
Article
Social behavioral profiling
 by unsupervised deep
learning reveals a stimulative effect of dopamine D3
agonists on zebrafish sociality
Graphical abstract
Highlights
d Social behavioral classification in zebrafish by unsupervised

deep learning

d Analysis is high throughput and can be used for drug or

genetic screening

d 237 neuroactive compounds are assessed for effects on

sociality

d Discovery of a social stimulative effect of dopamine D3

agonists
Geng et al., 2023, Cell Reports Methods 3, 100381
January 23, 2023 ª 2022 The Author(s).
https://doi.org/10.1016/j.crmeth.2022.100381
Authors

Yijie Geng, Christopher Yates,

Randall T. Peterson

Correspondence
yijie.geng@pharm.utah.edu (Y.G.),
randall.peterson@pharm.utah.edu
(R.T.P.)

In brief

Geng et al. develop an automated

zebrafish social behavioral classification

method based on unsupervised deep

learning. This approach helps assess and

compare 237 neuroactive compounds for

their effects on sociality and discovers a

social stimulative effect of dopamine D3

agonists.
ll

mailto:yijie.geng@pharm.utah.edu
mailto:randall.peterson@pharm.utah.edu
https://doi.org/10.1016/j.crmeth.2022.100381
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100381&domain=pdf


OPEN ACCESS

ll
Article

Social behavioral profiling by unsupervised
deep learning reveals a stimulative effect
of dopamine D3 agonists on zebrafish sociality
Yijie Geng,1,* Christopher Yates,1 and Randall T. Peterson1,2,*
1Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
2Lead contact

*Correspondence: yijie.geng@pharm.utah.edu (Y.G.), randall.peterson@pharm.utah.edu (R.T.P.)

https://doi.org/10.1016/j.crmeth.2022.100381
MOTIVATION To systematically assess the effects of hundreds of neuroactive chemicals on social
behavior, a high-throughput and high-resolution behavioral analysis platform is needed. However, current
assays of sociality are limited in throughput and resolution. Furthermore, most of these assays rely on hu-
man interpretation to classify behavior, which is prone to bias and error. We developed an unsupervised
machine-learning-based social behavioral analysis system to circumvent these limitations.
SUMMARY
It has been a major challenge to systematically evaluate and compare how pharmacological perturbations
influence social behavioral outcomes. Although some pharmacological agents are known to alter social
behavior, precise description and quantification of such effects have proven difficult. We developed a scal-
able social behavioral assay for zebrafish named ZeChat based on unsupervised deep learning to charac-
terize sociality at high resolution. High-dimensional and dynamic social behavioral phenotypes are automat-
ically classified using this method. By screening a neuroactive compound library, we found that different
classes of chemicals evoke distinct patterns of social behavioral fingerprints. By examining these patterns,
we discovered that dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists
pramipexole, piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic-acid-induced zebrafish
autismmodel. The ZeChat platform provides a promising approach for dissecting the pharmacology of social
behavior and discovering novel social-modulatory compounds.
INTRODUCTION

Sociality is broadly conserved across the animal kingdom, facili-

tating cooperation, reproduction, and protection from predation.

In humans, social dysfunction is a hallmark of several neuropsychi-

atricdisorderssuchasautism,schizophrenia, bipolardisorder, and

William syndrome, to name a few. In particular, social communica-

tion impairment is considered a core symptom of autism. Despite

its importance, we lack a comprehensive understanding of how

the diverse classes of neuroactive drugs impact social behavior.

This is evidenced by the fact that although certain antipsychotics,

antidepressants, and stimulants medications are used clinically

to help manage some symptoms of autism,1,2 no treatment is

currently available to ameliorate the disease-relevant social deficit.

It has been a major challenge to comprehensively assess and

compare how chemicals affect complex behaviors such as soci-

ality. Simple in vitro assays cannot effectively model drug effects

on whole organisms, especially on brain activity. Rodent models

lack sufficient throughput and are cost prohibitive for a compre-
Cell Rep
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hensive examination of the hundreds of neuroactive drugs

currently available, limiting their uses to small-scale hypothe-

sis-driven testing. On the other hand, the zebrafish has become

an increasingly important model organism for social behavioral

research,3 and recent developments in zebrafish behavioral

profiling have demonstrated a promising alternative approach

to meeting this challenge. Indeed, multidimensional behavioral

profiling in zebrafish has been used to systematically assess

thousands of chemicals for effects on motor responses,4,5

rest/wake behavior,6 and appetite.7

Current methods of social behavioral analysis in zebrafish are

mostly limited to quantifying the average measurement of a hu-

man-defined simplex trait suchassocial preference,8 social orient-

ing,9 and group cohesion,10 or a collection of several simplex

traits,11 with limited throughput. Restricted by their unidimensional

nature, these measurements often fail to adequately represent the

complex and multidimensional nature of social behavior in space

and time. To comprehensively assess social behavior for behav-

ioral profiling, we sought to develop an automated method to
orts Methods 3, 100381, January 23, 2023 ª 2022 The Author(s). 1
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classify the real-time dynamics of social behavior based solely on

information provided by the data, without any human intervention,

in a scalable format. To achieve this goal, we adopted an unsuper-

vised deep-learning approach: deep learning based on a convolu-

tional autoencoder can automatically extract social-relevant fea-

tures from a behavioral recording, while unsupervised learning

allows for unbiased classification of real-time behavioral pheno-

types; both processeswere conducted free of human instructions.

Here, we report a fully automated and scalable social behavioral

profiling platform named ZeChat. Built on an unsupervised deep-

learning backbone, ZeChat embeds the high-dimensional and

dynamical social behavioral data into a 2-dimensional space and

assigns the embeddeddatapoints to distinct behavioral categories,

thus converting a fish’s entire social behavioral recording to a

behavioral fingerprint in the form of a numerical vector. Screening

237 known neuroactive compounds using the ZeChat system

generated a rich set of social-relevant behavioral phenotypes,

which enabled unbiased clustering and classification of drug-

treated animals. Based on the social behavioral profile compiled

from the screen, we discovered a social-stimulative effect of dopa-

mine D3 receptor agonists (D3 agonists). Acute exposure to D3 ag-

onists rescued social deficits in a valproic-acid-induced zebrafish

autismmodel.Our results demonstrate thatmultidimensional social

behavioralphenotypescanbedistilled intosimplebehavioral finger-

prints to classify the effect of psychotropic chemicals on sociality.

RESULTS

Rationale and overview of the ZeChat behavioral
analysis framework
TheZeChatworkflow issummarized inFigure1A.Weprobedsocial

interaction in a2-chambersetup inwhicheachfish swims freely in a

square arena with visual access to its partner fish through a trans-

parent window. In this setup, a fish’s position inside the arena, as

well as its posture andmovement dynamics,weredeemed relevant

for social interaction. Inspired by Berman et al.,12 we sought to

describe social behavior as a point moving through a high-dimen-

sional space of positional, postural, and motional features and to

assignsegmentedsubspaces tosubbehaviors. First, apreprocess-

ing step distilled social-relevant information from the recorded im-
Figure 1. The general framework of ZeChat behavioral analysis

(A) To analyze a ZeChat recording, a separate video clip is first generated for each

clip is orientated so that the transparent window is always aligned to the top edg

and motion-related information. The preprocessed images are fed into an autoen

feature vector are each converted to a spectrogram by time-frequency analysis.

and classified to distinct behavioral categories by nonlinear embedding and clas

(B) The 3-dimensional design of the 40-unit ZeChat testing array.

