradable scaffolds. These processed thermo-responsive biomaterials
possess 3D architectures similar to human structures, providing physical support for cell growth
and tissue regeneration. Furthermore, these structures are used as novel drug delivery systems.
Locally heated tumors above the polymer lower the critical solution temperature and can induce its
conversion into a hydrophobic form by an entropy-driven process, enhancing drug release. When
the thermal stimulus is gone, drug release is reduced due to the swelling of the material. As a result,
these systems can contribute to the wound healing process in accelerating tissue healing, avoiding
large scar tissue, regulating the inflammatory response, and protecting from bacterial infections. This
paper integrates the relevant reported contributions of bioengineered scaffolds composed of smart
thermo-responsive polymers for drug delivery applications in wound healing. Therefore, we present
a comprehensive review that aims to demonstrate these systems’ capacity to provide spatially and
temporally controlled release strategies for one or more drugs used in wound healing. In this sense,
the novel manufacturing techniques of 3D printing and electrospinning are explored for the tuning
of their physicochemical properties to adjust therapies according to patient convenience and reduce
drug toxicity and side effects.

Keywords: critical solution temperature; inflammation; nanomedicine; smart polymers; tissue engi-
neering

1. Introduction

Scaffolds are biocompatible and biodegradable support structures that reproduce an
extracellular matrix (ECM) environment. The tissue is grown outside the body to mimic a
biological process or to replace a damaged body’s tissue [1,2]. Regarding that, tissue engi-
neering, first introduced by Langer and Vacanti in 1993, aims to employ these structures for
different biomedical applications that restore, maintain, and improve damaged tissue func-
tions [3]. This multidisciplinary field analyzes the requirements of the biomaterials needed
to produce the scaffolds, such as morphology, mechanical, and surface properties [4,5].
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Wound healing is of great interest for tissue engineering. It involves hemostasis,
inflammation, proliferation, and remodeling. Each stage comprises different necessary
biochemical mediators for a successful process [6]. Here, scaffolds represent excellent
structures for wound healing due to their capacity for tissue regeneration and cell growth.
In addition, they can perform as drug delivery systems when composed of smart polymers
that respond to certain stimuli (e.g., pH, temperature, magnetic, and electric fields) [7–9].
Currently, polymer therapeutics is a major interest in the nanomedicine field for the
development of novel drug delivery systems [10–14].

Thermo-responsive polymers are very useful for scaffold development due to their
outstanding performance under a determined change in temperature (e.g., locally heated
tumors in inflammation) [15,16]. This change can induce a phase transformation in the
polymer, causing the release of a loaded anti-inflammatory, antimicrobial, and/or wound
care drug. Heskins et al. were pioneer scientists who worked with a thermo-responsive
polymer, that is, poly(N-isopropyl acrylamide) (PNIPAAm) [17]. According to Xu et al.,
several other research groups have used it for different biomedical applications. In addition,
it has been used in combination with other polymer blocks to improve physical properties
as well as biocompatibility and biodegradability [18].

Other research, such as that reported by Jyoti et al., focused on burn wounds for
which chitosan has been widely employed as an assistant for fusidic acid [19]. Ben-
chaprathanphorn et al. also tested poly(N-isopropryl acrylamide-co-acrylamide) (PNIPA
Am-co-Am) to fabricate a keratinocyte-fibroblast tissue for treating burn wounds, which
showed cell migration and an organization similar to skin tissue’s structure [20]. Both
approaches are considered as positive and improve wound healing rate.

Moreover, different novel manufacturing techniques are widely been employed such
as 3D bioprinting and electrospinning [21,22]. Kurakula and Rao highlighted the relevance
of polyvinyl pyrrolidone (PVP) as a polymer with versatile properties that allow its use for
the mentioned fabrication techniques [23]. Aside from that, Nun et al. describe the advan-
tages provided by 3D printed scaffolds and electrospun nanofibers as replaceable wound
dressings. The previous work provides useful criteria for designing scaffold architecture
and polymer composition for an adequate wound healing process [24]. Here, we present
a comprehensive and integrative update of thermo-responsive polymers used for the de-
velopment of bioengineered scaffolds with drug delivery applications in wound healing.
The work is based on the main findings of 233 papers published between 2010 and 2020.
The literature search was conducted in Science Direct, Pub Med, and Scopus databases.
Therefore, this review aims to demonstrate the magnificent capacity of bioengineered
scaffolds to provide spatially and temporally controlled drug release in wound healing,
while providing a platform for tissue regeneration. In addition, the novel manufacturing
techniques of 3D printing and electrospinning are explored for their creation and tuning of
their physicochemical properties.

2. Immune Response in Wounds

The immune system possesses a critical role in discriminating harmful pathogens from
the body’s healthy tissues. Although it must generate an adequate response to eliminate
any strange object, it also has to avoid self-tissue damaging to allow a proper wound
healing process [25]. In order to accomplish that, immunity is based on two components:
the innate and adaptive responses. The first one takes immediate action upon the detection
of an invader, while the second one requires the activation of the innate [26,27]. However,
there is evidence that the innate response can be influenced by the adaptive as well. The
previous has been explained by some cells exhibiting functional properties of both, such as
dendritic cells, gamma delta (+) T lymphocytes, and Langerhans cells [28,29].

Moreover, the immune response in wound healing is a complex process to return
the system to homeostasis involving cellular and biochemical mediators in response to a
tissue injury caused by trauma, microbes, or foreign materials. Consequently, a series of
events including coagulation, inflammation, epithelization, proliferation, and remodeling
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take place leading to wound closure [30–34]. However, this section aims to provide an
overview of the topic, so the attention will be paid to inflammation as it provides the
micro-environmental conditions that are necessary for thermo-responsive drug delivery of
wound healing substances through bioengineered scaffolds.

