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Oxidative stress is a principal mechanism underlying the pathophysiology of neurodegeneration. Therefore, nutritional
enhancement of endogenous antioxidant defenses may represent a viable treatment option. We investigated the neuroprotective
properties of a unique whey protein supplement (Immunocal®) that provides an essential precursor (cystine) for synthesis of the
endogenous antioxidant, glutathione (GSH). Primary cultures of rat cerebellar granule neurons (CGNs), NSC34 motor neuronal
cells, or HT22 hippocampal cells were preincubated in medium containing Immunocal and then subsequently treated with
agents known to induce oxidative stress. Immunocal protected CGNs against neurotoxicity induced by the Bcl-2 inhibitor,
HA14-1, the nitric oxide donor, sodium nitroprusside, CuCl2, and AlCl3. Immunocal also significantly reduced NSC34 cell
death due to either H2O2 or glutamate and mitigated toxicity in HT22 cells overexpressing β-amyloid1-42. The neuroprotective
effects of Immunocal were blocked by inhibition of γ-glutamyl-cysteine ligase, demonstrating dependence on de novo GSH
synthesis. These findings indicate that sustaining GSH with Immunocal significantly protects neurons against diverse inducers
of oxidative stress. Thus, Immunocal is a nutritional supplement worthy of testing in preclinical animal models of
neurodegeneration and in future clinical trials of patients afflicted by these diseases.

1. Introduction

Oxidative stress and mitochondrial dysfunction are
major factors underlying the pathophysiology of several
neurodegenerative disorders including Parkinson’s disease,
Alzheimer’s disease, and amyotrophic lateral sclerosis
(ALS) [1–4]. For instance, complex I deficiency and the con-
sequent increase in mitochondrial reactive oxygen species
(ROS) play a critical role in the death of dopaminergic neu-
rons in Parkinson’s disease [5, 6]. In models of Alzheimer’s
disease, evidence of mitochondrial dysfunction and oxidative
stress precedes the deposition of characteristic amyloid beta-
plaques during disease progression [7, 8]. In the case of ALS,
mutant forms of copper-zinc superoxide dismutase (SOD1),
which are collectively responsible for approximately 20% of

cases of familial ALS, accumulate at mitochondria and trigger
a shift in the redox state of these organelles [9]. The above
findings strongly indicate that oxidative stress, particularly
at the level of the mitochondria, plays a central role in the
neuronal death that underlies a diverse group of neurodegen-
erative diseases.

Glutathione (GSH) is an endogenous tripeptide antioxi-
dant that plays a key role in preventing oxidative stress,
thereby preserving mitochondrial function and averting cel-
lular apoptosis [10]. In many neurodegenerative disorders,
GSH levels have been shown to be significantly depleted
in patients suffering from these diseases, resulting in a
diminished capacity to cope with increases in cellular ROS
[11–13]. Indeed, decreases in GSH are often observed to
precede other hallmarks of disease pathology, such as
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complex I deficiency and loss of dopaminergic neurons in
Parkinson’s disease [14]. Intriguingly, in vitro studies on
GSH depletion have demonstrated that decreases in total
cellular GSH levels can recapitulate disease pathology. For
instance, in a dopaminergic PC12 cell line, deficiencies in
GSH synthesis that led to an overall decrease in cellular
GSH resulted in complex I inhibition, increased indices of
oxidative stress, and deficits in mitochondrial respiration,
as seen in cases of Parkinsonism [15]. Similarly, NSC34
motor neuron-like cells stably expressing the human
G93A mutant form of SOD1 displayed a significant and
selective depletion of mitochondrial GSH content in com-
parison to parental cells, reminiscent of some forms of
familial ALS [16]. GSH depletion in vitro has also been
shown to sensitize neurons to oxidative stress and mito-
chondrial dysfunction, leading to subsequent increases in
ROS and apoptotic cell death. This was clearly demon-
strated by a study in which primary cortical neurons treated
with subtoxic levels of the GSH-depleting agent, buthionine
sulfoximine (BSO), underwent apoptosis in the presence of
trace amounts of extracellular copper [17]. Similarly, TAR
DNA-binding protein-43 (TDP-43) forms cytoplasmic
inclusions, which are a hallmark pathology observed in spo-
radic ALS patients, in cultured neurons subjected to GSH
depletion [18]. Collectively, these studies demonstrate a
critical role for GSH depletion in disease progression and
pathology in multiple neurodegenerative disease states.

