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Abstract: Structures located on the coast are subjected to the long-term influence of chloride ions,
which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects
the performance of the elements and may shorten the lifespan of an entire structure. Even though
experimental activities in laboratories might be a solution, they may also be problematic due to
time and costs. Thus, the application of individual machine learning (ML) techniques has been
investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the
values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey
and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and
an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the
most accurate algorithm was then selected. The GEP model was the most accurate when compared
to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation
and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and
root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an
effective and accurate way to predict the surface chloride concentration without the inconveniences
of laboratory tests.

Keywords: surface chloride concentration; individual algorithm; aggressive ions environment; gene
expression programming; concrete; artificial neural networks

1. Introduction

Reinforced concrete (RC) structures are known for their longevity and resistance,
which are very valuable in civil engineering practices [1]. This includes the construction of
harbor docks, marine structures, and coastal roads. Concrete structures with both steel and
composite reinforcement provide strong stability against corrosive action in an alkaline
environment [2]. This is mainly due to the massive passive oxide film around reinforcing
steel, which can be affected by the presence of chloride ions in sea and coastal structures [3].
These ions first accumulate on the surface of a RC structure and then slowly penetrate
into the concrete element [4]. This ultimately demolishes the oxide film and provokes
the corrosion of steel, which, in turn, leads to spalling and cracking of the concrete and
the reduction of the load-carrying capacity of RC structures [5]. This process significantly
reduces the serviceability of an RC structure, causing it to not last for the amount of time
for which it was designed. The corrosion process of steel bars embedded in porous concrete
is presented in Figure 1. Surface chloride concentrations affect the corrosion of steel and
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the performance of entire buildings and have a devastating effect in civil engineering [6–8].
The durability of a structure is an important parameter in RC buildings for maintaining
an adequate service life of concrete structures [9]. Thus, predicting the design service life
of concrete structures has become more popular in recent times. However, all prediction
models are different and depend on influential factors and the destruction mechanisms of
structures [10].
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Figure 1. Corrosion process caused by an aggressive chloride environment.

The appearance of chloride ions is a major issue in marine environments and has
a very negative effect on RCC structures [11,12]. The possible transmission mechanism
of chloride ions into concrete is dependent on the zone where the element is, i.e., the
tidal, splash, submerged, and atmospheric zones [13]. The transport of chloride ions
in concrete is mainly due to diffusion or the absorption mechanism [14]. The diffusion
mechanism that occurs in the submerged zone is due to the saturation of the concrete.
However, the absorption mechanism takes place in the tidal and splash zones. This allows
the transport of chloride ions into RCC structures. However, the ingress of chloride ions
in the atmospheric zone is quite complex when compared to the other zones [15]. This is
because of factors associated with the zone, such as the direction and speed of the wind,
the salinity level of the water reservoir, and the distance between the sea and the RCC
structures. This study focuses on three zones, and omits the atmospheric zone due to its
previously described limitations.

The ingress movement of chloride ions in RCC structures is calculated using Fick’s
second law of diffusion, as shown in Equation (1). This is mostly used when designing the
service life of structures located in a marine environment [16].

C(x, t) = Co + (Cs − Co)[1− Erf
(

x
2
√

D · t

)
] (1)

where
C(x,t)—chloride concentration at distance (x) from the surface after the time of expo-

sure (t), mol/m3;
Co—concentration of chloride ions in concrete at the initial stage of their occurrence,

mol/m3;
x—depth from the exposed concrete surface, mm;
D—coefficient of apparent chloride diffusion, mm2/s;
Cs—apparent surface chloride amount, mol/m3;
Erf—error function;
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Co is constant and is not affected by any type of concrete. However, the movement
of chloride ions in the marine environment is determined by Cs and D. The coefficient
of apparent chloride diffusion is a material property that depends primarily on time. It
can be determined based on information referring to the composition and microstructure
of a material. Cs concentration in diffusion law has a complex nature, as it not only
depends on a material’s properties, but also on the environmental conditions and time.
This creates ambiguity when making an accurate prediction of chloride ingress in a marine
environment. Therefore, studies are needed to build a strong model that uses machine
learning approaches, which can accurately predict the amount of apparent surface chloride.