The inflammatory process is an early required phase for wound healing (Figure
1), characterized by five typical symptoms: redness, swelling, heat, pain, and loss of
tissue function [35–37]. Endothelial cells express cell adhesion molecules that promote
the binding of circulating leucocytes. Moreover, neutrophils are the first inflammatory
cells arriving at the injury site, responding to chemokines, and being chemo-attracted by
C5a and C3a complement activation fragments [38,39]. In addition, platelet aggregation
and macrophages degranulation trigger the release of other proinflammatory cytokines
such as tumor necrosis factor-α, interleukin-1 (IL-1), IL-6, and growth factors such as
the transforming growth factor-beta (TGF-β). As fewer proinflammatory substances are
released and more pro-regenerative mediators are produced, inflammation is reduced and
damaged tissues are repaired [40,41].
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Figure 1. Immune response in wound healing process. Reprinted with permission from Rawat, S. et al.
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3. Thermo-Responsive Smart Polymers

In general, water-soluble smart polymers change their physicochemical properties
upon the influence of an external stimulus, and some of them are responsive to multiple
stimuli. This modification is related to their arrangement, solubility, or the hydrophilic–
hydrophobic balance [42–44]. Regarding the thermo-responsive polymers, these have been
thoroughly studied and exhibit a volume phase transition at a critical solution temperature
(i.e., the temperature where exists a balance in the competition established by hydrophilic
and hydrophobic chains), usually referred to as cloud point (Tcp), which is responsible for
the changes in the solvation state [45–47]. Topical applications and injectable biodegradable
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scaffolds made of this type of polymers make use of body temperature to cause a change in
the physical properties of the system [48].

According to their origin, these polymers can be classified as natural, synthetic, and
hybrid. Natural polymers such as chitosan, gelatin, collagen, and cellulose have been
widely used for biomedical applications as ECM due to their great biocompatibility and
bioactivity. However, their main limitations are related to batch variability and unsuitable
physicochemical properties for certain manufacturing processes [49–52].

On the other hand, synthetic polymers such as PNIPAAm, poly(lactic acid) (PLA),
poly(ε-caprolactone) (PCL), poly(N-vinyl caprolactam) (PNVCL), polyethylene glycol
(PEG), and polyethylene oxide (PEO) provide greater tunability of their properties and out-
standing mechanical behavior that allows using them for different processing techniques.
Nevertheless, these polymers may not present the same biodegradable performance as
the natural, as well as exhibit lower biocompatibility [53,54]. Remarkably, the limitations
exhibited by natural and synthetic polymers can be overcome by their blending, obtaining
a hybrid polymer [55–57].

Phase Transition Thermodynamics and Critical Solution Temperature

Polymer solubility is a complex process that depends on their structure and molecular
weight, as well as on the viscosity of the system [58]. Based on the Gibbs–Helmholtz
equation (∆G = ∆H − T∆S), changes in Gibbs free energy of the system (∆G) to negative
values represent the condition under which polymers are soluble [59]. This happens when
the change in entropy (∆S) increases due to the diffusion of solvent molecules through the
polymer, where polymer–solvent interactions break intermolecular polymeric bonds [60].
In this sense, an adequate solvent can expand polymer molecules, thus decreasing ∆G,
while a poor one causes them to collapse. However, the Flory–Huggins solution the-
ory should be addressed in explaining the temperature’s influence on polymer–solvent,
polymer–polymer, and solvent–solvent interactions [61–63].

Thermo-responsive polymers possess a unique property of solid–gel transition above
a certain temperature, and some of them suffer this phase transition near 37 ◦C, which is
the physiological human body temperature (i.e., normothermia). Furthermore, they can
be modified to exhibit that change at the desired temperature [61,64,65]. These polymers
are classified according to their critical solution temperature in lower critical solution
temperature (LCST) or an upper critical solution temperature (UCST) [66,67]. Figure 2
shows a phase diagram where LCST and UCST are represented as solid curves with a
single-phase region in between. When the system exhibits a positive ∆G at a certain
temperature, the polymer will not be miscible under those conditions, and two different
phases will coexist [68,69].

In the first place, polymers exhibiting LCST (usually close to normothermia) are
completely miscible in aqueous systems below that parameter as ∆G is negative [70]. The
previous is due to the negative change in enthalpy (∆H) for the dissolution process caused
by water molecules surrounding the hydrophilic part of the polymer [71]. In addition,
the formation of a structured water molecule arrangement around the hydrophobic part
of the polymer provides a negative ∆S [70]. However, above the LCST these substances
experience a reversible phase transition from a hydrophilic configuration to a dehydrated or
hydrophobic state. Heating induces that transition under an entropy-driven process caused
by the loss of ordered water molecule arrangement around the hydrophobic polymer
chain [72,73].

Phase separation in LCST polymers is influenced by the interruption in polymer–water
hydrogen bonding and the increment in hydrophobic interactions in the polymer chain due
to further increase in temperature. When the positive overall ∆S overcomes the negative
∆H, it gives ∆G a positive value that results in chain collapse and a decrease of solubility
(Figure 3) [74–76]. These materials are usually referred to as negative temperature-sensitive
polymers, and great interest has been paid in their coil-to-globule conformational transition
in aqueous systems [72].
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On the other hand, solubility and physical changes of some polymers are due to UCST.
Above that parameter, ∆S and ∆H decrease with the increase in temperature, showing
the opposite behavior to that shown by LCST polymers, and thus these materials remain
miscible in solution [78,79]. Nevertheless, a phase separation governed by the enthalpy
of the system occurs at temperatures below the UCST due to the balance between intra-
and intermolecular forces, as well as solvation changes [80]. These materials are also called
positive temperature-sensitive polymers and are based on a combination of acrylamide
(AAm) and acrylic acid (AAc) [81].