Given the prominent relationship between GSH deple-
tion and neurodegeneration, it is not surprising that many
studies have been undertaken to determine the neuroprotec-
tive effects of bolstering GSH levels through various treat-
ment paradigms. Such treatments include administration of
the GSH precursor, N-acetylcysteine (NAC), and GSH-
monoethylester (GSH-MEE), a cell permeable form of
GSH, and induction of the transcription factor, nuclear factor
erythroid 2-related factor-2 (Nrf2), which is involved in tran-
scriptional regulation of γ-glutamyl-cysteine ligase, the rate-
limiting enzyme necessary for GSH synthesis [19]. Studies
with NAC are extensive and indicate that NAC treatment
offers a number of benefits across numerous disease models.
For example, NAC demonstrated a significant protective
capacity in a rotenone (complex I inhibition) rat model of
Parkinson’s disease by decreasing ROS generation, sustaining
normal GSH levels, and ultimately preventing dopaminergic
cell death [20]. In the G93A mutant SOD1 mouse model of
familial ALS, NAC delayed the onset of disease-associated
motor deficits and significantly extended survival, possibly
due to its ability to elevate GSH levels in these animals [21].
Lastly, SAMP8 senescence-accelerated mice, which display
many of the pathological features of Alzheimer’s disease,
demonstrated an increased cognitive performance with
NAC treatment as compared to vehicle-treated controls
[22]. Another study utilizing GSH-MEE in an MPTP rat
model of Parkinson’s disease demonstrated that GSH-MEE
supplementation is capable of raising GSH levels in the brain
when centrally delivered, and this increase in GSH corre-
sponded to partial preservation of striatal dopamine levels
[23]. Studies such as this have led to recent clinical trials test-
ing the safety and tolerability of intranasal delivery of GSH to

patients with PD [24]. Finally, Nrf2 induction or overexpres-
sion has shown similar promise in animal models of Parkin-
son’s, ALS, and Alzheimer’s disease. In the MPTP mouse
model of Parkinson’s disease, overexpression of Nrf2 in
astrocytes attenuated the development of a Parkinsonian
phenotype [25]. Likewise, astrocytic overexpression of Nrf2
in a mouse model of ALS both delayed onset and increased
survival, as did treatment with chemical Nrf2 inducers
[26, 27]. Comparatively, lentiviral Nrf2 overexpression
caused significant improvements in observed learning defi-
cits in a mouse model of Alzheimer’s disease, accompanied
by decreased amyloid plaque burden [28]. Cumulatively,
these data indicate that treatments aimed at increasing GSH
levels in the brain may be a viable option for treatment and
prevention of neurodegenerative disease.

However, while existing treatment strategies have shown
some promise in this capacity, the efficacy of such treatments
is significantly limited by the relatively low stability and
bioavailability of compounds such as GSH-MEE and NAC
[23, 29]. Moreover, GSH-MEE requires direct injection into
the brain for significant effects to be observed, further limit-
ing its efficacy for treatment in human patients [23]. In the
current study, we investigated the neuroprotective potential
of a nondenatured whey protein supplement, Immunocal,
in vitro in several models of oxidative stress. Immunocal
has previously been shown to substantially increase blood
or lymphocyte GSH levels in patients with HIV infection or
cystic fibrosis, respectively, owing to its high concentration
of nondenatured whey proteins containing the cysteine pre-
cursor, cystine (see Table 1 for composition) [30–32]. Cys-
tine is resistant to trypsin proteolysis and able to travel
through the bloodstream to the target cell where it is then
readily reduced to two cysteine molecules which can serve
as essential precursors for de novo GSH synthesis. In this
manner, the stability of Immunocal lends itself to increased
bioavailability, such that it can act as a cysteine delivery
system. This is significant, as cysteine is spontaneously catab-
olized in the GI tract and bloodstream, and its supplementa-
tion alone can produce toxicity [33]. Additionally, because of
its superior stability, the effects of Immunocal are not depen-
dent upon an invasive administration system as is needed for
GSH-MEE and have been observed with standard oral dosing
regimens. These unique characteristics spurred us to examine
the neuroprotective potential of Immunocal.

2. Materials and Methods

2.1. Materials. Immunocal was provided by Immunotec Inc.
(Quebec, Canada; Table 1). 2-Amino-6-bromo-α-cyano-3-
(ethoxycarbonyl)-4H-1-benzopyran-4-acetic acid ethyl ester
(HA14-1) and sodium nitroprusside (SNP) were obtained
from Calbiochem (San Diego, CA). DL-buthionine-
sulfoximine (BSO), 4, 6-diamidino-2-phenylindole (DAPI),
Hoechst dye 33258, and a monoclonal antibody against β-
tubulin (clone AA2; used at a dilution of 1 : 250) were from
Sigma Aldrich Co. LLC (St Louis, MO). FITC-conjugated
secondary antibodies were from Jackson Immunoresearch
Laboratories (West Grove, PA).
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2.2. Cell Culture and Treatment. Rat cerebellar granule neu-
rons (CGNs) were isolated as previously described from 7-
day-old Sprague-Dawley rat pups of both sexes [34]. CGNs
were seeded on 35mm diameter plastic dishes coated with
poly-L-lysine at an average density of 2.0× 106 cells/mL in
basal modified Eagle’s medium containing 10% fetal bovine
serum, 25mM KCl, 2mM L-glutamine, and penicillin
(100 units/mL)/streptomycin (100 μg/mL). Cytosine arabi-
noside (10 μM) was added to the culture medium 24h after
plating. Experiments were performed after 6 days in culture.
In general, cells were pretreated with Immunocal at a con-
centration of 3.3%, w/v (unless otherwise noted) in serum-
free medium for 24 h prior to treatment with the specified
insult (i.e., SNP, HA14-1, etc.) for an additional 24 h.