The aim of this study is to predict the surface chloride concentration in marine struc-
tures through the application of the gene expression programing algorithm. The levels of
accuracy of GEP, DT and an ANN were evaluated and compared in order to choose the
most accurate algorithm for the purpose of the study. The most effective algorithm was
GEP when compared to DT and ANN. Statistical analyses and K-fold cross validation were
used to check the accuracy and validity of all the models. The usability of the proposed
algorithm was also compared with other algorithms in the literature, which was important
for the purpose of this research.

2. Materials and Methods
2.1. Apparent Surface Chloride Content

The value of surface chloride concentration Cs is an important variable when de-
scribing the transmission of chloride into structures [17]. It is obtained on site, or during
laboratory investigations, as depicted in Figure 2. It can be seen that a convention zone is
present in the investigated concrete element of the marine structure; however, there is no
such zone in the concrete element investigated during the laboratory tests. The value of Cs
was obtained through the use of the bulk diffusion profile of chloride using a fitting curve.
This variable is the most significant, as it describes the aggression of chloride, quantitative
durability, and the prediction of service life of RCC structures.
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Figure 2. Schematic diagrams for determining Cs under different conditions.

It is worth mentioning that the Cs value used in the calculations is considered to
be constant for the zone in which an element is located. This creates uncertainty due to
the complex nature of chloride ion transmission, as it depends on many factors, such as
material properties (cement composition, binder properties, and water-to-cement ratio),
and environmental factors (zonation, chloride content, depth, relative humidity, and
temperature). Many attempts have been made to predict apparent chloride concentrations
using logarithmic and exponential functions, or by correlating a concentration with the
binder-to-water ratio, material variables, and environmental effects. However, there is
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still no accurate prediction model that is based on only a small number of variables. In
contrast, when using machine learning algorithms, prediction models are more accurate
and might be successfully used [18]. In this article, 642 data samples obtained from the
literature survey [19] were used to predict surface chloride concentrations through the use
of machine learning algorithms.

2.2. Machine Learning (ML) and Ensemble Learning (EL) Approaches

Machine learning (ML) is used as an efficient way to predict the mechanical properties
of concrete, and its exemplary use is illustrated in Table 1. ML algorithms are more
effective than simple correlation models due to the fact that they use the values of more
than one variable to predict surface chloride concentrations. Artificial neural networks
(ANN), the decision tree (DT), support vector machines (SVM), random forests (RF),
gene expression programming (GEP), and deep learning (DL) are the most common
algorithms for analyzing the mechanical properties of concrete [20]. Behnood et al. [21]
used an ANN with an optimizer as a multi-objective grey wolves (MOGW) model for
predicting the mechanical response of silica fume concrete. Getahun et al. [22] used an
ANN algorithm to very accurately predict the compressive strength and tensile strength of
waste concrete. Ling et al. [23] predicted the compressive strength of concrete in marine
environments using SVM and then compared the obtained results with ANN and DT
models. It was proved that the SVM was the most accurate. Zaher et al. [24] predicted
the compressive property of lightweight foamed concrete using various machine learning
techniques. The authors concluded that the extreme learning machine (ELM) was the
most accurate and it was successfully applied for predicting the compressive strength of
concrete. Woubish et al. [25] used a machine learning approach for the assessment of the
durability of reinforced concrete structures. The author revealed that machine learning
techniques are useful and that they play a substantial role in predicting the durability of
structures when compared to functional CO2 and Cl- ingress models. Suguru et al. [26]
developed a model to automatically detect cracks in concrete structures with the use of
machine learning. Photographs of concrete structures were used as learning data, and then
deep learning was used to detect the cracks. Similarly, Wassim et al. [27] indicated that
machine learning models have a high level of accuracy.

Table 1. Prediction properties with different approaches.

Lp. Algorithm Name Notation Dataset Prediction Properties Year Waste
Material Used References

1. Individual with
ensemble modeling

ANN, bagging
and boosting 1030 Compressive strength 2021 FA [28]

2. Data envelopment
analysis DEA 114

Compressive strength
Slump test
L-box test

V-funnel test

2021 FA [29]

3. Multivariate MV 21 Compressive strength 2020 Crumb rubber
with SF [30]

4. Support vector
machine SVM - Compressive strength 2020 FA [31]

5. Support vector
machine SVM 115

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [32]

6. Adaptive neuro fuzzy
inference system

ANFIS with
ANN 7 Compressive strength 2020 POFA [33]

7. Gene expression
programming GEP 277 Axial capacity 2020 - [34]

8. Gene expression
programming GEP 357 Compressive strength 2020 - [35]
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Table 1. Cont.