(C) A screenshot of ZeChat recording, which is also zoomed in to show an indep

(D) Intermediate and resulting images of the preprocessing procedure. The fish is

subtracted (silhouette). In parallel, the tracked fish is colored by dense optical flo

silhouette to generate a merged image (merge).

(E) Training the convolutional autoencoder. Preprocessed images (left, input im

constructed (right, reconstructed images). The encoder layers are responsible for

latent vector, which is then used to reconstruct the input image by the decoder

(F) Training dataset embedded into a 2-dimensional ZeChat map. A reference ma

SNE was then used to embed an additional 60,000 datapoints (blue).

(G) Probability density function (PDF) of the ZeChat map containing 10,000 ran

Gaussian.

(H) PDF of the ZeChat map was segmented into 80 distinct behavioral categorie
ages. A convolutional autoencoder then unbiasedly extracted key

features from the preprocessed images to a latent vector, which

is then projected onto its first 40 principal components. We con-

verted the time series of each principal component to a wavelet

spectrogram to incorporate behavioral dynamics into a feature

vector. Finally, each feature vector was embedded into a

2-dimensaional map and classified to distinct behavioral

categories.

Social-relevant information can be extracted via
behavioral recording and image preprocessing
The zebrafish becomes socially active at 3 weeks of age8 while re-

maining small in size (�1 cm long), enabling us to visualize social

interaction inaconfinedspace.Toalloweasyseparationof individ-

ual fish for subsequent analysis, pairs of fishwere each placed in a

separate 2 3 2 cm arena and allowed to interact only through a

transparent window (Figure S1A; Video S1). A custom-built high-

throughput imaging platform was used to record 40 pairs of fish

simultaneouslywithsufficient spatiotemporal resolution tocapture

dynamic changes of the fish’s postures and positions (Figures 1B

and 1C; Video S2). Sexual dimorphism is not readily apparent at

this stage, so fish were paired without sex distinction.

For image preprocessing, images of each arena were cropped

with the transparent window always in the upright position to

preserve fish’s positional information. Each fish was first tracked

to be isolated from the background (Figure 1D and Video S3:

tracked). Consecutive frames were subtracted to show postural

changes between consecutive frames in the resulting silhouette

(Figure 1D and Video S3: silhouette). In parallel, we colored each

fish based on its instantaneous direction and velocity of move-

ment calculated by dense optical flow13 (Figure 1D and Video

S3: dense optical flow). Finally, each dense optical flow image

was masked by its corresponding silhouette to generate a

merged image (Figure 1D and Video S3: merge; Figure S1C).

Preprocessed images can be transformed to feature
vectors by feature extraction and time-frequency
analysis
Without any human intervention, convolutional autoencoders

can automatically ‘‘learn’’ to extract useful features from input
fish by cropping out the ZeChat arena in which it is located. Each cropped video

e of the clip. Each frame is then preprocessed to preserve positional, postural,

coder for feature extraction. The main principal components of the extracted

The resulting spectral feature vectors are embedded into a 2-dimensional map

sification.

endent testing unit.

first tracked to remove background (tracked). Consecutive tracked frames are

w (dense optical flow). Finally, the dense optical flow image is masked by the

ages) are fed into the 7-layer convolutional autoencoder (middle) to be re-

compressing the input image into a latent representation space in the form of a

layers.

p containing 3,000 datapoints (red) was first embedded using t-SNE. Kernel t-

domly selected datapoints. Generated by convolving the ZeChat map with a

s by performing a watershed transform.
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A B Figure 2. ZeChat map reflects social interac-

tions between partner fish

PDFmaps of wild-type fish behavior in the presence

(A) or absence (B) of a partner fish. n = 10 for both

experiments.
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images into a latent vector, which is then used to reconstruct

these images. We therefore used this deep-learning architecture

to extract key features of the preprocessed images into the latent

vector for subsequent analyses. As part of the initial setup, we

first pretrained the convolutional autoencoder using a training

set of preprocessed images (Figures 1E and S1D). The autoen-

coder forces input images to pass through a ‘‘bottleneck’’—the

latent representation space—before reconstruction. The dimen-

sion of the latent vectormust be set properly, as a dimension that

was too low would not allow the autoencoder to extract all key

features of the input image and therefore would jeopardize the

quality of reconstruction, whereas if the dimension was set too

high, the ‘‘bottleneck’’ will not work effectively, and the unsuper-

vised learning process may be compromised. We empirically

adjusted the size of the latent vector to a dimension of 784, which

was the lowest dimension we tested that allowed accurate

reconstruction of the input images. The resulting latent vectors

were projected onto the first 40 principal components by a prin-

cipal-component analysis (PCA), preserving �95% of the total

variance, a commonly used cutoff for PCAs. When running the

ZeChat analysis, preprocessed images were converted to time

series of 40 principal components by the pretrained autoencoder

and PCA models.

Behaviors happen in durations, necessitating time to be taken

into consideration to properly interpret information extracted

from the behavioral recordings. To embed time-related informa-

tion into the final feature vector, we adopted the method of

applying continuous wavelet transform (CWT) on the time series

of each of the 40 principal components to capture oscillations

across many timescales.12 From the 40 resulting spectrograms,

25 amplitudes at each time point were concatenated into a single

vector of length 403 25. Up to this point, each original recorded

frame was converted to a single 1,000-dimensional feature vec-

tor (Figure S1E).

Feature vectors are assigned to behavioral categories
by nonlinear embedding and classification
Finally, we adopted a method developed by Berman et al.,12

with modifications, to assign feature vectors to behavioral cate-

gories through nonlinear embedding and classification. The
4 Cell Reports Methods 3, 100381, January 23, 2023
high-dimensional feature vectors were

embedded to a 2-dimensional space by

nonlinear dimensionality reduction using

t-distributed stochastic neighbor embed-

ding (t-SNE).14 Due to computational limi-

tations, we first embedded a small subset

of randomly sampled feature vectors to

create a reference map. Because t-SNE is

nonparametric, we applied a parametric

variant of t-SNE named kernel t-SNE15 to
embed additional datapoints onto the referencemap.We named

the resulting 2-dimensional behavioral space the ZeChat map

(Figure 1F).

Calculating the probability density function (PDF) of the Ze-

Chat map identified regions with high datapoint density as local

maxima (Figure 1G), marking the locations of potential behav-

ioral categories.12 We segmented the ZeChat map into 80 re-

gions based on locations of the local maxima using a watershed

transform algorithm, allowing each original recorded frame—

now embedded as a datapoint in the ZeChat map—to be

assigned to a particular behavioral category (Figure 1H).

We visually examined short segments (>50 consecutive

frames) of the video containing frames that were classified to

the same behavioral category. We found that not all 80 behaviors

can be clearly assigned to a human-defined behavior, which

was not surprising due to the general lack of interpretability

of deep-learning-based classifications. Interestingly, the

higher-numbered behaviors (>40) tend to appear more ‘‘social’’

compared with the lower-numbered behaviors, with fish staying

closer to the transparent window and appearing more interested

in interacting with its partner fish. We selected video clips to

show several behavioral categories with what appears to be

humanly interpretable behaviors (Video S4).