Moreover, some systems can exhibit both behaviors as shown in Figure 2, where an
hourglass-shaped phase diagram shows the overlap of each set of curves. When that hap-
pens, phase separation is so well defined that the intermediate region is immiscible. In these
cases, the temperature range between LCST and UCST tend to be sensitive to the polymer
molecular weight and changes in pressure [82–84]. Although thermo-responsive systems
under an aqueous environment are of great interest for biomedical applications, it is not
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usual to see both, LCST and UCST behaviors when using them for that purpose. Further-
more, they are not restricted from using other solvents for additional applications [85,86].

4. Bioengineered Thermo-Responsive Scaffolds

Scaffolds provide templates for tissue regeneration and physical support for cell
growth [87]. These can be made of artificial or natural thermo-responsive polymers, which
can condition the different biomedical applications due to their effect on the functional
attributes [55,88]. This type of smart polymers has been widely used as a scaffold in
non-invasive methods for different tissues, such as skin and heart [89,90]. The previous is
attributed to their injectability and self-healing properties, but also their porosity has been
highlighted as an outstanding property, which provides enough space for cell migration
and tissue vascularization [91].

Moreover, when these polymers are used for the creation of bioengineered scaffolds for
wound healing, they must provide a 3D architecture according to the structural heterogene-
ity of the host tissue environment [92,93]. The previous allows improving the mechanical
and cellular activity (e.g., adhesion and proliferation) required by these structures [94–
96]. In addition, scaffold design needs to consider several features such as cell–tissue
interaction; vascularization; scaffold degradation; and loading with drugs, growth fac-
tors, cells, and antibacterial material. Therefore, preformulation and rational designs of
scaffolds for drug delivery systems or biomedical devices are crucial for developing a
functional, biocompatible, and non-immunogenic product of quality that accelerates local
tissue healing [97,98].

4.1. Novel Manufacturing Techniques

Scaffolds’ relevance lies in their design as bioactive systems than mere cells or drug
carriers. Some fabrication techniques provide surface modification, while others take
advantage of their physiological thermo-responsive behavior for creating structures with
particular and unique geometries. The ability to design a system that can respond to an
external stimulus, controlling their degradation, drug release, and healing capacity yield
special interest in the development of scaffolds [99,100]. A brief overview of some novel
techniques is presented below.

4.1.1. 3D Printing

3D printing or additive manufacturing is a process controlled by a computer that trans-
forms the digital model data created by computer-aided design (CAD), causing sequential
layers to deposit on top of each other for creating different geometric structures [101,102].
The obtained 3D objects are highly customized and represent a cost-efficient production.
This technique is probably the most adequate for controlling and modifying the internal
microarchitecture of scaffolds [103–105].

However, not all thermo-responsive polymers are easily employed for 3D printing.
Some natural polymers need to be modified or blended with other polymers in order
to acquire the rheological and mechanical specifications [106,107]. Biomaterials need to
fulfill the requirements of printability, mechanical strength, and degradation behavior to
be subjected to this tissue engineering technique. Regarding that, printability determines
the capacity of a construct to imitate the 3D structure of biological tissues [108,109].

Fused Deposition Modeling (FDM) is being explored for processing polymers into
drug delivery systems required by special populations for treating rare diseases. The
process consists of a plastic filament that is pushed into a heating head (Figure 4) [110].
The contact causes the filament to soften into a semi-solid state that forms the sequential
layers by extrusion. The heating head or a bed moves in three dimensions, which allows
the layers to deposit with great precision [111]. This extrusion method is widely employed
for thermo-responsive polymers allowing larger constructs than other alternatives [112].

Another technique, stereolithography, is a laser-based 3D printing technology that
makes use of UV-sensitive liquid resins for fabricating the 3D objects [113]. PNIPAAm has
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been employed for creating thermo-responsive hydrogels that can be used in drug delivery
applications [114]. On the other hand, inkjet printing has been used to create highly porous
structures. Material’s particle size must be greater than 1 µm, its viscosity has to be lower
than 20 cP, and possess a surface tension around 50 mN/m [113].

Fischetti et al. employed inkjet printing, where chitosan was blended with gelatin to
form a polyelectrolyte complex to improve printability for the fabrication of scaffolds for
anisotropic tissues (e.g., skin andskeletal muscle). The printing temperature was set below
the LCST of the polymer blend. Tripolyphosphate was used as a crosslinker for the creation
of the scaffold, which greatly conditioned its mechanical properties. The scaffold showed
cytocompatibility to L929 cells, and its stability was related to the content of gelatin [115].
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Furthermore, synthetic materials are also employed, offering a better resolution for
the bioprinting of scaffolds due to the ease of tunability. Seyednejad et al. developed a
3D scaffold base on hydroxyl-functionalized polyester (poly (hydroxymethylglycolide-
co-ε-caprolactone) (PHMGCL). The structure showed enhanced hydrophilicity, higher
degradation rate, and improved cell support than a PCL 3D scaffold, representing a great
template for tissue engineering [116].

4.1.2. Electrospinning

This polymer processing technology allows obtaining nanofibers with high surface-
to-volume ratio, highly porous structures, and diverse morphologies that can be easily
controlled through different methods such as melt, emulsion, coaxial, multi-jet, side-by-
side, and co-electrospinning [117,118].