Lp. Algorithm Name Notation Dataset Prediction Properties Year Waste
Material Used References

9.
Random forest and

gene expression
programming

RF and GEP 357 Compressive strength 2020 - [36]

10. Artificial neural
network ANN 205 Compressive strength 2019

FA
GGBFS

SF
RHA

[37]

11.

Intelligent rule-based
enhanced multiclass

support vector machine
and fuzzy rules

IREMSVM-FR
with
RSM

114 Compressive strength 2019 FA [38]

12. Random forest RF 131 Compressive strength 2019
FA

GGBFS
FA

[39]

13. Multivariate adaptive
regression spline

M5
MARS 114

Compressive strength
Slump test
L-box test

V-funnel test

2018 FA [40]

14. Random kitchen sink
algorithm RKSA 40

V-funnel test
J-ring test
Slump test

Compressive strength

2018 FA [41]

15. Adaptive neuro fuzzy
inference system ANFIS 55 Compressive strength 2018 - [42]

16. Artificial neural
network ANN 114 Compressive strength 2017 FA [43]

17. Artificial neural
network ANN 69 Compressive strength 2017 FA [44]

18. Artificial neural
network ANN 169 Compressive strength 2016

FA GGBFS
FA

RHA
[45]

19. Artificial neural
network ANN 80 Compressive strength 2011 FA [46]

20. Artificial neural
network ANN 300 Compressive strength 2009 FA [47]

2.3. Description of the Obtained Data

The data used to model the prediction of the surface chloride concentration are taken
from published literature. These data were taken from articles describing the surface
chloride concentrations in the tidal zone [48–62], splash zone [49,50,54,55,60,63,64] and
submerged zone [54,56,60,65–68]. The data consist of 12 inputs (cement, fine and coarse
aggregate, silica fume, fly ash, blast furnace slag, superplasticizer, water, exposure time,
annual mean temperature, chloride content, and exposure time) and one output (surface
chloride concentration). Jupitar python was used to describe the distribution of each input
parameter that was applied in the prediction model and is presented in Figure 3. It is well
stated that the performance of a model is significantly affected by its variables [69]. The
data variables that were used for modeling, with their ranges, are listed in Tables 2 and 3.

2.4. Machine Learning Algorithms

This section describes the algorithms used when modeling the prediction of surface
chloride concentrations in the concrete elements of marine structures. The prediction of
Cs was made using ANN, DT and GEP. A detailed flowchart of the used methodology is
presented in Figure 4.
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Table 2. Range of input and output variables.

Parameters Abbreviation Units Minimum Maximum

Cement C kg/m3 110 519
Fly ash FA kg/m3 0 239
Ground furnace slag GFS kg/m3 0 292.5
Silica fume SF kg/m3 0 50
Super plasticizer SP kg/m3 0 10.2
Water W kg/m3 38.5 311
Fine aggregate FA kg/m3 552 1232
Coarse aggregate CA kg/m3 410 1305
Water/binder W/C - 0.3 0.75
Exposure time T years 0.08 48.65
Annual mean temperature AMT ◦C 7 50
Chloride concentration
in seawater CCS kg/m3 13 27.37

Surface chloride concentration SCC kg/m3 0.023 1.945
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Table 3. Descriptive analysis of parameters.