NSC34 cells were maintained in DMEM with high glu-
cose containing 10% fetal bovine serum, 2mM L-glutamine,
and penicillin (100 units/mL)/streptomycin (100 μg/mL).
NSC34 cells were preincubated with Immunocal for 24 h
prior to exposure to H2O2 or glutamate. For glutamate exper-
iments, NSC34 cells were differentiated by withdrawing
serum for 7 days prior to experimentation.

For transient transfection, HT22 mouse hippocampal
cells were seeded in 6-well plates at an approximate con-
fluency of 1.0× 106 cells/mL and then cultured for 24 h in
DMEM with low glucose containing 10% fetal bovine serum,
2mM L-glutamine, and penicillin (100 units/mL)/streptomy-
cin (100 μg/mL). Cells were transfected using lipofection
(5 μg DNA/mL, 5 μL lipofectamine/mL) in OptiMEM
medium for 4 h with either empty pIRES 2DsRed-Express2
bicistronic vector (Clontech, Mountain View, CA) or vector
containing the sequence for amyloid-beta 1-42 (Aβ1-42).
Following transfection, OptiMEM medium was replaced
with DMEM culture medium, and cells were treated with
Immunocal for 24h. Percent apoptosis was then determined
for only transfected (DSRed-positive) cells based on nuclear
morphology.

2.3. Cell Viability, Lipid Peroxidation, and Cellular GSH
Assay. All assays were performed according to commercially
available manufacturer’s instructions. GSH/GSSG assay kit
was purchased from Oxford Biomedical Research (Oxford,

MI). MTT cell viability assay was from BioAssay Systems
(Hayward, CA). Malondialdehyde (MDA) lipid peroxida-
tion assay was obtained from OXIS Research Inc. (Foster
City, CA).

2.4. Immunofluorescence Microscopy. After treatment, cells
were fixed in 4% paraformaldehyde for 1 h, washed once in
PBS, and then permeabilized and blocked in 0.2% Triton X-
100 and 5% bovine serum albumin (BSA) in PBS. Primary
antibody (monoclonal antibody against β-tubulin; clone
AA2; used at a dilution of 1 : 250; Sigma Aldrich Co. LLC,
St Louis, MO) was diluted in 2% BSA and 0.2% Triton X-
100 in PBS, and cells were incubated with primary antibodies
for 24 h at 4°C. They were then washed 5 times in PBS and
then incubated for 1 h in FITC-conjugated secondary anti-
body diluted in 2% BSA and 0.2% Triton-X 100 in PBS with
DAPI. The cells were washed 5 times with PBS before the
addition of antiquench (0.1% p-phenylenediamine in PBS).
Images were captured using a Zeiss Axiovert 200M epifluor-
escence microscope equipped with Zeiss Axiovision software.

2.5. Statistical Analysis. Each experiment was done in dupli-
cate and repeated a minimum of three times; data are
reported as mean± SEM. Statistical significance was analyzed
with a one-way analysis of variance (ANOVA) followed by
post hoc Tukey’s test.

3. Results

3.1. Immunocal Preserves Cellular GSH and Prevents
Apoptosis in CGNs Exposed to the Bcl-2 Inhibitor, HA14-1.
Initially, primary CGNs were incubated with 3.3% (w/v)
Immunocal for 24 h to assess any potential toxicity that this
supplement might induce. Immunocal is composed of five
primary cystine- and glutamylcysteine-containing proteins,
β-lactoglobulin, immunoglobulin, α-lactalbumin, serum
albumin, and lactoferrin (Table 2) [35, 36]. Based upon the
relative percentages for each of these four proteins within
the whey protein fraction and the number of cystine or gluta-
mylcysteine residues contained within each protein, we cal-
culated the approximate concentration of each of these
GSH precursors with which CGNs were treated (Table 3).
In general, a 3.3% solution of Immunocal in culture medium
contains 85.3mM cystine and 30mM glutamylcysteine, both
of which have the potential to act as GSH precursors; how-
ever, it should be noted that since both precursors are con-
tained within much larger proteins it is unlikely that all
cystine and glutamylcysteine molecules are freely available
to be utilized in GSH synthesis. Thus, the values calculated
in Table 3 for these precursors should be considered as con-
centrations that could potentially be achieved rather than
absolute concentrations.