Behavioral distributions on theZeChatmap are different
in the presence or absence of a partner fish
To examine whether behavioral distributions on the ZeChat map

reflect social interactions between partner fish, we compared the

PDFs of 10 wild-type fish with or without a partner fish. We found

that their behavioral distributions are very different on the ZeChat

map (Figure 2). In addition, in the presence of a partner fish, the

behavioral distribution covers almost all regions of the ZeChat

map (Figure 2A), whereas in the absence of a partner fish, the

behavioral distribution becomes much more restricted (Fig-

ure 2B). This result indicates that the ZeChat map can indeed

identify behaviors that are specific to social interactions.

The ‘‘pause-move’’ dynamic of ZeChat map
We made videos to help visualize how a fish’s real-time behav-

ioral changes translate to datapoint trajectories on the ZeChat
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Figure 3. The pause-move dynamic of the ZeChat map

(A) A typical datapoint trajectory in the Z1 and Z2 axes of the ZeChat map showing a pause-move dynamic.

(B) PDF maps of low-velocity (<1) and high-velocity (R1) datapoints. The low-velocity datapoints are enriched in distinct positions that closely match the local

maxima positions in Figure 1G, whereas the high-velocity datapoints showed a more diffuse distribution pattern.
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map (Video S5). We found that the trajectory of the

2-dimensional embedding alternates between sustained pauses

within certain regions of the map and rapid movements from one

region to a distant region on the map. Plotting the velocity of the

trajectory revealed a pause-move dynamic (Figure 3A). The low-

velocity points were localized in distinguishable peaks that often

overlappedwith the ZeChat map’s local maxima (Figures 1G and

3B). In contrast, the high-velocity points were more uniformly

distributed (Figure 3B). This result supports the idea that the so-

cial-relevant behavioral changes can be represented by a course

through a high-dimensional space of postural, motional, and po-

sitional features in which the course halts at locations that corre-

spond to discrete subbehaviors.12

Neuroactive compound screening reveals diverse social
behavioral responses
To systematically assess how neuroactive compoundsmodulate

social behavior, we conducted a screen of 237 compounds

including modulators of the dopamine-, serotonin-, and opioid-

related pathways. These pathways were selected because

they have been implicated in influencing social behavior.16–18

Briefly, 3-week-old juvenile fish were treated with compounds

by bath exposure for 1–3 h prior to ZeChat recording. Ten fish

were treated with each compound, and fish treated with the

same compound were paired with each other for ZeChat

recording (Figure 4A). A set of DMSO control fish was included

in every recording.

Each frame was classified into a behavioral category. Count-

ing the number of times a fish’s behavior is classified to each

behavioral category generated a behavioral fingerprint in the

form of an 80-dimensional numerical vector. Fish treated with

the same compound showed highly similar behavioral finger-

prints (Figure 4B), suggesting that the behavioral fingerprints

produced by a given compound are consistent across multiple

individual animals. To consolidate data, we combined the

behavioral fingerprints of fish treated with the same compound

by keeping the median value of each behavioral category. All

237 consolidated behavioral fingerprints plus DMSO controls

were normalized, and the medians of DMSO controls were sub-
tracted from all samples to help visualize changes in behavioral

fingerprints compared with wild-type behavior.

Hierarchical clustering reveals a diversity of behavioral re-

sponses (Figures 5 and S2). We found that compounds

belonging to the same functional class tend to evoke similar

behavioral fingerprints (Figures 6A and S3A–S3C). Indeed, the

Pearson correlation coefficients within most functional drug

classes are high than the correlation coefficient for all 237 com-

pounds (Figure S3D). Some functional drug classes, however,

did not show strong correlation (Figure S3D), which could be

due to various reasons such as off-target effects of individual

compounds. To compare the typical behavioral fingerprints of

major drug classes, we calculated the median value of each

behavioral category for all behavioral fingerprints elicited by

functionally similar molecules. Only drug classes with no fewer

than 3 compounds tested in the screen were included in this

analysis. Hierarchical clustering of the resulting behavioral fin-

gerprints again revealed distinct behavioral phenotypes (Fig-

ure 6B). Remarkably, compounds targeting the 3 major neuro-

transmitter pathways, e.g., the serotonin, dopamine, and

opioid pathways, were naturally separated by hierarchical clus-

tering (Figure 6B, functional classes of drugs are color coded

to distinguish the 3 major pathways).

A potential concern for counting the behavioral classifica-

tions of each frame was that the resulting behavioral finger-

prints might be biased by the dwell time statistics of each

behavioral category, making the clustering differentially depen-

dent on the typical duration of a behavioral category. We there-

fore attempted an alternative approach to generate the finger-

print, which was to count the number of transitions into each

behavioral state so that each state was counted once per event

regardless of its duration. This would allow clustering based on

the relative frequency of behavioral states irrespective of their

durations. We found that the behavioral fingerprints generated

by this method did not significantly differ from the above

method (Figure S4).

Another concern was that some of the behaviors may be

correlated across treatment groups—e.g., a drug that tends to

affect behaviors X and Y simultaneously. PCA showed that
Cell Reports Methods 3, 100381, January 23, 2023 5
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95% of total variance was kept with 35 principal components,

indicating some degree of correlation among the 80 behavioral

categories. This means the clustering results could be biased

by highly correlated behaviors among the 80 behavioral cate-

gories. To correct this potential bias, we calculated the Pearson

correlation coefficient among all 80 behavioral categories and

grouped the correlation patterns through hierarchical clustering.

Based on the clustering result, we grouped the 80 behaviors into

22 clusters (Figures S5A and S5B) and generated behavioral fin-

gerprints for each drug treatment based on these clusters (Fig-

ure S5C). We again observed similar behavioral fingerprints

within each functional drug class (Figure S6A). However, when

clustering the median behavioral fingerprint of each drug class,

we observed a relatively poor separation for compounds target-

ing the 3 major neurotransmitter pathways (Figure S6B)

compared with clustering behavioral fingerprints generated by

the 80 behavioral categories (Figure 6B), indicating that some

of the phenotypical measurements were lost by grouping 80 be-

haviors into the 22 clusters.

Finally, to compare ZeChat with more conventional behavioral

measurements such as velocity and proximity for their abilities to

phenotypically classify drug effects, we calculated fish’s average

velocity and average distance to the transparent window for

each drug treatment. A continues change was seen across all

drug treatments for these two parameters, and we did not

observe any natural classification of functional drug classes

based on these measurements alone (Figures S7A and S7B).

Dopamine D3 receptor agonists rescue social deficits in
a valproic acid (VPA)-induced autism model
Surprisingly, we noticed that the dopamine D1, D2, and D3 re-

ceptor agonists were clustered well apart from each other (Fig-

ure 6B, black arrows), suggesting that selected activations of

the dopamine D1-, D2-, and D3-receptor-related neuronal cir-

cuits elicited distinct social behavioral phenotypes. The five D3

agonists tested in the 237-compound screen generated highly

similar behavioral fingerprints sharing a unique pattern in which

strong signals are observed in the higher-number behavioral cat-

egories (Figures 7A and 7B). In contrast, the D1 and D2 agonists

elicited very different behavioral fingerprints with no enrichment

in these higher-number behavioral categories (Figure 7A). By

examining raw behavioral recordings, we noticed that the D3-

agonist-treated fish tend to spend a significant amount of time

swimming intensively while pressing against the transparent win-

dow. Comparedwith wild-type animals, these fish demonstrated

persistent and strong high-frequency tail beats, fast swim veloc-

ity, and quick and frequent turns; they also rarely retreated from

proximity to the transparent window (Video S6; Figure 7C). We

hypothesized that these D3-agonist-associated behaviors may

signify enhanced sociality.