Parameters Descriptionr C FA GFS SF SP W FA CA W/C T AMT CCS

Mean 370.70 33.97 11.41 5.41 1.47 187.54 765.77 993.81 0.46 4.24 17.78 18.99
Standard Error 2.98 2.36 1.79 0.51 0.08 1.74 4.60 5.35 0.00 0.25 0.37 0.11
Median 375.00 0.00 0.00 0.00 1.00 180.00 800.00 1020.00 0.45 2.67 16.80 19.00
Mode 340.00 0.00 0.00 0.00 1.00 180.00 800.00 1020.00 0.45 5.00 7.00 19.00
Standard Deviation 75.61 59.88 45.45 12.85 1.99 44.08 116.46 135.43 0.08 6.28 9.38 2.79
Sample Variance 5716.21 3585.21 2066.15 165.02 3.95 1943.32 13,563.76 18,342.52 0.01 39.46 88.06 7.81
Kurtosis 0.60 3.46 15.48 4.11 4.67 2.80 4.74 7.56 1.04 24.71 −0.85 0.72
Skewness −0.65 1.99 4.03 2.29 2.09 0.82 1.46 −1.85 0.96 4.45 0.42 0.52
Range 409.00 239.00 292.50 50.00 10.20 272.50 680.00 895.00 0.45 48.57 43.00 14.37
Minimum 110.00 0.00 0.00 0.00 0.00 38.50 552.00 410.00 0.30 0.08 7.00 13.00
Maximum 519.00 239.00 292.50 50.00 10.20 311.00 1232.00 1305.00 0.75 48.65 50.00 27.37
Sum 237,992.50 21,809.50 7324.00 3475.00 942.56 120,398.80 491,625.00 638,027.00 292.43 2720.83 11,417.40 12,190.73
Count 642.00 642.00 642.00 642.00 642.00 642.00 642.00 642.00 642.00 642.00 642.00 642.00
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Figure 4. Flowchart of the research approach.

The decision tree algorithm is based on a classification technique with supervised
learning and is used to solve various computational problems with both a regression and
classification nature. The tree-like structure of the decision tree can be used to solve the
problem. In this algorithm, the nodes are divided into two consecutive sub-nodes up to
the end nodes, which, in turn, determine the shape of the decision tree. The identification
of the attributes from the root node at each level is considered to be a challenging task
when using the decision tree algorithm. The whole procedure is called “the selection
of attributes”. The division in the nodes is made on the basis of criteria. In the case of
regression issues, the division is made by determining the point of separation, while in
the case of classification issues, the criterion for division is the value of one of the classes.
Different learning algorithms were used to split the nodes in order to obtain a convergence
of the results. Moreover, a convergence of the results can also be obtained by using n
number of trees in the algorithm.

ANN is considered to be one of the most popular machine learning algorithms. An
ANN can be used for learning, predicting and making decisions based on input data.
The basic datasets for ANN models include training, testing, and validation. During the
training process, the ANN learns based on the patterns of the prediction model. The
validation process evaluates the accuracy of the trained model. According to the literature
survey, the feed forward and the feed forward back propagation (FFBP) neural networks
are the most commonly used when solving engineering problems [70]. These types of
ANN consist of input, hidden and output layers that contain neurons [71]. It is activated
using the activation function, as can be seen in Figure 5.

GEP is a transformative algorithm that designs computer-based programs and models.
These programs usually have a tree structure that is capable of modifying its size (size,
shape and arrangement), like in the case of chromosomes. For this reason, GEP, being a
genotype–phenotypic system, can be much more effective when compared to adaptive
techniques. The programming language of GEP is known as Karva language and is the
same as the LISP languages. The stages of GEP are shown in Figure 6. GEP has many
advantages over other classical regression techniques, as, in other methods, some functions
are initially defined and then analyzed. However, in GEP, no predefined function is taken
into consideration.
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Machine learning algorithms, such as ANNs and ensemble models, are successfully
used to predict the concentration of ions in various conditions. It is possible to predict
the chloride concentration in columns at different heights above the water level. In such
cases, the error of each individual estimation is less than 20% [72]. Moreover, the service
life of a concrete element can be modeled based on the chloride concentration at different
depths in a sample. Linear regression was used for this purpose. The accuracy obtained
by the linear correlation coefficient varied from 0.83 to 1.0 and was dependent on the
zone in which the element was located [73]. In turn, ensemble models were used to
predict the surface chloride concentration of marine concrete elements with good accuracy.
This accuracy was proved by obtaining a relatively high value of the linear coefficient
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of correlation R2—equal to 0.83 [74]. Even though algorithms were previously used to
predict the chloride concentration in concrete elements, there are no records of using gene
expression programming for predicting chloride concentrations on the surface of marine
concrete elements.