Figure 5 shows the basic set-up, which consists of a feeding unit with a spinneret that
transports the polymer solution until its tip, usually controlled by a pump [119]. A high-
voltage supplier is connected to the spinneret and the collector, charging them oppositely.
Once the voltage is applied, the polymer’s solution droplet at the tip elongates forming
the Taylor Cone. Finally, when the electric field reaches a critical voltage, it overcomes the
polymer solution surface tension and causes a charged liquid jet to move downfield until it
is deposited in the collector, forming the nanofibers [120–122].
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Electrospun nanofibers are of great interest to the biomedical and bioengineering
industry due to their outstanding properties in terms of biocompatibility, biodegradability,
and high drug loading capacity to perform as drug delivery systems [119,123]. Regarding
that, these nanofibers can be employed for the fabrication of scaffolds for wound heal-
ing that provide either an immediate or controlled release of the active pharmaceutical
ingredient (API).

Therefore, electrospun nanofibers composed of thermo-responsive polymers offer a
novel solution to current drug delivery inconveniences for wound healing due to their
safety profile [124–127]. However, not all polymers can be employed for this technique
asthey need to be soluble in a certain solvent [128,129]. Meng et al. fabricated a poly(lactic-
co-glycolic acid) (PLGA)/chitosan nanofibrous scaffold by electrospinning. The nanofibers
exhibited biocompatibility and biodegradability, as well as a higher drug release with
increasing concentrations of chitosan [130].

In another approach, Ji et al. fabricated a PCL-based nanofibrous scaffold and loaded
the model protein bovine serum albumin (BSA) through coaxial and blend electrospinning.
The coaxial electrospun nanofibers showed uniform morphology with a core–shell structure,
while the blend nanofibers possessed defects on their surface and heterogeneous protein
distribution. Regarding their release profile, the coaxial scaffold demonstrated a sustained
release and provided more protection to the BSA. Therefore, this work demonstrated
how different methods can tune-up scaffold properties according to the manufacturing
technique [131].

4.2. Biocompatibility and Biodegradability

The ECM is a complex and bioactive scaffold constituted mainly by collagen, as
well as other proteins and polysaccharides. These components association define their
arrangement, which varies from tissue to tissue and defines its mechanical and structural
properties. As a result, ECM is a hard-to-replicate structure [132]. However, new genera-
tions of thermo-responsive polymers offer the opportunity to synthesize them controlling
their architecture and microstructure, thus providing great advances in tissue engineering
and drug delivery [133,134]. Their use in the development of bioengineered scaffolds must
provide cell support and protection during the healing process, as well as facilitate the
deposition method [135]. However, these biomaterials properties (e.g., size, shape, surface
area, roughness, and chemical composition) influence the host response, causing variations
in the intensity and duration of the inflammatory and wound healing processes. These
define the biocompatibility of the polymers and scaffolds [136].

Biocompatibility is the ability of an introduced material into a physiological environ-
ment to perform as intended without inducing an inappropriate micro-and macroscopic
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host response [137]. Implanted scaffolds can activate the immune response, which as ex-
plained earlier in this review, involves a series of proinflammatory biochemical molecules
that trigger the inflammatory process [138]. Precisely, inflammation is a common indicator
for determining the host response to a biomaterial, and it needs to be followed up closely
to avoid tissue damage [139,140]. Besides, the presence of massive fibroblast proliferation
with associated collagen deposition represents a biocompatibility issue causing extensive
scar tissue and fibrous encapsulation [141].

Biomaterials can coexist with specific tissues and physiological systems. A critical
aspect lies in selecting the proper biomaterial for the development of the desired scaffold
taking into consideration the possible cellular interactions [142]. Research groups like
Ratanavaraporn et al. have been working on biomaterials with the ability to locally
suppress proinflammatory cytokines during tissue regeneration [143]. The previous allows
a longer coexistence between the biomaterial and tissues. Moreover, as stated by Gonzalez
et al., a novel advance in this field is the implementation of biomimetic strategies such as the
mechanisms from viruses and bacteria, which provide immune system evasion [144–146].

Polymers, like any other biomaterial, need to fulfill certain criteria to be used for
tissue reparation and wound healing. In general, they must be water-soluble, non-toxic,
non-immunogenic, and safe during the whole process including the excretion (i.e., the size
below the renal threshold) [147,148]. When used for drug delivery applications, they have
to work as drug carriers, reducing the degradation of the API. Furthermore, they should
provide a biodegradable character to the scaffolds asthese are not intended as permanent
within the body [149,150]. However, their degradation can generate particles that may
stimulate an inflammatory response or produce toxic effects. In this sense, the degradation
mechanism, kinetics, and its intermediate products have to be taken into consideration, as
well as the scaffold’s porosity that is directly linked to the degradation process [151–153].

Cho et al. evaluated cell biocompatibility in a hydrophilic PCL/PVP-b-PCL elec-
trospun nanofiber-based scaffold. The authors highlighted the importance of the ECM
hydrophilicity as a factor affecting cell adhesion in tissue engineering, and more specifi-
cally in PCL. Therefore, they enhanced its surface hydrophilicity through electrospinning
with the biocompatible PVP-b-PCL block copolymer. It was reported an increase in the
hydrophilic character of the nanofibers as the concentration of PVP-b-PCL block copolymer
was raised. Furthermore, the scaffolds exhibited no cytotoxicity, enhanced cell adhesion,
and improved viability of primary fibroblasts compared with the initial PCL scaffolds [154].

In another electrospinning approach, Ji et al. evaluated the effect of nano-apatitic
particles (nAp) on the biocompatibility and biodegradability behavior of 3:1 polymeric
electrospun PLGA/PCL-based scaffolds. The research group prepared nanofibers with
0–30 wt% of nAp that were subcutaneously implanted in rats after their creation and
following a 3-week pre-degraded status in order to evaluate in vivo tissue response. The
study reported a delayed polymer degradation dependent on nAp concentration. In
terms of biocompatibility, nAp significantly improved the tissue response during 4-week
implantation; thus, their results are considered as effective for controlling the in vivo
adverse reaction of PLGA materials [155].