We attempted to validate the hypothesized social stimulative

property of D3 agonists in a zebrafish autismmodel with a social
Figure 4. Neuroactive compounds produce highly reproducible behav

(A) A schematic of the screening procedure.

(B) Behavioral fingerprints of individual fish treated by different chemicals. Each

resents the total number of times a fish is assigned to a behavioral category. Horizo

fish is assigned to a behavioral category.
deficit phenotype. Embryonic exposure to VPA is an established

model of autism in rodents19 and zebrafish.20 Using a simple ze-

brafish social preference assay,21 we observed a clear social

deficit phenotype in VPA-treated zebrafish (Figure S7C). To

test the effect of D3 agonists against social deficits, we acquired

3 structurally diverse D3 agonists: pramipexole, piribedil, and

7-hydroxy-DPAT-HBr (Figure S7D). Both pramipexole and piri-

bedil are FDA-approved antiparkinsonian agents. We found

that exposure to D3 agonists for 1 h by simple submersion prior

to the social preference assay effectively rescued the social

deficit in the VPA-treated fish as shown by the social preference

assay (Figure 7D). D3 agonists also altered the behavioral distri-

bution of the VPA-treated fish on the ZeChat map to a pattern

that is very similar to DMSO-treated fish (Figure 7E). By calcu-

lating the Pearson correlation coefficients among these behav-

ioral fingerprints, we showed that the behavioral fingerprints of

DMSO-treated fish were indeed highly correlated with that of

the D3-agonist-treated fish, but not with VPA-treated fish (Fig-

ure S7E), indicating that D3 agonists successfully rescued the

social deficit behaviors of VPA-treated fish.

DISCUSSION

ZeChat is a deep-learning-based behavioral assessment tool

enabling scalable and low-cost zebrafish behavioral profiling to

characterize changes in sociality. The in vivo ZeChat platform

combines advantages of in vitro and rodent models, enabling

scalable testing with high behavioral resolution. Compared

with previous zebrafish behavioral profiling methods, the ZeChat

analysis method specifically processes and analyzes social-

behavior-relevant information, linking known neuroactive drugs

with complex, but distinct, social behavioral outcomes.

Apart from unsupervised machine learning, alternative ap-

proaches are available for improving the resolution of social

behavioral analysis but not without drawbacks. For example, su-

pervised machine-learning methods have been widely adopted

to analyze social interactions in fruit fly,22,23 zebrafish,24 and

mouse.25 However, this method still relies on human interpreta-

tion of animal behavior to classify and assign behavior and is

likely unable to fully reveal the complexity and subtilty of social

behavior. Another approach uses predefined measurement

criteria to mathematically model and classify social interac-

tion,26,27 which reduces human biases in the analysis, but the

quality of its outcome is highly dependent upon the validity of

themodel. In comparison, unsupervisedmethods have success-

fully revealed stereotypic behavioral motifs in individual animals

of Caenorhabditis elegans,28–34 fruit fly,12,35–39 zebrafish,40–43

and mouse,44,45 as well as paired interactions in fruit fly,46,47

without any human interventions or a priori assumptions,

providing a viable approach for our purpose.

However, all these approaches still rely on manual selection of

features for data preprocessing, which requires strong domain
ioral fingerprints

row represents the behavior fingerprint of an individual fish. Each square rep-

ntal axis: the 80 behavioral categories. Color bar: cumulated number of times a

Cell Reports Methods 3, 100381, January 23, 2023 7



Figure 5. Hierarchical clustering reveals distinct drug-

induced behavioral responses

Hierarchical clustering of behavioral fingerprints generated by the

screen. Each behavioral fingerprint (row) represents the median value

of the individual fingerprints of all fish (n% 10 per treatment) treated by

the same compound. The behavioral fingerprints are normalized for

each behavioral category and subtracted by the median DMSO

fingerprint. Horizontal axis labels the 80 behavioral categories.
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Figure 6. Functionally similar molecules evoke similar behavioral responses
(A) Neuroactive compounds with similar annotated functions elicit similar behavioral fingerprints.

(B) Behavioral fingerprints of functionally similar molecules are consolidated to a single behavioral fingerprint by calculating the median value of each behavioral

category, and the resulting behavior fingerprints are hierarchically clustered. Only groups of drugs containing no less than 3 compounds sharing the same

annotated function are included in the analysis. The group labels are colored by the targeted pathway. Black arrows point to behavioral fingerprints of dopamine

D1, D2, and D3 receptor agonists, respectively.
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knowledge in the behaving animal. These prerequisites are not

always met, especially when faced with complex problems

such as analyzing subtle behavioral changes in a video or

analyzing sequences of behaviors, as it is difficult for a human

observer to exhaustively extract useful features from an image

or a sequence of images. Deep-learning methods, on the other

hand, can automatically learn to extract abstract features from

images. As behavioral recordings are sequences of images,

the potential benefit for applying deep learning to process these

data is apparent. In fact, several recent studies have successfully

utilized deep learning to facilitate individual animal identifica-

tion,48 tracking,49 and movement prediction50 in zebrafish,

paving the way for its application in ZeChat.

In alignment with our findings, the D3 receptor has been pre-

viously implicated in social behavioral regulation. In humans,

pramipexole alleviates social anxiety in selective serotonin reup-

take inhibitor (SSRI)-treated patients.51 In rodents, two D3 ago-

nists, 7-OH-DPAT and PD 128907, were reported to cause a va-

riety of complex alterations in social behavior.52,53 Further
investigations are needed to validate these findings in rodents

using other D3 agonists and under different test conditions,

drug doses, and genetic backgrounds of the animals, but the

results in zebrafish, rats, and humans all point to an important

role of D3 receptors in modulating social behavior. In addition,

because both pramipexole and piribedil are FDA-approved anti-

parkinsonian agents, it may be worthwhile examining their

impact on the social behavior of patients receiving these drugs.

Future studies using the ZeChat platform may expand to

screening other neuroactive compounds, compounds with

no known neuroactivity, and uncharacterized compounds in

the hope of identifying additional phenotypes and drug classes

with social-modulatory properties. The characteristic behavioral

fingerprint of the D3 agonists may be used to discover

novel compounds with similar behavioral effects. In addition to

wild-type fish, fish carrying mutations relevant to human psychi-

atric disorders can also be assayed and their behavioral finger-

prints compared with the neuroactive compound clustergram

to associate genetic mutations with perturbations of neuronal
Cell Reports Methods 3, 100381, January 23, 2023 9
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pathways. As demonstrated byHoffman et al.,54 small molecules

evoking an anticorrelated behavioral fingerprint may ameliorate

social deficits in the mutant fish. Hence, by providing a rapid,

high-resolution means of characterizing and categorizing zebra-

fish with altered social behaviors, ZeChat represents a useful

tool for investigating the role of genes and pharmacological

agents in modulating complex social behaviors.

Limitations of the study
As we discussed, the 80 behavioral categories classified by the

current version of ZeChat lack clear interpretability and are often

difficult to be assigned to a human-definable behavior. This was

not surprising as deep-learning-based classifications do not al-

ways produce humanly interpretable results. Nevertheless,

compared with some of the other model organisms, zebrafish

lack clearly distinguishable behavioral bouts—they almost

constantly swim in water—which may have contributed addi-

tional complexity to the task of classification. The current ZeChat

assay setup also physically separates the two interacting fish us-

ing a transparent plastic divider and thus eliminates direct phys-

ical contact between the two fish. This limits the types of social

interactions that can be detected. We hope to extend the scope

of analysis to social interactions that involve direct bodily contact

in future applications.
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13. Farnebäck, G. (2003). Two-frame motion estimation based on polynomial

expansion. Lect Notes Comput Sc 2749, 363–370. https://doi.org/10.