Following Immunocal treatment, cells were fixed and
stained with DAPI to analyze nuclear morphology. Cells
treated with Immunocal alone displayed nuclear morphology
comparable to that of untreated control cells (Figure 1).
Moreover, observation under brightfield demonstrated that
cells treated with Immunocal maintained a healthy neuro-
nal morphology with intact processes and large somas,

Table 1: Immunocal constituents by mass per one packet of
supplement (one packet of Immunocal contains approximately
10 g of protein supplement (one serving) in fine powder form and
40 calories per serving).

Component
Supplement
content

Percent
of total

supplement

Whey proteins
(β-lactoglobulin,
immunoglobulin, serum
albumin, α-lactalbumin, and
lactoferrin)

8.8–9.2 g 88–92%

Fat ~0.05 g <0.5%
Lactose ~0.15 g <1.5%
Minerals (Ca, Na) ~0.30 g <3.0%
Moisture 0.5 g ~5%
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comparable to cells that were not supplemented with Immu-
nocal (Figure 1).

Having established that Immunocal displayed no overt
toxicity to CGNs, cells were next treated with Immunocal
and then exposed to the Bcl-2 homology-3 domain (BH3)
mimetic, HA14-1. We have previously shown this Bcl-2
inhibitor to induce GSH-sensitive mitochondrial oxidative
stress and intrinsic apoptosis in CGNs [37, 38]. HA14-1
induced marked nuclear condensation and microtubule dis-
ruption (Figure 2(a)) indicative of apoptosis (Figure 2(b)),
while also causing significant depletion of GSH (Figure 2(c)).
Immunocal significantly protected CGNs from apoptosis
induced by HA14-1 and significantly preserved GSH levels.
To confirm that the mechanism of protection was dependent,
at least in part, on enhanced GSH synthesis, CGNs were
cotreated with Immunocal and the γ-glutamyl-cysteine ligase
inhibitor, BSO, which prevents GSH synthesis [39]. Coincu-
bation with Immunocal and BSO for 24 h before HA14-1
treatment completely prevented any protective effect that
Immunocal alone displayed against the Bcl-2 inhibitor
(Figure 2(b)). Moreover, the capacity of Immunocal to pre-
serve cellular GSH levels upon HA14-1 exposure was elim-
inated by BSO cotreatment (Figure 2(c)).

3.2. Immunocal Protects CGNs from CuCl2-Induced Oxidative
Damage and Decreases Cellular Lipid Peroxidation. To fur-
ther investigate the neuroprotective potential of Immunocal
in primary neurons, we used copper chloride (CuCl2) as a
model of oxidative stress. Copper overload is associated with
free radical-induced lipid peroxidation and disruption of
mitochondrial complex activity [40, 41]. Immunofluores-
cence analysis of the microtubule network revealed robust

protection from this transition metal in CGNs pretreated
with Immunocal (Figure 3(a)). Quantification of apoptotic
cells revealed that there was a significant reduction in
CGN apoptosis with Immunocal pretreatment compared
to CGNs treated with CuCl2 alone (Figure 3(b)). The anti-
oxidant effect of Immunocal was confirmed with a lipid
peroxidation assay which revealed a significant decrease
in malondialdehyde content in CGNs pretreated with
Immunocal (Figure 3(c)).

3.3. Immunocal Protects CGNs Exposed to Sodium
Nitroprusside- (SNP-) Generated Nitric Oxide Species and
from AlCl3-Induced Neurotoxicity. SNP is a nitric oxide
donor that causes dissipation of the mitochondrial

Table 3: Cystine [(Cys)2] and glutamylcysteine [Glu-(Cys)2]
content of Immunocal in preincubation culture medium (3.3%,
w/v final concentration).

Whey protein
Total

molecules
per mL

Total number
of (Cys)2
per mL

Total number
of Glu-(Cys)2

per mL

β-Lactoglobulin 5.44 × 1014 1.09 × 1015 0

Immunoglobulin 9.91 × 1012 3.96 × 1013 0

α-Lactalbumin 2.91 × 1014 1.17 × 1015 0

Serum albumin 3.01 × 1018 5.11 × 1019 1.80 × 1019

Lactoferrin 1.63 × 1016 2.76 × 1017 6.50 × 1016

Final
concentration

— 85.3mM 30.0mM

Figure 1: Cells treated with Immunocal display healthy neuronal
morphology. Cells were left untreated (a) or treated with
Immunocal alone (b) and assessed for overall health and
appearance. Left-hand panels are representative images of cell
nuclei stained with DAPI. Right-hand panels depict the same
fields as viewed under brightfield to assess the state of neuronal
processes and soma. Con: control; ICAL: Immunocal. Scale bar,
10 μm.

Table 2: Cystine [(Cys)2] and glutamylcysteine [Glu-(Cys)2] content of Immunocal whey proteins.