3. Results and Their Analyses
3.1. Statistical Analysis

The results of the statistical analyses (presented as a relation between the measured
value of Cs and the value identified by the machine learning algorithms) and the error
distribution charts are presented in Figure 7. ANN gives a strong relation in the form of
R2 = 0.84, as can be seen in Figure 7a—with its error distribution shown in Figure 7b. The
error distribution in Figure 7b illustrates that the average error of the training set is equal
to 0.108 MPa. Moreover, the maximum and minimum error values of the training set were
noted as 0.801 MPa and 0.0035 MPa, respectively. In addition, 69.1 percent of the data
showed an error of less than 0.10 MPa, however, 64.3 percent of the data showed an error
between 0.01 MPa and 0.10 MPa, as illustrated in Figure 7b.

The prediction of surface chloride concentration by employing the GEP algorithm
yields a strong relationship between the targeted and output values of chloride concen-
trations, as shown in Figure 7c. It is also clear that this model gives a better response
with less variance. GEP with an R2 value of 0.88 had a better accuracy when compared
to the ANN (R2 equal to 0.84) and DT (R2 equal to 0.72), as depicted in Figure 7. In turn,
Figure 7d indicates the error distribution of the linear regression model. It can be seen that
72.86 percent of the data showed an error between 0.01 MPa and 0.10 MPa, and that the
average error of the training set was equal to 0.080 MPa. Moreover, the maximum and
minimum errors were equal to 0.76 MPa and 0.004 MPa.

The influence of variables on the prediction of surface chloride concentrations using
linear regression is illustrated in Figure 7e. The algorithm yields a decreased or poor
correlation when predicting targets, which is indicated by the value of R2 being equal to
0.72, as shown in Figure 7e. In addition, Figure 7f presents the error distribution of the
linear regression model and shows an average value of error equal to 0.12 MPa, with a
maximum error value of 1.36 MPa. In turn, 82.1 percent of the model has an error between
0.005 MPa and 0.25 MPa.

3.2. K-Fold Cross Validation

The actual performance of the models was analyzed using the statistical cross-validation
method. This method was used to evaluate the performance of the model. The K-fold
validation test takes place in such a way that data are set randomly and split into k-groups.
In this case, the data were divided into 10 groups, of which nine were used for training,
and one was used for validation of the model. This was then repeated ten times in order
to obtain the average value of these repetitions. When using the 10-fold cross-validation
method, it is possible to obtain a relatively high performance of a model. Moreover, a
statistical check was also applied to evaluate the model [72]. This statistical analysis is a
check that shows the response of the model towards the prediction, as illustrated in the
form of the equations listed below (Equations (2)–(5)).

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(2)

MAE =
∑n

i=1|exi − moi|
n

(3)

MSE =
∑n

i=1(moi − exi)
2

∑n
i=1(ex− exi)

2 (4)
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R =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(5)

where,

exi—experimental value;
moi—predicted value;
exi—mean experimental value;
moi—mean predicted value obtained by the model;
n—number of samples.

Correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE),
and root mean square error (RMSE) were all used to evaluate the result of cross-validation,
as can be seen in Figure 8. A comparison of all three individual model techniques indicated
fluctuation in their outputs. The GEP model showed fewer errors with a much better
R2 value when compared to the ANN and DT. The average R2 value of GEP modeling
was equal to 0.79, with maximum and minimum values being 0.94 and 0.65, as illustrated
in Figure 8a. The average value of R2 for the ANN model was equal to 0.71, with the
maximum and minimum values being 0.89 and 0.62. Similarly, the DT model gave an
average R2 value of 0.82, with maximum and minimum values being 0.93 and 0.68, as
illustrated in Figure 8b,c. The values of the errors of all the models were relatively low in
the case of the validation process. For GEP, they were: MAE = 7.03 MPa, MSE = 6.12 MPa,
and RMSE = 2.46 MPa (Figure 8a). In the case of the ANN, they were: MAE = 7.56 MPa,
MSE = 6.60 MPa, and RMSE = 2.54 MPa (Figure 8b); and in the case of the decision tree,
they were: MAE = 7.66 MPa, MSE = 6.85 MPa, and RMSE = 2.61 MPa (Figure 8c). Moreover,
the K-fold cross validation of all the applied models and statistical checks are listed in
Tables 4 and 5, respectively.

Table 4. Results of k-fold cross validation.