1007/3-540-45103-x_50.

14. Van der Maaten, L., and Hinton, G. (2008). Visualizing high-dimensional

data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605.

15. Gisbrecht, A., Schulz, A., and Hammer, B. (2015). Parametric nonlinear

dimensionality reduction using kernel t-SNE. Neurocomputing 147, 71–82.

16. Gunaydin, L.A., and Deisseroth, K. (2014). Dopaminergic dynamics

contributing to social behavior. Cold Spring Harb. Symp. Quant. Biol.

79, 221–227. https://doi.org/10.1101/sqb.2014.79.024711.

17. Kiser, D., Steemers, B., Branchi, I., and Homberg, J.R. (2012). The recip-

rocal interaction between serotonin and social behaviour. Neurosci.

Biobehav. Rev. 36, 786–798. https://doi.org/10.1016/j.neubiorev.2011.

12.009.

18. Pellissier, L.P., Gandı́a, J., Laboute, T., Becker, J.A.J., and Le Merrer, J.

(2018). Mu opioid receptor, social behaviour and autism spectrum disor-

der: reward matters. Br. J. Pharmacol. 175, 2750–2769. https://doi.org/

10.1111/bph.13808.

19. Nicolini, C., and Fahnestock, M. (2018). The valproic acid-induced rodent

model of autism. Exp. Neurol. 299, 217–227. https://doi.org/10.1016/j.ex-

pneurol.2017.04.017.

20. Chen, J., Lei, L., Tian, L., Hou, F., Roper, C., Ge, X., Zhao, Y., Chen, Y.,

Dong, Q., Tanguay, R.L., and Huang, C. (2018). Developmental and

behavioral alterations in zebrafish embryonically exposed to valproic

acid (VPA): an aquatic model for autism. Neurotoxicol. Teratol. 66, 8–16.

https://doi.org/10.1016/j.ntt.2018.01.002.

21. Geng, Y., Zhang, T., Godar, S.C., Pluimer, B.R., Harrison, D.L., Nath, A.K.,

Yeh, J., Drummond, I.A., Bortolato, M., and Peterson, R.T. (2021). Top2a

promotes the development of social behavior via PRC2 and H3K27me3.

Preprint at bioRxiv. https://doi.org/10.1101/2021.09.20.461107.
12 Cell Reports Methods 3, 100381, January 23, 2023
22. Branson, K., Robie, A.A., Bender, J., Perona, P., and Dickinson, M.H.

(2009). High-throughput ethomics in large groups of Drosophila. Nat.

Methods 6, 451–457. https://doi.org/10.1038/nmeth.1328.

23. Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., and Perona, P.

(2009). Automated monitoring and analysis of social behavior in

Drosophila. Nat. Methods 6, 297–303. https://doi.org/10.1038/

nmeth.1310.

24. Laan, A., Iglesias-Julios, M., and de Polavieja, G.G. (2018). Zebrafish

aggression on the sub-second time scale: evidence for mutual motor co-

ordination and multi-functional attack manoeuvres. R. Soc. Open Sci. 5,

180679. https://doi.org/10.1098/rsos.180679.

25. Hong, W., Kennedy, A., Burgos-Artizzu, X.P., Zelikowsky, M., Navonne,

S.G., Perona, P., and Anderson, D.J. (2015). Automated measurement

of mouse social behaviors using depth sensing, video tracking, and ma-

chine learning. Proc. Natl. Acad. Sci. USA. 112, E5351–E5360. https://

doi.org/10.1073/pnas.1515982112.

26. de Chaumont, F., Coura, R.D.S., Serreau, P., Cressant, A., Chabout, J.,

Granon, S., and Olivo-Marin, J.C. (2012). Computerized video analysis

of social interactions in mice. Nat. Methods 9, 410–417. https://doi.org/

10.1038/nmeth.1924.

27. Harpaz, R., Tka�cik, G., and Schneidman, E. (2017). Discrete modes of so-

cial information processing predict individual behavior of fish in a group.

Proc. Natl. Acad. Sci. USA. 114, 10149–10154. https://doi.org/10.1073/

pnas.1703817114.

28. Brown, A.E.X., Yemini, E.I., Grundy, L.J., Jucikas, T., and Schafer, W.R.

(2013). A dictionary of behavioral motifs reveals clusters of genes affecting

Caenorhabditis elegans locomotion. Proc. Natl. Acad. Sci. USA. 110,

791–796. https://doi.org/10.1073/pnas.1211447110.

29. Stephens, G.J., Bueno de Mesquita, M., Ryu, W.S., and Bialek, W. (2011).

Emergence of long timescales and stereotyped behaviors in Caenorhab-

ditis elegans. Proc. Natl. Acad. Sci. USA. 108, 7286–7289. https://doi.

org/10.1073/pnas.1007868108.

30. Costa, A.C., Ahamed, T., and Stephens, G.J. (2019). Adaptive, locally

linear models of complex dynamics. Proc. Natl. Acad. Sci. USA. 116,

1501–1510. https://doi.org/10.1073/pnas.1813476116.

31. Stephens, G.J., Johnson-Kerner, B., Bialek, W., and Ryu, W.S. (2008).

Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput.

Biol. 4, e1000028. https://doi.org/10.1371/journal.pcbi.1000028.

32. Broekmans, O.D., Rodgers, J.B., Ryu, W.S., and Stephens, G.J. (2016).

Resolving coiled shapes reveals new reorientation behaviors in C. elegans.

Elife 5, e17227. https://doi.org/10.7554/eLife.17227.

33. Gomez-Marin, A., Stephens, G.J., and Brown, A.E.X. (2016). Hierarchical

compression of Caenorhabditis elegans locomotion reveals phenotypic

differences in the organization of behaviour. J. R. Soc. Interface 13,

20160466. https://doi.org/10.1098/rsif.2016.0466.

34. Szigeti, B., Deogade, A., and Webb, B. (2015). Searching for motifs in the

behaviour of larval Drosophila melanogaster and Caenorhabditis elegans

reveals continuity between behavioural states. J. R. Soc. Interface 12,

20150899. https://doi.org/10.1098/rsif.2015.0899.

35. Berman, G.J., Bialek, W., and Shaevitz, J.W. (2016). Predictability and hi-

erarchy in Drosophila behavior. Proc. Natl. Acad. Sci. USA. 113, 11943–

11948. https://doi.org/10.1073/pnas.1607601113.

36. Todd, J.G., Kain, J.S., and de Bivort, B.L. (2017). Systematic exploration of

unsupervised methods for mapping behavior. Phys. Biol. 14, 015002.

https://doi.org/10.1088/1478-3975/14/1/015002.

37. DeAngelis, B.D., Zavatone-Veth, J.A., and Clark, D.A. (2019). Themanifold

structure of limb coordination in walking Drosophila. Elife 8, e46409.

https://doi.org/10.7554/eLife.46409.