Whey protein Molecular mass (kDa) Percent of protein fraction Cystine (Cys)2 per molecule Glu-(Cys)2 per molecule

β-Lactoglobulin 18,400 56.3% 2 0

Immunoglobulin 166,000 9.2% 4 0

α-Lactalbumin 14,200 22.8% 4 0

Serum albumin 66,000 11.1% 17 6

Lactoferrin 77,000 0.7% 17 4
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membrane potential and enhanced generation of mitochon-
drial ROS in cortical neurons and CGNs [42, 43]. As
expected, nitric oxide species generated by SNP caused overt
apoptotic cell death in CGNs which was significantly

mitigated by pretreatment with Immunocal (Figure 4(a)).
Apoptotic cell counts confirmed that there was significant
neuroprotection in CGNs pretreated with Immunocal,
decreasing apoptosis by approximately 80% (Figure 4(b)).
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Figure 2: Immunocal preserves cellular GSH and prevents apoptosis in CGNs exposed to the Bcl-2 inhibitor, HA14-1. (a) Representative
images of CGNs left untreated (control), treated with HA14-1 (15 μM), or preincubated for 24 h with Immunocal before HA14-1
treatment for further 24 h. Panels from left to right, DAPI (nuclei), β-tubulin, merged images showing β-tubulin (green), and DAPI (blue).
Scale bar, 10 μm. (b) Quantification of apoptosis for 4 independent experiments performed as in (a) except some cultures were
preincubated with 200 μM BSO as well. Apoptotic cells were those with condensed or fragmented nuclei. Results are shown as mean
± SEM, n = 4. ∗∗∗ indicates p < 0 001 compared to control, ††† indicates p < 0 001 compared to HA14-1, ‡‡‡ indicates p < 0 001
compared to ICAL+HA14-1. (c) CGNs were treated exactly as described in (b). Total cellular GSH was measured as described in Materials
and Methods. Data shown represent the percent of control cellular GSH concentration, mean± SEM, n = 4. ∗∗∗ indicates p < 0 001
compared to control, † indicates p < 0 05 compared to HA14-1, and ‡‡ indicates p < 0 01 compared to ICAL+HA14-1. Significant
differences were determined by one-way ANOVAwith a post hoc Tukey’s test. Con: control; ICAL: Immunocal; BSO: buthionine sulfoximine.
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An MTT cell viability assay demonstrated similar results and
showed that mitochondrial viability was also significantly
preserved in Immunocal-pretreated cells, compared to CGNs
treated with SNP alone (Figure 4(c)).

Aluminum is a neurotoxic metal that impairs mitochon-
drial structure and function in neural cells exposed in vitro
and in vivo [44, 45]. Aluminum chloride- (AlCl3-) induced
toxicity in CGNs was characterized by nuclear condensation
and marked disruption of the microtubule network; these
effects were markedly decreased in CGNs pretreated with
Immunocal (Figure 5(a)). To confirm that this protection

was due to cysteine supplementation, and not metal chela-
tion, we removed the Immunocal after the pretreatment
period and washed the CGNs with serum-free media before
treating with AlCl3. Under these conditions, we still observed
a significant reduction in apoptosis compared to CGNs
treated with AlCl3 alone (Figure 5(b)).

3.4. Immunocal Protects NSC34 Motor Neuron-Like Cells
from H2O2 and Glutamate/Glycine-Induced Excitotoxicity.
H2O2-mediated cell death is a classic model of ROS toxicity
in neuronal systems, as it generates free radicals that are
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Figure 3: Immunocal decreases CuCl2-induced apoptosis and lipid peroxidation in CGNs. (a) Representative images of CGNs left untreated
(control), treated with CuCl2 (50 μM), or preincubated with Immunocal for 24 h before CuCl2 treatment for further 24 h.
Immunofluorescence shows β-tubulin (green) and DAPI (blue). Scale bar, 10 μm. (b) Quantification of apoptosis for 4 independent
experiments performed as in (a). Results are shown as mean± SEM, n = 4. ∗∗ indicates p < 0 01 compared to control and †† indicates
p < 0 01 compared to CuCl2. (c) Cellular lipid peroxidation (malondialdehyde (MDA)) was measured as described in Materials and
Methods. Results are shown as mean± SEM, n = 5. ∗∗ indicates p < 0 01 compared to control, ††† indicates p < 0 001 compared to
CuCl2. Con: control; ICAL: Immunocal.
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implicated in neurodegeneration [46]. As expected, ROS
generated by H2O2 caused an overt loss of viability in
NSC34 cells, which was significantly mitigated by pretreat-
ment with Immunocal. An MTT cell viability assay
demonstrated that mitochondrial viability was preserved
in Immunocal-pretreated cells in a dose-dependent man-
ner, compared to NSC34 cells treated with H2O2 alone
(Figure 6(a)). Incubation with Immunocal alone had no
significant adverse effect on NSC34 cell viability assessed
by MTT assay (data not shown).