A study conducted by Xu et al. presented a novel method for 3D-printing of nanocel-
lulose hydrogel scaffolds. The printed scaffolds from a 1 wt% nanocellulose hydrogel
supported fibroblasts proliferation as well as exhibited suitable biocompatibility and
biodegradability behaviors [156]. In another study, Intini et al. developed a 3D-printed
chitosan-based scaffold for wound healing in diabetes. They evaluated the biocompatibility
and toxicity toward human fibroblasts and keratinocytes, reporting significant in vitro cell
growth. In addition, the in vivo evaluation of the 3D-printed scaffolds in diabetic rats
showed an improvement in the restored tissue compared to a commercial patch [157].

Li et al. developed biodegradable soy protein isolate-based waterborne polyurethane
composite (SWPU). The biocompatibility and biodegradability of the composite with soy
protein isolate (SPI) content of 0%, 10%, 30%, 50%, and 70% were evaluated by in vivo
implantation using Sprague Dawley rats. The histological evaluation at 1, 3, 5, 7, and
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9 months revealed a slight inflammatory reaction but when there was present SPI this
inflammation decreased as time passed. Besides, at 7 and 9 months, the analyses revealed
cell differentiation and maturation in granulation tissues for the groups SWPU-30%, SWPU-
50%, and SWPU-70%. Moreover, SPI influenced the degradation rate, where SWPU-70%
was almost completely degraded in the fifth month, while SWUP-30% was still significantly
present in the ninth month [158].

In another work published by Ichanti et al., agarose/collagen-based composited
hydrogels presented an outstanding capacity to be used as scaffolds for tissue engineering.
The immobilization of collagen in agarose hydrogel not only supports the formation of
a multi-layered extracellular network but improves the biocompatibility of this system
and its bioactivity as well [159]. Furthermore, a study by Abbaszadeh et al. reported the
synthesis of a novel chitosan-based quercetin nanohydrogel, which besides its antibacterial
and anticancer activity, its biocompatible behavior makes it a novel alternative for different
purposes such as wound healing [160].

4.3. Biopharmaceutical Enhancement

Low drug bioavailability is regarded as one of the major challenges for pharmaceutical
industries [161]. Many of the newly discovered APIs are classified within the Biopharma-
ceutical Classification System (BCS) (i.e., a classification system according to the drug’s
aqueous solubility and intestinal permeability) as class II or IV, which means that they
possess poor water solubility [162,163]. Some photochemicals obtained through plant
extract also exhibit low solubility. This brings difficult challenges for the development of
drug delivery systems [164]. On the other hand, only a few new drugs are considered as
class I or III, that is, when the maximum clinical dose is dissolved in 250 mL of water in a
pH range from 1.2 to 6.8 [165].

Moreover, the growing demand for personalized therapies is being addressed by
the nanomedicine field. The use of thermo-responsive polymers can help overcome the
obstacles for successful drug delivery. The incorporation of these biomaterials in scaffolds
can enhance the drug’s low solubility, bioavailability, protect from enzymatic degradation,
provide fast clearance rates, and they cannot cross biological barriers [77,166,167]. Zhao
et al. enhanced piroxicam solubility in water by evaluating different mixtures with gelatin.
The study reported that the formulation composed of piroxicam/gelatin 1:8 released about
85% of the loaded drug after 10 min. This result suggests the developed system as a
promising strategy for improving the biopharmaceutical performance of the API [168].

Furthermore, a drug’s high crystallinity is a cause of poor dissolution rate, and
thus low bioavailability [161]. Therefore, strict control of the crystalline state during
the manufacturing and the use of solid soluble forms such as amorphous or anhydrous
systems can improve greatly this issue. However, polymers like PVP and hydroxypropyl
methylcellulose (HPMC) can also inhibit crystallization [169]. Luo et al. worked with the
hydrophobic drug Tanshinone (i.e., traditional Chinese medicine from Salvia miltiorrhiza
Bunge). The research group found that its crystallinity could explain the exhibited poorly
water solubility. They evaluated the biocompatible sodium alginate for suppressing the
drug crystal growth. The analyses revealed a reduction in crystalline behavior, which
caused an improvement in the dissolution rate, bioavailability, as well as in pharmacological
activity [170].

The manufacturing process employed for scaffolds production can also improve drug
physicochemical and biopharmaceutical properties that influence bioavailability [171].
Electrospinning improves the drug’s solubility through the amorphization of the API
and the nanofiber’s high surface-to-volume ratio [119]. Llorens et al. made use of this
technology to successfully develop triclosan-loaded PLA/PEG scaffolds with tunable
hydrophilicity and porosity [172]. The same research group also loaded triclosan and
curcumin in a scaffold constituted by PEG/poly(butylene succinate) (PBS) fabricated
through coaxial electrospinning. Asit was not possible to solubilize PEG in the aqueous
medium, the incorporation of the hydrophobic drugs occurred [173].
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Furthermore, 3D printing can create unconventional structures with complex ge-
ometries that possess the ability to incorporate poorly water-soluble drugs and provide
personalized medicines [174,175]. Although their low surface area has limited their drug
loading capacity, Dang et al. created a 3D printed a dual macro-, microscale porous PCL
network to easily and efficiently load different drugs [176].