38. Pereira, T.D., Aldarondo, D.E., Willmore, L., Kislin, M., Wang, S.S.H., Mur-

thy, M., and Shaevitz, J.W. (2019). Fast animal pose estimation using deep

neural networks. Nat. Methods 16, 117–125. https://doi.org/10.1038/

s41592-018-0234-5.

https://doi.org/10.1038/nchembio.2097
https://doi.org/10.1038/nchembio.2097
https://doi.org/10.1126/science.1183090
https://doi.org/10.1126/science.1183090
https://doi.org/10.1126/sciadv.aav1966
https://doi.org/10.3389/fncir.2015.00039
https://doi.org/10.1016/j.cub.2018.06.016
https://doi.org/10.1016/j.cub.2018.06.016
https://doi.org/10.1016/j.bbr.2007.07.007
https://doi.org/10.1016/j.bbr.2007.07.007
https://doi.org/10.1016/j.isci.2020.100942
https://doi.org/10.1016/j.isci.2020.100942
https://doi.org/10.1098/rsif.2014.0672
https://doi.org/10.1007/3-540-45103-x_50
https://doi.org/10.1007/3-540-45103-x_50
http://refhub.elsevier.com/S2667-2375(22)00286-7/sref14
http://refhub.elsevier.com/S2667-2375(22)00286-7/sref14
http://refhub.elsevier.com/S2667-2375(22)00286-7/sref15
http://refhub.elsevier.com/S2667-2375(22)00286-7/sref15
https://doi.org/10.1101/sqb.2014.79.024711
https://doi.org/10.1016/j.neubiorev.2011.12.009
https://doi.org/10.1016/j.neubiorev.2011.12.009
https://doi.org/10.1111/bph.13808
https://doi.org/10.1111/bph.13808
https://doi.org/10.1016/j.expneurol.2017.04.017
https://doi.org/10.1016/j.expneurol.2017.04.017
https://doi.org/10.1016/j.ntt.2018.01.002
https://doi.org/10.1101/2021.09.20.461107
https://doi.org/10.1038/nmeth.1328
https://doi.org/10.1038/nmeth.1310
https://doi.org/10.1038/nmeth.1310
https://doi.org/10.1098/rsos.180679
https://doi.org/10.1073/pnas.1515982112
https://doi.org/10.1073/pnas.1515982112
https://doi.org/10.1038/nmeth.1924
https://doi.org/10.1038/nmeth.1924
https://doi.org/10.1073/pnas.1703817114
https://doi.org/10.1073/pnas.1703817114
https://doi.org/10.1073/pnas.1211447110
https://doi.org/10.1073/pnas.1007868108
https://doi.org/10.1073/pnas.1007868108
https://doi.org/10.1073/pnas.1813476116
https://doi.org/10.1371/journal.pcbi.1000028
https://doi.org/10.7554/eLife.17227
https://doi.org/10.1098/rsif.2016.0466
https://doi.org/10.1098/rsif.2015.0899
https://doi.org/10.1073/pnas.1607601113
https://doi.org/10.1088/1478-3975/14/1/015002
https://doi.org/10.7554/eLife.46409
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1038/s41592-018-0234-5


Article
ll

OPEN ACCESS
39. Cande, J., Namiki, S., Qiu, J., Korff, W., Card, G.M., Shaevitz, J.W., Stern,

D.L., and Berman, G.J. (2018). Optogenetic dissection of descending

behavioral control in Drosophila. Elife 7, e34275. https://doi.org/10.

7554/eLife.34275.

40. Marques, J.C., Lackner, S., Félix, R., and Orger, M.B. (2018). Structure of

the zebrafish locomotor repertoire revealed with unsupervised behavioral

clustering. Curr. Biol. 28, 181–195.e5. https://doi.org/10.1016/j.cub.2017.

12.002.

41. Mearns, D.S., Donovan, J.C., Fernandes, A.M., Semmelhack, J.L., and

Baier, H. (2020). Deconstructing hunting behavior reveals a tightly coupled

stimulus-response loop. Curr. Biol. 30, 54–69.e9. https://doi.org/10.1016/

j.cub.2019.11.022.

42. Semmelhack, J.L., Donovan, J.C., Thiele, T.R., Kuehn, E., Laurell, E., and

Baier, H. (2014). A dedicated visual pathway for prey detection in larval ze-

brafish. Elife 3, e04878. https://doi.org/10.7554/eLife.04878.

43. Ghosh, M., and Rihel, J. (2020). Hierarchical compression reveals sub-sec-

ond to day-long structure in larval zebrafish behavior. eNeuro 7, ENEURO.

0408, 19.2020. https://doi.org/10.1523/ENEURO.0408-19.2020.

44. Wiltschko, A.B., Johnson, M.J., Iurilli, G., Peterson, R.E., Katon, J.M.,

Pashkovski, S.L., Abraira, V.E., Adams, R.P., and Datta, S.R. (2015). Map-

ping sub-second structure in mouse behavior. Neuron 88, 1121–1135.

https://doi.org/10.1016/j.neuron.2015.11.031.

45. Markowitz, J.E., Gillis, W.F., Beron, C.C., Neufeld, S.Q., Robertson, K.,

Bhagat, N.D., Peterson, R.E., Peterson, E., Hyun, M., Linderman, S.W.,

et al. (2018). The striatum organizes 3D behavior via moment-to-moment

action selection. Cell 174, 44–58.e17. https://doi.org/10.1016/j.cell.2018.

04.019.

46. Klibaite, U., Berman, G.J., Cande, J., Stern, D.L., and Shaevitz, J.W.

(2017). An unsupervised method for quantifying the behavior of paired an-

imals. Phys. Biol. 14, 015006. https://doi.org/10.1088/1478-3975/aa5c50.

47. Klibaite, U., and Shaevitz, J.W. (2020). Paired fruit flies synchronize

behavior: uncovering social interactions in Drosophila melanogaster.

PLoS Comput. Biol. 16, e1008230. https://doi.org/10.1371/journal.pcbi.

1008230.

48. Romero-Ferrero, F., Bergomi, M.G., Hinz, R.C., Heras, F.J.H., and de Po-

lavieja, G.G. (2019). idtracker.ai: tracking all individuals in small or large

collectives of unmarked animals. Nat. Methods 16, 179–182. https://doi.

org/10.1038/s41592-018-0295-5.
49. Wang, S.H., Zhao, J., Liu, X., Qian, Z.M., Liu, Y., and Chen, Y.Q. (2017). 3D

tracking swimming fish school with learned kinematic model using LSTM

network. IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). https://doi.org/10.1109/ICASSP.2017.7952320.

50. Heras, F.J.H., Romero-Ferrero, F., Hinz, R.C., and de Polavieja, G.G.

(2019). Deep attention networks reveal the rules of collective motion in ze-

brafish. PLoS Comput. Biol. 15, e1007354. https://doi.org/10.1371/jour-

nal.pcbi.1007354.

51. Hood, S.D., Potokar, J.P., Davies, S.J.C., Hince, D.A., Morris, K., Seddon,

K.M., Nutt, D.J., and Argyropoulos, S.V. (2010). Dopaminergic challenges

in social anxiety disorder: evidence for dopamine D3 desensitisation

following successful treatment with serotonergic antidepressants.

J. Psychopharmacol. 24, 709–716. https://doi.org/10.1177/

0269881108098144.

52. Kagaya, T., Yonaga, M., Furuya, Y., Hashimoto, T., Kuroki, J., and Nishi-

zawa, Y. (1996). Dopamine D3 agonists disrupt social behavior in rats.