Glutamate excitotoxicity is thought to play a significant
role in several forms of neurodegenerative disease, leading
to neuronal damage and cell death through both apoptotic
and nonapoptotic mechanisms. NSC34 motor neuron-like
cells do not typically express functional glutamate recep-
tors, which are the primary mediators of excitotoxicity.
However, if they are exposed to serum withdrawal for 7
days, then they attain a semi-differentiated state and
express functional N-methyl-D-aspartate (NMDA) recep-
tors (Figure 6(b)). After this, point cells become sensitive
to glutamate excitotoxicity [47]. We observed that expo-
sure to glutamate/glycine caused a significant loss of

viability in NSC34 cells differentiated by serum with-
drawal. An MTT cell viability assay demonstrated that
mitochondrial viability was significantly preserved in
Immunocal-pretreated cells in a dose-dependent manner,
compared to NSC34 cells treated with glutamate/glycine
alone (Figure 6(c)).

3.5. Immunocal Protects HT22 Mouse Hippocampal Cells
from Toxicity Induced by Overexpression of Amyloid-Beta
Peptide (Aβ1-42). Aβ1-42 is the major constituent of senile
plaques, which form in the brains of Alzheimer’s patients,
leading to the hypothesis that increased production of this
protein from aberrant processing of amyloid precursor pro-
tein is a major contributor to neuronal death and disease
pathogenesis [48]. HT22 mouse hippocampal cells trans-
fected with Aβ1-42 displayed a marked increase in apoptosis
compared to controls transfected with empty vector,
indicated by the presence of condensed and fragmented
nuclei (Figure 7(a)). Strikingly, this effect was entirely
mitigated by treatment with Immunocal, which preserved
neuronal viability to an extent similar to that of empty vector
controls (Figure 7(b)).
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Figure 4: Immunocal preserves CGN viability and protects from apoptosis after exposure to SNP. (a) Representative images of CGNs left
untreated (control), treated with SNP (100 μM), or preincubated with Immunocal for 24 h before SNP treatment for further 24 h.
Immunofluorescence shows β-tubulin (green) and DAPI (blue). Scale bar, 10 μm. (b) Quantification of apoptosis for 5 independent
experiments performed as in (a). Results are shown as mean± SEM, n = 5. (c) MTT cell viability was measured as described in Materials
and Methods. Results are shown as mean± SEM, n = 3. For (b) and (c), ∗∗∗ indicates p < 0 001 compared to control, and ††† indicates
p < 0 001 compared to SNP. Con: control; ICAL: Immunocal.
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4. Discussion

Strategies aimed at scavenging ROS, including those
that enhance the capacity of endogenous antioxidant
defenses like GSH, are actively being investigated as

therapeutic approaches for neurodegenerative diseases. In
the present study, we assessed the neuroprotective potential
of Immunocal, a cystine-rich whey protein supplement,
against oxidative stress in vitro. This supplement contains
high concentrations of proteins such as serum albumin,
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Figure 5: Immunocal protects CGNs from AlCl3-induced toxicity. (a) Representative images of CGNs left untreated (control), treated with
AlCl3 (10 μM), or preincubated with Immunocal for 24 h before AlCl3 treatment for further 48 h. Panels from left to right, DAPI (nuclei),
β-tubulin, and merged image showing β-tubulin (green), and DAPI (blue). Scale bar, 10 μm. (b) CGN apoptosis was quantified for 4
independent experiments as described in (a). Results are shown as mean± SEM, n = 4. ∗∗∗ indicates p < 0 001 compared to control,
and †† indicates p < 0 01 compared to AlCl3. Con: control; ICAL: Immunocal.
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alpha-lactalbumin, and lactoferrin, which possess a substan-
tial number of cystine residues in the unique nondenatured
preparation. In addition, the direct GSH precursor, glutamyl-
cysteine, is also present in the serum albumin fraction of this
supplement. Due to these unique features, Immunocal has
been used as a cysteine delivery system to boost GSH levels
in individuals diagnosed with diseases for which oxidative
stress is a prominent underlying factor [31, 32, 49]. There-
fore, Immunocal may be an effective approach to elevate
GSH in cases of neurodegeneration for which oxidative stress

plays a significant role. To this end, we studied the potential
of Immunocal to protect neurons in vitro from a diverse
array of oxidative insults, which are not only known to cause
oxidative damage and mitochondrial dysfunction but also to
imitate some pathogenic factors in neurodegeneration such
as diminished Bcl-2 function, increased levels of nitric oxide,
or metal ion toxicity (Figure 8).