K-Fold GEP ANN DT

R2 MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE

1 0.78 7.66 5.67 2.38 0.89 8.98 4.67 2.16 0.91 10.56 7.58 2.75
2 0.86 6.55 6.38 2.53 0.74 7.29 5.98 2.45 0.86 7.28 9.39 3.06
3 0.89 6.65 4.89 2.21 0.87 7.98 8.98 3.00 0.72 7.25 6.93 2.63
4 0.92 9.79 3.89 1.97 0.88 9.10 6.25 2.50 0.93 7.84 6.77 2.60
5 0.73 5.38 6.89 2.62 0.62 5.98 5.47 2.34 0.68 9.18 6.21 2.49
6 0.65 5.73 7.26 2.69 0.71 8.40 6.87 2.62 0.75 6.84 5.39 2.32
7 0.74 6.21 6.98 2.64 0.65 8.32 4.22 2.05 0.84 9.10 6.16 2.48
8 0.94 5.11 7.24 2.69 0.78 6.98 5.18 2.28 0.93 6.84 5.89 2.43
9 0.69 9.36 5.55 2.36 0.75 5.78 9.37 3.06 0.69 5.77 7.21 2.69

10 0.75 7.89 6.43 2.54 0.82 6.74 8.96 2.99 0.90 5.98 6.98 2.64

Table 5. Statistical checks.

Machine Learning Methods MAE (MPa) MSE (MPa) RMSE (MPa)

Gene Expression Program 4.36 28.51 5.33
Artificial Neural Network 4.48 31.86 5.64

Decision Tree 4.55 36.73 6.06
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4. Discussion

This research describes the predictive performance of chloride concentrations on the
surface of marine structures using individual supervised machine learning algorithms. The
three machine learning algorithms used during the investigation were: artificial neural
network, decision tree, and gene express programming. GEP, with an R2 value of 0.88,
was the most accurate when compared to the ANN (R2 equal to 0.84) and DT (R2 equal
to 0.72). This algorithm was also compared with those used in [18], and the results of the
comparison accuracy are presented in Figure 9.

It can be seen from Figure 9 that the proposed GEP algorithm accurately describes
chloride surface concentrations when compared to other algorithms. This is confirmed by
the very high value of linear correlation coefficient R2, which is on a comparable level to
other algorithms used in the literature.
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5. Conclusions

This research describes the predictive performance of chloride concentrations on the
surface of marine structures using individual supervised machine learning algorithms.
The three algorithms—the artificial neural network, the decision tree, and gene expression
programming—were used for the investigations. The most accurate among these three
was GEP, which was proved by the fact that it obtained the highest value of the linear
correlation coefficient and the lowest values of the parameters describing the errors of
prediction. The following conclusions can be drawn:

• The GEP algorithm is very effective for predicting chloride surface concentrations
and can be successfully used for this purpose. This was also proved by comparing it
with other algorithms used in the literature.

• The presented method does not depend on the zone in which it is used (except the
atmospheric zone where the transport of chloride ions is more difficult to describe).

• The high performance of the GEP algorithm was also proved using k-fold validation.

The chloride surface concentration model, which uses gene expression programming,
was proposed in this work. It can be successfully used without the need of investing
significant time and money, as is the case with long term experiments. However, there is
still room for improvement:

• The dataset can be expanded with laboratory tests, field tests, or numerical analyses
using different upsizing methods (e.g., Monte Carlo).

• There is still the possibility of expanding the dataset with the results of surface
chloride concentrations obtained for elements located in the atmospheric zone.

• Due to the fact that there is no model in the literature that is 100% accurate, there is
still the possibility of using a different, more accurate, algorithm.
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Abbreviations

Notations
ML Machine learning
HPC High performance concrete
GGBS Ground granulated blast furnace slag
GEP Genetic engineering programming
ANN Artificial neural network
Dt Decision tree
DL Deep learning
DM Deep machine
RF Random forest
GB Gradient boosting
FA Fly ash
SF Silica fume
POFA Palm oil fuel ash
SCC Self-compacting concrete
RHA Rice husk ash
RKSA Random kitchen sink algorithm
SVM Support vector machine
ANFIS Adaptive neuro fuzzy inference system
IREMSVM-FR Intelligent rule-based enhanced multiclass support vector machine
RMS Response surface method
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