Brain Res. 721, 229–232. https://doi.org/10.1016/0006-8993(96)00288-0.

53. Gendreau, P.L., Petitto, J.M., Petrova, A., Gariépy, J., and Lewis, M.H.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Biomol neuroactive compound library Biomol N/A

Valproic acid Sigma-Aldrich p4543

Pramipexole Cayman Chemical 11981

Piribedil Selleck Chemicals S3656

7-hydroxy-DPAT-HBr Santa Cruz sc-200400

Experimental models: Organisms/strains

EkkWill zebrafish EkkWill Waterlife Resources N/A

Software and algorithms

Python 3.6 The Python Software Foundation https://www.python.org/; RRID:SCR_008394

Custom code This paper Zenodo: https://doi.org/10.5281/zenodo.5519964

Prism 9 GraphPad RRID:SCR_002798

NumPy version 1.19.5 The NumPy community https://numpy.org/; RRID:SCR_008633

OpenCV version 4.1.1 The OpenCV community https://opencv.org/; RRID:SCR_015526

SciPy version 1.3.1 The SciPy community https://scipy.org/; RRID:SCR_008058

imutils version 0.5.3 PyImageSearch https://github.com/PyImageSearch/imutils

Keras version 2.2.5 The Keras community https://keras.io/

Matplotlib version 3.3.4 The Matplotlib community https://matplotlib.org/; RRID:SCR_008624

scikit-learn version 0.21.3 The scikit-learn community https://scikit-learn.org/stable/index.html; RRID:SCR_002577

PyWavelets version 1.1.1 The PyWavelets Developers https://pywavelets.readthedocs.io/en/latest/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Randall

Peterson (randall.peterson@pharm.utah.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request.

Code is available on GitHub: https://github.com/yijie-geng/ZeChat and is archived on Zenodo: https://doi.org/10.5281/zenodo.

5519964.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Fertilized eggs (up to 10,000 embryos per day) were collected from group mating of EkkWill strain zebrafish (Danio rerio) (EkkWill

Waterlife Resources). Embryos were raised in HEPES (10 mM) buffered E3 medium at 28�C, with or without compound treatment,

during the first 3 days. At 3 days post fertilization (dpf), chorion debris was removed, and larvae were transferred into petri dishes

containing fresh E3 medium. At 5–7 dpf, larvae were transferred into nursery tanks and raised at 28�C on a 14/10 h on/off light cycle.

At 21 dpf, animals of both sex (indistinguishable by appearance at this developmental stage) were tested in ZeChat assay. All animal

procedures were preformed according to the University of Utah’s Institutional Animal Care and Use Committee (IACUC) guidelines

under protocol 00,001,487.
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METHOD DETAILS

The ZeChat imaging system setup
The basic unit of this system is a 10 mm deep, 20 mm wide, and 41.5 mm long (internal dimension) rectangular chamber with 2 mm

thickwalls. A 103 4 array consist of 40 independent testing units was 3Dprinted usingwhite PLA at 100% infill. The printed test arena

was glued onto a 3001600 thick white translucent (43% light transmission) acrylic sheet (US Plastic) using a silicone sealer (Marineland).

Each unit was then divided into two square-shaped compartments by inserting a 1.5mm thick transparent acrylic window – precision

cut to 10 3 41 mm pieces using a laser cutter – into 0.5 mm deep printed slots located in the middle of each unit on the side of the

41.5 mm wall and fastened using the silicone sealer.

The key component of the imaging system is a 322 mm diameter bitelecentric lens (Opto Engineering) with an IR (850 nm) band-

pass filter (Opto Engineering). A telecentric lens only allows passing of light that is parallel to the optical axis, thus avoiding parallax

error in imaging, and enables all test units – being located either in the middle or close to the edge of the field of view – to be imaged

without distortion. Videos were taken at 50 frames per second (fps) by a 75 FPS Blackfly S Mono 5.0 MP USB3 Vision camera

(PointGrey) with a resolution of 2448 3 2048. The tail beat frequency (TBF) for adult zebrafish is �20 Hz,55 therefore images taken

at 50 Hz by the camera should adequately sample motion-relevant features based on the Nyquist–Shannon sampling theorem.

The imaging platform was back-illuminated with an infrared (850 nm) LED array (EnvironmentalLights) to provide light for video

recording. The infrared LED array was positioned on top of a heat sink (H S Marston). The imaging platform was also illuminated

from two opposing sides using white LED arrays (EnvironmentalLights) to provide ambient light for the test subjects. Structural sup-

ports and enclosure were custom built using parts purchased from Thorlabs, McMaster Carr, and US Plastic.

ZeChat test
Test subjects were individually placed into each unit – one on each side of the transparent window – using a transfer pipette with its tip

cut off. Their visual access to each other was temporarily blocked by a 3D printed nontransprent comb-like structure (Figure S1B)

prior to each recording session. Once all test subjects were placed into test arenas, the entire test apparatus was transferred into

the imaging station and the combs were removed to allow visual access between each pair of fish.

The 2-compartment social interaction setup allows the behavior of each fish to be recorded and analyzed independently without

having to go through complex and often computationally demanding and time-consuming tracking procedures to separate each fish.

Videos were streamed and recorded using the software Bonsai.56 A 10min test session was video recorded for each test. To give fish

an acclimation period at the beginning of each test and to take into consideration that the effects of some of the drugs tend towear off

quickly, only the 5 min video segment between 2.5 and 7.5 min was used for subsequent analyses. All subsequent data processing

and analyses were conducted in Python using packages including OpenCV, scikit-learn, Keras, PyWavelets, and imutils.

Data preprocessing
For data preprocessing, individual fishwere first separated from the background using the K-nearest neighborsmethod.57 A separate

video segment was cropped out for each fish which contains a recording of the entire square compartment where the fish is located.

Because the relative position of a fish to its compartment is relevant to social interaction dynamics, each compartment was analyzed

as a whole. And because each compartment is polarized, with only one of the four sides being transparent to another fish, for each

pair of compartments, the video containing fish in the ‘‘top’’ compartment is flipped vertically by rotating 180� tomatch the orientation

of video recording the ‘‘bottom’’ compartment, so that the side of the compartment facing the transparent widow always faces up-

ward in each video.

To capture changes in each fish’s posture between consecutive frames, we subtracted every current frame from its previous

frame. The resulting images were binary-thresholded to generate silhouette-like masks. In parallel, we calculated each fish’s direc-

tion ofmovement between consecutive frames using the FranebackMethod of dense optical flow13 and used this information to color

the fish; motionless fish appear dark after applying this method, thus restricting our analysis to fish in motion. Finally, we applied the

mask acquired by subtracting consecutive frames to the dense optical flow image so that the image colored by dense optical flow is

cropped by the subtracted silhouette-like mask.

Training the convolutional autoencoder and feature extraction
The architecture of the convolutional autoencoder consists of three encoding layers each containing 64, 32, and 16 filters, and three

decoding layers each containing 16, 32, and 64 filters. We used a training set of preprocessed images to pre-train the convolutional

autoencoder. The preprocessed images with a dimension of 220 pixels 3 220 pixels were first resized to 56 pixels 3 56 pixels to

reduce computational requirements. Because awild type fish typically spendsmost of the time interacting with its paired fish by stay-

ing close to the transparent window, causing the position of the fish in input images to be highly polarized, we enriched the training

dataset by rotating each resized image by 90�, 180�, and 270� to generate input images with more postural and positional variations.