GSH depletion is a widely studied phenomenon in cases
of neurodegeneration. Although there are multiple mecha-
nisms by which GSH may be depleted, one involves the
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Figure 6: Immunocal protects NSC34 cells from H2O2 and glutamate/glycine-induced excitotoxicity. (a) Cell survival was quantified with
MTT cell viability assay for 5 independent experiments in undifferentiated NSC34 left untreated (control), treated with H2O2 (250 μM),
or preincubated with Immunocal for 24 h before H2O2 treatment for further 24 h. Results are shown as mean± SEM, n = 5. ∗∗ indicates
p < 0 01 compared to control, † indicates p < 0 05 compared to H2O2, and †† indicates p < 0 01 compared to H2O2. (b) Representative
images showing morphological differences between undifferentiated (wildtype (WT)) and differentiated (DIFF) NSC34 cells, β-tubulin
(green), and DAPI (blue). Scale bar, 10 μm. (c) Cell survival was quantified for 5 independent experiments with an MTT cell viability
assay in differentiated NSC34 cells left untreated (control), treated with glutamate/glycine (1mM/100 μM), or preincubated with
Immunocal for 24 h before glutamate/glycine treatment for further 24 h. ∗ indicates p < 0 05 compared to control, and † indicates
p < 0 05 compared to glutamate/glycine. Con: control; ICAL: Immunocal; GG: glutamate/glycine.
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downregulation of Bcl-2 expression or function. Increased
expression of Bcl-2 leads to enhanced GSH synthesis and
decreased GSH efflux from the cell [50, 51]. On the other
hand, Bcl-2 knockdown leads to decreased levels of tissue
GSH [52]. In the current study, we utilized the Bcl-2 inhibi-
tor, HA14-1, to mimic loss of Bcl-2 function and assess the
neuroprotective potential of Immunocal. We have previously
shown HA14-1 to decrease the cellular GSH pool with a pro-
pensity to affect the mitochondrial GSH pool first and induce
mitochondrial oxidative stress and intrinsic apoptosis in
CGNs [37, 38]. Under these conditions, Immunocal dis-
played robust neuroprotection, indicating a capacity to coun-
ter the effects of mitochondrial GSH depletion and oxidative
stress induced by loss of Bcl-2 function. Moreover, the
protective effect of Immunocal against Bcl-2 inhibition is
dependent upon de novo GSH synthesis as coincubation of
Immunocal with BSO blocked neuroprotection.

Another factor implicated in the pathogenesis of several
neurodegenerative diseases is copper toxicity. GSH is known

to play a significant role in mitigating copper toxicity by facil-
itating the transport of copper to proteins that can safely
store this toxic metal in the intracellular environment [53].
Depletion of GSH disrupts this important process and sensi-
tizes neuronal cells to copper toxicity through copper-
associated ROS generation, even when exposed to only trace
amounts of copper [17, 54, 55]. Thus, copper toxicity may be
a process that is dependent on GSH depletion, and indeed,
increased concentrations of copper and dysregulation of cop-
per homeostasis are observed in several neurodegenerative
diseases in which GSH status is reduced, including Alzhei-
mer’s disease and models of ALS [54, 56]. In our study, eleva-
tion of GSH levels in cultured primary neurons with
Immunocal proved to be an effective way to ameliorate the
toxic effects of copper treatment by attenuating copper-
induced lipid peroxidation, resulting in reduced cell death.

Neuroinflammation, in which microglia and astrocytes
take on an inflammatory phenotype and secrete toxic fac-
tors such as cytokines and nitric oxide, is another major
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Figure 7: Immunocal protects HT22 cells from toxicity induced by overexpression of Aβ1-42. (a) Representative images of HT22 cells
transfected with either empty vector (IRES) or Aβ1-42. Top panels display colored images showing successful transfection of the cells, and
bottom panels display decolorized images of cell nuclei to visualize nuclear condensation. Arrows indicate transfected cells. (b)
Quantification of apoptosis for 4 independent experiments performed as in (a). Results are shown as mean± SEM, n = 4. ∗∗∗ indicates
p < 0 001 compared to control, and ††† indicates p < 0 001 compared to cells transfected with Aβ1-42 without Immunocal preincubation.
Aβ: amyloid-beta; ICAL: Immunocal.
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component of neurodegenerative disease [57, 58]. Induc-
tion of nitric oxide synthase (NOS) and subsequent
production of nitric oxide is a well-established mechanism
by which inflammatory cells trigger neuronal cell death
[57]. Markers of nitrosative stress are prevalent in tissues
from both Parkinson’s and Alzheimer’s disease patients,
indicating a significant role for nitric oxide in disease
pathogenesis [59, 60]. Reactive nitrogen species (RNS)
such as nitric oxide promote damage to mitochondrial
components, leading to dissipation of mitochondrial
membrane potential and further increases in ROS and RNS
production [42, 43]. This feed forward cycle ultimately exac-
erbates inflammatory responses and eventually results in
neuronal death. GSH is known to detoxify both ROS and
RNS, making it an essential antioxidant and key neuropro-
tective molecule. Consistent with this, preincubation with
Immunocal significantly protected CGNs from toxicity
induced by the nitric oxide donor SNP.