5. Drug Delivery Applications of Bioengineered Thermo-Responsive Scaffolds in
Wound Healing

Scaffolds’ behavior and mechanism are highly influenced by the physicochemical
properties of the thermo-responsive polymers used for their development but also due
to the regulation systems of the biological host. These natural feedback (e.g., inflamma-
tion, hyperthermia) aims to stabilize any condition that contrasts with the physiological
balance [97]. As a result, scaffolds and their constituent biomaterials make use of these
biological responses to provide novel tools for drug delivery. These systems can be ap-
plied to the wound healing process; accelerating tissue healing, cicatrization process, and
regulating the inflammatory response [177].

Scaffolds made of synthetic, natural, and modified biopolymers are loaded with small
drugs or biomacromolecules (e.g., proteins and poly(nucleic acids)) [178,179]. For instance,
polymers exhibiting the nonlinear LCST behavior are the ones employed for wound healing
drug delivery [180]. As mentioned before, these systems suffer solubility alterations upon
an increase in temperature, usually above the normothermia, where a reversible transition
from a hydrophilic to a hydrophobic state takes place. Drug release is reduced below their
LCST, and is carried out mainly by surface desorption, swelling, and degradation of the
polymer matrix. For high-swelling hydrophilic forms, the release depends on the diffusion
through the polymer matrix, while for low-swelling polymers it is subjected to the swelling
process itself [181,182].

Many biopolymers with a biodegradable nature can perform as described previously
such as PCL, chitin, silk fibroin, and PLA [183–187]. However, the use of chitosan for con-
trolled drug delivery has been of great interest in nanomedicine research [188]. Zamora et al.
easily obtained it from the enzymatic deacetylation of chitin present in crustacean shells
and tilapia skin [189]. Other remarkable properties such as biocompatibility, biodegrad-
ability, and low toxicity make it a great candidate for wound healing. In addition, this
polymer is frequently associated with other substances to improve its mechanical and
physicochemical properties [188].

Rusu et al. combined chitosan with poly(aspartic acid) to develop a formulation for
wound healing. They evaluated different compositions and loaded them with amoxicillin.
Drug release was tested for 300 min under 37 ◦C, and at pH 5.4 and 7.4 aswound healing
shows an initial basic environmental pH that shifts to acidic, around 5.5. Drug release from
prototypes 0.25NG0.1, 0.25NG0.2, and 0.25NG0.3 were, respectively, 99.1%, 96.5%, and
70.6% at pH 7.4, and 71.5%, 61.2%, and 52.8% at pH 5.4. The three prototypes revealed a
controlled release dependent on the composition and performed a sustained release under
the acid pH of the wound environment. Therefore, this scaffold is a suitable option for
wound bacterial infections and possesses an adequate in vivo biocompatibility [190].

PVP has also attracted the attention of many research groups for developing novel
drug delivery systems. Although it is a hydrophilic polymer it can encapsulate either
hydrophilic or poorly water-soluble drugs [191]. Its swelling properties and pore-forming
capacity were used by Zuo et al. to improve the performance of the developed chi-
tosan/polyurethane scaffold for skin tissue engineering [192]. Moreover, its versatile
properties make it an excellent polymer for the fabrication of scaffolds and other biomedi-
cal products through electrospinning and 3D-printing [23,193].

Alginate has also been employed for developing novel dressings for wound healing.
This polymer has outstanding properties such as biocompatibility, biodegradability, high
swelling, porous structure, and can be functionalized [194]. In addition, this polymer
has contributed to reducing bacterial infections, less scarring, and promoting cell prolif-
eration [195,196]. Buyana et al. developed a scaffold composed of sodium alginate and
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Pluronic F127 that was loaded with norfloxacin, zinc oxide (ZnO) nanoparticles (NPs),
thymol, and the antifibrinolytic agent, aminocaproic acid. The formulation revealed a
synergistic antibacterial effect and helped to regulate clotting. Therefore, this approach
represents a potential wound dressing for infected and bleeding wounds [197].

Moreover, thermo-responsive scaffolds provide spatially and temporally controlled
drug release strategies for one or more API. These structures can extend drug release avoid-
ing the burst effect as possible. This is a relevant aspect in order to maintain therapeutic
levels in the body and reduce the required dose [166,198]. More important, these systems
allow achieving a desirable controlled drug release by releasing the API only under the
influence of a thermal stimulus. A locally heated tumor presented during inflammation,
either caused by tissue damage or as a response upon the introduction of a biomaterial,
allows enhancing the release due to polymer chains shrinking [199].

Chen et al. developed a scaffold prototype for tissue engineering with local sus-
tained drug delivery. They firstly created a macroporous PCL base scaffold that was then
embedded with a porous matrix consisting of chitosan and nanoclay. This biomaterial
allows tuning of drug release rates by adjusting the amounts and types of chitosan in the
formulation [200]. Similar research was carried out by Asadian et al., where a scaffold
composed of chitosan, poly(acrylic acid), and nano-hydroxyapatite (n-HAP) was loaded
with the anti-inflammatory drug naproxen. The maximum loading capacity exhibited by
the different prototypes was 34.8%, which corresponded to V4 formulation (i.e., the major
concentration of n-HAP). Drug release showed an initial burst during 24 h in all prototypes
with the V4 sample showing the best results, maintaining 58.2% of the loaded drug after 14
days [201].

In another approach, Chogan et al. developed a scaffold to treat the major complication
in wound healing: fibrosis. In order to address that issue, a three-layer scaffold was
designed with a PCL-chitosan layer on the sides and a polyvinyl alcohol (PVA)-metformin
HCl in the middle. This development was evaluated in rats and showed a reduction in
inflammation, smaller scar area, and an optimal modulation of collagen density after 15
days. Regarding metformin HCl release, the composite scaffold structure reduced the
burst release in the initial five hours (35%) and exhibited a linear release profile over the
15-day period. On the other hand, a single-layer PCL could not control the burst release in
the initial phase (78%), while a single-layer PVA showed a moderate burst release (38%).
Therefore, this development is considered a promising therapeutic approach for metformin
HCl delivery in order to reduce scar formation and improving the healing process [202].