The autoencoder forcªs inªut images to pass through a ‘‘bottleneck’’ before reconstruction. The bottleneck, or the latent repre-

sentation space, has a dimension of 784. We then applied principal component analysis (PCA) to this 784-dimensional feature vector

and extracted 40 principal components which preserved �95% of total variance.
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Time-frequency analysis of feature dynamics
Calculating the 40 principal components for each video frame yields 40 timeseries for each video. Each timeseries was then

expanded into a spectrogram by applying the Continuous Wavelet Transform (CWT). The Morlet wavelet was used as the mother

wavelet and 25 scales were chosen to match frequencies spanning from 0.38 Hz to 5 Hz, with the range of frequencies empirically

determined to preserve the strongest signals. The time-frequency representation augments the instantaneous representation by

capturing oscillations across many timescales. The spectral amplitudes of each time point were then concatenated into a vector

of length 40 3 25, giving rise to a 1,000-dimensional representation for each original video frame. Each 1,000-dimensional vector

was normalized to having a sum of 1 in order to treat each vector as a probability distribution for subsequent calculation.

Nonlinear embedding and segmentation
We then performed nonlinear dimensionality reduction on these high dimensional vectors using the popular nonlinear manifold

embedding algorithm t-distributed stochastic neighbor embedding (t-SNE).14 We randomly selected and embedded 3,000 feature

vectors from 60 fish to generate a reference map. The t-SNE algorithm is non-parametric. Therefore, additional datapoints were

embedded onto the reference map using a parametric kernel t-SNE15 method to form the ZeChat map. As the feature vectors

are normalized and treated as probability distributions, we calculated the Jensen–Shannon distance (the square root of the

Jensen–Shannon divergence) between each pair of vectors as a distance metric for both t-SNE and kernel t-SNE. We chose the

Jensen–Shannon distance as a metric for calculating distances due to it being symmetric and bounded by 0 and 1 which avoids

the generation of infinite values.

We calculated the probability density function (PDF) of this map by convolving with a Gaussian kernel. Due to computational

limitations, this calculation was conducted using a ZeChat map containing 10,000 randomly selected datapoints. The resulting prob-

ability density map was then inverted to turn local maxima into ‘‘valleys’’. The ‘‘ridges’’ between valleys were detected using Lapla-

cian transform. Finally, a watershed transform was applied to mark the borders between each valley to unbiasedly segment the Ze-

Chat map into 80 behavioral categories.

For ZeChat analysis, to reduce computation time, we randomly sampled 5000 frames from each fish for kernel t-SNE embedding

and subsequent analyses.

Behavioral fingerprint calculation and hierarchical clustering
Each frame is assigned awatershed region (behavioral category) based on ZeChatmap segmentation. For each fish, the total number

of frames assigned to each watershed region was counted, giving rise to a behavioral fingerprint in the form of an 80-dimensional

vector. Behavioral fingerprints of fish treated by each drug were combined into one fingerprint by calculating the median of each

behavioral category. All combined raw behavioral fingerprints were normalized so that the signals of each behavioral category

were between 0 and 1. To help visualize the difference in behavioral patterns between drug treatments and DMSO control, we calcu-

lated the median of each behavioral category of all DMSO controls to generate a representative fingerprint for DMSO control, and

subtracted this fingerprint from all drug treatment samples. Finally, the normalized and DMSO-subtracted fingerprints of each

drug treatment were clustered using the clustermap function (me’ric = ’eucl’dean’, method = ’complete’) of Python’s Seaborn library.

To adjust for dwell time statistics of each behavioral category and correlations among the behavioral categories, we counted the

number of transitions into each behavioral state and grouped the 80 behavioral categories into 22 clusters as two alternativemethods

for generating the behavioral fingerprints.

Zebrafish chemical treatment and screening
For ZeChat testing, 21 dpf zebrafish were collected from nursery tanks. Fish of roughly average size were selected to minimize the

effect of size differences. For the screen, 10 fish were picked into a 60mmPetri dish containing 10mL E3medium. Compounds were

then added to each dish at a final concentration of 10 mM (non-peptide molecules) or 1 mM (endogenous neuropeptides and their

analogs). Fish were incubated for 1–3 h prior to ZeChat testing. Discrepancies in the durations of drug exposure were due to the

fact that drugs were added to each dish within a relatively short period of time, followed by ZeChat testing which took much longer

to complete. Immediately before testing fish in a Petri dish, the content of the Petri dish was poured through a nylon tea strainer to

remove liquid while keeping fish in the tea strainer. The tea strainer was then consecutively dipped into 3 petri dishes containing E3 to

wash the residual chemical away from the fish. The fishwere then poured into a Petri dish containing clean E3 and each individual was

transferred into the ZeChat test arena using a plastic transfer pipette for testing.

Rescue of VPA fish and social preference testing
VPA treatment was conducted by submerging embryos in 1 mM VPA in E3 medium from 0 to 3 dpf. The drug treated embryos were

washed at 3 dpf and transferred to petri dishes containing clean E3 medium. At 5–7 dpf, larvae were transferred into nursery tanks

and raised to 21 dpf for behavioral testing of social preference using a 3-chamber assay apparatus.21 For the D3 agonist rescue

experiment, 20 VPA-treated fish were picked into a 25 mm deep 10 cm Petri dish containing 30 mL E3 medium. Compounds

were then added to each dish and fish were incubated for 1 h. Immediately before testing, fish were washed as described above,

and individually placed into the social preference testing arenas for behavioral testing.
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Briefly, the basic unit of the social preference testing system is a 3D printed, 10 mm deep, 8.5 mm wide, and 80 mm long rectan-

gular chamber. Each chamber is divided into three compartments by two transparent acrylic windows (1.5 mm thick), including a

60mm longmiddle testing chamber for housing the test subject and two 8.5 mm long end chambers, one for housing the social stim-

ulus fish and the other remaining empty as a control compartment. Test subjects were individually placed inside each test chamber

using a plastic transfer pipette with its tip cut off to widen the opening. Their visual access to social stimulus fish was temporarily

blocked by a 3D printed white comb-like structure placed in front of the social stimulus compartment. Once all test subjects were

placed into the test arena array, the array was placed inside the imaging station and the combs were removed to visually expose

the social stimulus fish to the test subjects. After a 2 min acclimation period, a 10 min test session was video recorded. A fish’s

average Y axis position for all frames was calculated as its social score – Y axis is set as the direction along the test chamber,

with the end near the social stimulus fish set as 1, and the other end set as �1. A higher social score indicates a shorter average

distance between a test subject and a social stimulus fish during a test, which suggests a stronger social preference behavior for

the test subject.

Chemical library and other compounds
All screening compounds were acquired from the Biomol neuroactive compound library (Biomol) which contains a total of 700 neuro-

active drugs dissolved in DMSO at a stock concentration of 10 mM or 1 mM (for only a small subset of drugs). Valproic acid

was purchased from Sigma-Aldrich. Pramipexole was purchased from Cayman Chemical. Piribedil was purchased from Selleck

Chemicals. 7-hydroxy-DPAT-HBr was purchased from Santa Cruz. All individually purchased compounds were dissolved in

DMSO. Chemical structures were generated using PubChem Sketcher.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs were generated using GraphPad Prism or Python using the Matplotlib package. Data were analyzed using the 2-tailed Stu-

dent’s t test. p values less than 0.05 were considered significant. Pearson correlation coefficients were calculated using Python

NumPy.
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