The neurotoxic effects of aluminum exposure are well
documented, and recently, environmental aluminum and
aluminum-containing vaccines have garnered attention as
potential causes of neurodegeneration. In general, in vitro
exposure of neural cells to aluminum has been shown to
result in pronounced alterations in mitochondrial structure
and function, leading to marked increases in ROS, reduction
of mitochondrial enzyme activity, and cell death [45]. Alumi-
num also interferes with the activity of NADP-isocitrate at
the mitochondria, decreasing the pool of NADPH that is
available and necessary for the regeneration of GSH, and

thereby decreasing GSH levels [61]. In vivo examination of
aluminum neurotoxicity has demonstrated that healthy mice
treated with aluminum hydroxide display significant motor
deficits and develop pathological features similar to those
observed in ALS [62]. These results are notable in that
Veterans of the 1990-1991 Gulf War who received vaccines
containing aluminum hydroxide adjuvant demonstrate a sig-
nificant increase in the incidence of ALS, implicating alumi-
num toxicity as one potential environmental factor in some
forms of sporadic ALS [62, 63]. Our experiments clearly
demonstrate that Immunocal pretreatment is capable of sig-
nificantly reducing the degree of neurotoxicity observed with
aluminum in CGN cultures. We further confirmed that the
protective effects of Immunocal were not due to metal chela-
tion by removing Immunocal-containing media prior to the
addition of AlCl3.

To determine if the protective action of Immunocal
observed in CGNs was reproducible in other neuronal
cell types bearing relevance to neurodegenerative disease,
we examined the capacity of this supplement to protect
NSC34 motor neuron-like cells from oxidative stress and
excitotoxicity. NSC34 cells are a hybrid cell line consist-
ing of spinal cord motor neurons fused with mouse neu-
roblastoma cells [64]. We first analyzed the ability of
Immunocal to protect NSC34 cells from H2O2-induced
oxidative stress. Immunocal pretreatment of NSC34 cells
dose-dependently attenuated H2O2-induced cell death.
We next examined the potential of Immunocal to amelio-
rate damage induced by excitotoxic insult in NSC34 cells,
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which were differentiated by prolonged serum withdrawal
to induce the expression of NMDA receptors [47]. Exci-
totoxicity is known to play a prevalent role in the patho-
genesis of multiple neurodegenerative diseases, including
ALS, and is intimately linked with both oxidative and
nitrosative stress [65]. Immunocal pretreatment of differ-
entiated NSC34 motor neuron-like cells significantly
reduced the injurious effects of glutamate excitotoxicity
in a dose-dependent manner.

Lastly, we evaluated the ability of Immunocal to defend
HT22 mouse hippocampal cells from toxicity induced by the
overexpression of Aβ1-42. As previously discussed, Aβ1-42 is
the primary constituent of senile plaques, one of the hallmarks
of Alzheimer’s disease pathology. In addition, this protein is
also known to accumulate with amyloid precursor protein at
mitochondria, leading to significant mitochondrial dysfunc-
tion [48]. Indeed, Aβ1-42 accumulation at the mitochondria
has been shown to occur both in transgenic mouse models
of the disease and in the brains of Alzheimer’s patients
[66–68]. Our data indicate that pretreatment with Immu-
nocal was able to preserve HT22 hippocampal cell viability
to a significant degree, indicating that GSH supplementa-
tion may be an effective way to mitigate cell death caused
by Aβ1-42-induced toxicity.

5. Conclusions

Immunocal was initially studied for application to clinical
disorders of immune system deficiency and cancer as an
approach to augment the available GSH pool and
increase cellular antioxidant and immune system defenses.
More recently, Immunocal has been investigated as a
potential treatment for disorders involving the CNS. Oral
administration of Immunocal for 45 days has been shown
to elevate GSH levels in the brains of healthy, nontrans-
genic mice by up to 300% compared to casein-treated
controls, demonstrating that this supplement is able to
directly affect the antioxidant status of tissues in the
CNS [69]. Furthermore, we recently demonstrated that
oral administration of Immunocal in the G93A mutant
SOD1 mouse model of ALS delayed disease onset and
preserved grip strength to a significant degree, in compar-
ison to untreated transgenic mice [70]. These therapeutic
effects correlated with preservation of both blood and
spinal cord GSH levels in comparison to untreated trans-
genic controls, indicating that Immunocal is able to act
directly on the CNS to preserve GSH status in the
context of neurodegenerative disease. Based on the above
studies and the data shown here, we suggest that
Immunocal might hold significant potential as a novel
therapeutic approach to bolster GSH levels in neurode-
generative disorders for which the underlying pathology
involves significant oxidative stress. In the future, it will
be of interest to further assess the therapeutic benefit of
GSH precursor supplementation with Immunocal in
additional preclinical animal models of neurodegeneration
and ultimately in clinical trials of patients afflicted with
neurodegenerative disorders.
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