Garakani et al. synthesized PLGA microparticles loaded with dexamethasone, which
was dispersed in different hydrogels of chitosan/PVP. The obtained scaffolds possessed an
amorphous structure that facilitated the dissolution of the microparticles, as well as a high
swelling ratio and controlled biodegradability rate. The study reported a slower release
upon the addition of PVP. However, the designed scaffolds released 75–85% of the drug
after 30 days, while the loaded microparticles fully released the complete dose after 22 days.
Therefore, this formulation can be considered as a sustained release thermo-responsive
drug delivery alternative for inflammation in wound healing during a 30-day course [203].

In addition, thermo-responsive scaffolds intend to improve patient compliance with
therapies. Biswas et al. developed a scaffold through electrospinning for sustained release
of the herbal drug Panchavalkala (i.e., a combination of five bark drugs from Ayurvedic
medicine). The researchers used PLA as the carrier due to its biodegradable nature. The
scaffold released approximately 80% of the drug continuously for 5 days. The developed
scaffold proved to have better efficacy in wound healing compared to the traditional unsta-
ble dispersion of the drug. Therefore, this biomaterial increased the drug’s bioavailability,
thus can effectively control the inflammatory process [204].

Furthermore, thermo-responsive polymers can be used as injectable biomaterials in the
form of a hydrogel, as shown in Figure 6 [205]. This allows the in situ formation of scaffolds,
minimizing the employment of invasive methods, and representing a novel and advanced
drug delivery system especially for subcutaneous application [206–209]. Hydrogels possess
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a 3D structure that can be modified in terms of their physicochemical properties to obtain a
firmly attached scaffold to the external and internal wound [210]. The technique involves
mixing the thermo-responsive polymer with the API at room temperature for subsequent
injection into the body. After that, the increase in body’s temperature above polymer
LCST induces a phase transition that forms a physical gel, favoring the release of the drug
from the scaffold. This matching between the physiological and the gelation temperature
represents a great advantage for wound healing [211–213].
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Andrgie et al. developed an injectable heparin-conjugated PNIPAAm in situ gel-
forming polymer with encapsulated ibuprofen to address pain and excessive inflammation
during wound healing. In vitro analysis showed a reduction of proinflammatory me-
diators due to the released drug. In addition, the applied hydrogel on the mice back
wound revealed that the formulation improved healing compared to a placebo group, thus
presenting this in situ forming-scaffold as a promising therapeutical approach [214].

Dong et al. prepared a novel thermo-sensitive hydrogel composed of PNIPAAm/poly(γ-
glutamic acid). The differential scanning calorimetry analysis confirmed the thermo-
sensitivity at normothermia and revealed a phase transition temperature at 28.2 ◦C. This
hydrogel exhibited a high swelling rate, good biocompatibility, and higher wound closure
rate. In addition, superoxide dismutase was loaded to improve trauma treatment in wound
healing due to its antioxidant activity over the reactive oxygen species [215]. Another im-
portant regulator in wound healing is nitric oxide (NO), which modulates cell proliferation,
wound contraction, collagen deposition, and has antibacterial activity. Regarding this,
Cao et al. developed a thermo-responsive hydrogel constituted by S-nitrosoglutathione,
pluronic F127, and alginate, in which NO was incorporated for treating infected wounds.
The scaffold demonstrated biocompatibility, sustained release of NO for seven days, and
bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa [216].

As presented in Table 1, there are several drug delivery applications of thermo-
responsive scaffolds for wound healing such as pain, inflammation, diabetes, microbial
infections, and prevention of large scar tissue [217,218].
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Table 1. Thermo-responsive scaffolds for drug delivery in wound healing.

Polymer System Delivered Drug Application Release Time Ref

Gelatin Ibuprofen Inflammation and bone
regeneration 100 h [219]

PLGA Ibuprofen Inflammation 30 h [220]
Poly(N-vinylcaprolactam-

co-methacrylic
acid)

Ketoprofen Inflammation 50 h [221]

Poly(di(ethylene glycol)
methyl ether methacrylate),

Ethyl cellulose
Ketoprofen Inflammation 100 h (80%) [222]

Sodium alginate Celecoxib Hyperthermia - [223]

Chitosan, PCL Ferulic acid, resveratrol Inflammation,
pro-angiogenic

120 h (55% of ferulic acid
and 48% of resveratrol) [224]

PVA, chitosan Tetracycline HCl Bacterial infection 4 h (80%) [225]
Chitosan, PEG Ciprofloxacin HCl Bacterial infection 20 h (30%) [226]

Chitosan, alginate Alpha-tocoferol Skin injuries, oxidative
process 14 days (77%) [227]

Eudragit Gentamicin sulphate Bacterial infection in
diabetic ulcer 12 h (90% at acid pH) [228]

PLGA Clorhexidine Infection treatment 50 days [229]

Chitosan Vamcomycin Bacterial infection,
osteomyelitis 26 days [230]

PCL, silk fibroin Amoxicillin Bacterial infection 14 days [231]
PLGA, poly(L-lactic acid) Doxycycline Bacterial infection 6 weeks [232]

PVA Tetracycline Bacterial infection 24 h (82% at pH 7.4) [233]

Chronic wounds and ulcers caused by different diseases such as diabetes demand
advanced therapies for treating them aschronic inflammation, infections, and poor tissue
regeneration are complications that can lead to amputation [234,235]. Lee et al. developed
core–shell nanofibrous bioactive insulin-loaded PLGA scaffolds through coaxial electro-
spinning for sustained release of the synthetic hormone in diabetic rats. The scaffolds
exhibited a release of the molecule during four weeks, which promoted diabetic wound
healing [236].

Karri et al. explored the application of curcumin in the management of diabetic
wound healing. In this study, they developed a novel nanohybrid scaffold that consisted
firstly in the incorporation of curcumin in chitosan NPs to a subsequent impregnation
into a collagen scaffold, which provides better tissue generation. The study suggests that
the synergistic combination of curcumin as an anti-inflammatory drug, and chitosan and
collagen as a drug carrier and wound healing scaffold have an outstanding healing capacity
in diabetes [237].

Moreover, as reported by Hao et al., thermo-responsive scaffolds have been employed
for tissue regeneration and controlling the inflammation caused by periodontal diseases.
In this study, a biosensitive PLGA/mesoporous silica nanocarrier core–shell porous mi-
crosphere encapsulated PLA spongy nanofibrous micro-scaffold was developed for local
injection delivering of celecoxib into periodontal tissue. The drug release provided signifi-
cant control of the inflammation, while the scaffold contributed to the formation of new
tissue, resulting in an effective approach for treating periodontal disease [238].

The study reported by Zehra et al. presents a concern for scar-free healing and pain
management in wound healing. To address this, the research group developed a 3D
porous biomimetic scaffold with a novel combination of polymers: chitosan and sodium
alginate. Additionally, the scaffold was loaded with ibuprofen. The development resulted
suitable for tissue engineering applications due to its nano- and microporous structures.
Furthermore, the scaffold showed a sustained drug release in vitro, which is considered
ideal for the sake of minimal inflammation and pain management [239].



Int. J. Mol. Sci. 2021, 22, 1408 15 of 25

The biofunctionalization of polymeric fibrous scaffolds is being regarded as a novel
approach to improve the incorporation of bioactive molecules without affecting their
activity and loading capacity. In this sense, Cheng et al. created PLGA electrospun fibrous
scaffolds biofunctionalized with PEG, bFGF growth factor, cell adhesive peptide (RGD), and
loaded with 20(R)-ginsenoside (Rg3). The synergistic effect between the biofunctionalized
scaffold and Rg3 promoted early wound healing in rabbit ear wounds and inhibited the
formation of hypertrophic scars [240].

Furthermore, wounds are vulnerable to suffering from bacterial infection, which can
extend the inflammatory process and increase its intensity [241,242]. Several research
groups have worked on different strategies that combine natural antimicrobial and anti-
inflammatory approaches for wound healing [243–245]. Regarding this, Garcia et al. de-
veloped an electrospun PCL-based anti-inflammatory scaffold loaded with thymol (THY)
and tyrosol (TYR) essential oils. The study aimed to reduce inflammation and minimize
the risk of infected wounds, as well as reducing antimicrobial resistance due to the indis-
criminate use of antibiotics. Furthermore, the authors reported that PCL-THY exhibited a
more efficient down-regulation of proinflammatory genes compared to the PCL-TYR and
PCL-THY-TYR systems [246].

In another approach, Mahmoud and Salama employed the freeze-drying technique
for the preparation of norfloxacin-loaded scaffolds for wound treating. The scaffolds
were composed of collagen with chitosan HCl or with chitosan of low molecular weight.
Although the selected chitosan conditioned the mechanical strength, both provided an
extended biodegradability and showed almost a 100% release of the antibiotic drug after
24 h. Besides, the in vivo study in Albino rats revealed after 28 days of wound dressing
that tissue regeneration time was faster compared to non-treated wounds [247].

Moreover, burn infections are also a major concern in wound healing therapies asthey
are the most traumatic and physically disabling injuries, leading to high morbidity and
mortality rates [248]. In this sense, Lan et al. designed an antibacterial silk fibroin scaffold
with gelatin microspheres impregnated with gentamycin sulfate, which were further
embedded in the silk fibroin matrix. After 21 days, the scaffold not only served as a tissue
regeneration template when evaluated in a rat full-thickness burn infection model, but
also provided a sustained release of the API and exhibited stronger antimicrobial activity
against Escherichia coli, S. aureus, and P. aeruginosa. Therefore, this can be considered as a
promising approach for wound healing and burn infection treatment in severely burned
patients [249].

Another research, carried out by Aliakbar et al., explored burn wounds infected with
drug-resistant bacteria Acinetobacterbaumannii from clinical isolates. The group addressed
this challenge by developing a thermo-responsive chitosan hydrogel. The hydrogel an-
tibacterial activity was evaluated in vitro and with a rat model. The in vivo study revealed
an accelerated wound healing, re-epithelization, and antibacterial efficacy. In addition,
the development showed to be biocompatible and will be further assessed in clinical
investigations [250].

6. Conclusions

Thermo-responsive polymers are currently one of the most important materials in
nanotechnological, tissue engineering, nanomedicine, and biomedical fields for the devel-
opment of scaffolds. Their amphiphilic nature, the ease for tuning of their physicochemical
properties through novel techniques, and the influence of physiological feedbacks enable
the delivery of different drugs and biomolecules for wound healing. In addition, these
polymers can be injected as a hydrogel and form in situ scaffolds, which minimizes the
need for invasive methods. Thermo-responsive scaffolds not only provide physical support
for cell growth and tissue regeneration, but also protect the wound site from bacterial
infections, allowing better healing to those patients with large burns or diabetes. Moreover,
their self-healing properties provide accelerated tissue regeneration and scar-free healing.
However, regardless of current advances, further research is encouraged for better control
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of the release rate of drugs and their burst release at the initial stage. The authors suggest
paying special emphasis to the process parameters in order to achieve an optimum design
that allows obtaining a high-quality, biocompatible, and biodegradable drug delivery
system according to the wound needs.
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