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Abstract: Bacillus cereus and B. thuringiensis are closely related species that are relevant to foodborne
diseases and biopesticides, respectively. Unambiguous differentiation of these two species is crucial
for bacterial taxonomy. As genome analysis offers an objective but time-consuming classification of
B. cereus and B. thuringiensis, in the present study, matrix-assisted laser desorption ionization-time of
flight mass spectrometry (MALDI-TOF MS) was used to accelerate this process. By combining in silico
genome analysis and MALDI-TOF MS measurements, four species-specific peaks of B. cereus and
B. thuringiensis were screened and identified. The species-specific peaks of B. cereus were m/z 3211,
6427, 9188, and 9214, and the species-specific peaks of B. thuringiensis were m/z 3218, 6441, 9160, and
9229. All the above peaks represent ribosomal proteins, which are conserved and consistent with
the phylogenetic relationship between B. cereus and B. thuringiensis. The specificity of the peaks was
robustly verified using common foodborne pathogens. Thus, we concluded that genome-guided
MALDI-TOF MS allows high-throughput differentiation of B. cereus and B. thuringiensis and provides
a framework for differentiating other closely related species.

Keywords: Bacillus cereus; Bacillus thuringiensis; genome-guided MALDI-TOF MS; ribosomal protein;
high-throughput differentiation

1. Introduction

The Bacillus cereus group comprises many genetically highly related species, including
B. cereus and B. thuringiensis [1]. These species are unavoidable in food production and
processing because of their capability to form resistant spores as well as their ubiquitous
distribution in the environment [2]. B. cereus is an opportunistic foodborne pathogen
that can cause emetic and diarrheal symptoms owing to the production of cereulide and
enterotoxins, respectively [3]. It has been estimated that B. cereus causes 63,400 foodborne
illness cases in the United States every year [4]. From 2006 to 2016, B. cereus ranked third
in the prevalence of foodborne pathogens in China [5]. B. thuringiensis is widely used
as a biopesticide because of its ability to produce insecticidal proteins, including crystal
(Cry) and cytolytic (Cyt) δ-endotoxins [6,7]. Recent studies have shown that B. thuringiensis
can also be used to promote plant growth [8], produce metal nanoparticles [9], and biode-
grade environmental pollutants [10]. Although B. cereus and B. thuringiensis have different
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pathogenicity and applications, they are genetically closely related, and there is still no
available ISO to reliably distinguish between them [1]. Accurate taxonomy of B. cereus and
B. thuringiensis is of fundamental importance for phylogenetic taxonomy research, public
health, food industry safety, biopesticide market, and biotechnology development.

Great efforts have been made to differentiate B. cereus and B. thuringiensis, however, the
conventional method for differentiation between B. cereus and B. thuringiensis based on in-
secticidal crystal proteins has certain limitations, as the genome data show that insecticidal
crystal protein genes are not unique to B. thuringiensis [11–13]. General molecular typing
also cannot achieve reliable differentiation, as 16S rRNA gene sequences of B. cereus and
B. thuringiensis share more than 99% similarity [14], and pulsed-field gel electrophoresis
also cannot effectively differentiate between B. cereus and B. thuringiensis [15]. Several
molecular targets were screened to identify strains within the B. cereus group [16–18], and
among them, the xre gene showed specificity for detecting B. thuringiensis [16,18].

In the post-genomic era, whole genome sequencing has been increasingly used for
bacterial taxonomy [19]. With the advantage of being reliable, reproducible, and objective [20],
genome-based taxonomy offers phylogenetically consistent resolution for classifying bacterial
species [21]. The Genome Taxonomy Database (GTDB) was established based on the genome
phylogeny of 120 ubiquitous single-copy proteins and provided a standardized taxonomy
for bacterial species, including B. cereus and B. thuringiensis [21]. The genome blast distance
phylogeny approach was used to calculate intergenomic distances [22] and clearly separated
B. cereus and B. thuringiensis [23]. In the same study, the phylogenetic tree of the housekeeping
gene pycA (encoding pyruvate carboxylase) was found to resolve the confusion between B.
cereus and B. thuringiensis [23].

Although genome-based taxonomy assists classification with high resolution, it is still
time-consuming, expensive, and labor-intensive, and is not suitable for routine practice.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF
MS) has been extensively applied in clinical diagnosis [24], food safety control [25,26],
and environmental monitoring [27], offering reliable, rapid, and cost-effective microbial
identification. In recent studies, MALDI-TOF MS showed sufficient resolution to differen-
tiate between five predominant serovars of the non-typhoidal Salmonella [28], O157, O26,
and O111 serotypes of Escherichia coli [29], different species of the genus Listeria [30], and
lineages of methicillin-resistant Staphylococcus aureus [31]. Meanwhile, MALDI-TOF MS had
also been applied to differentiate strains within B. cereus group [32,33]. Using MALDI-TOF
MS, it is possible to detect ribosomal proteins [34], which are ideal targets for phylogenetic
analysis. Proteotyping based on ribosomal proteins provided congruent resolution in com-
parison to molecular typing methods such as multilocus sequence typing (MLST) [35,36].
By using ribosomal multilocus sequence typing (rMLST) based on 53 ribosomal protein
genes, the taxonomic status of diverse species, including B. cereus and B. thuringiensis, was
unambiguously classified [37]. In the present study, as ribosomal proteins are dependable
biomarkers in MALDI-TOF MS analysis for species identification, we first screened for
robust variations in ribosomal proteins between B. cereus and B. thuringiensis based on
genome analysis and then correlated them with species-specific features in MALDI-TOF MS
profiling. The aim of this study was to develop a high-throughput MALDI-TOF MS-based
tool for differentiating between B. cereus and B. thuringiensis.

2. Materials and Methods
2.1. Bacterial Strains

Two reference strains (B. cereus ATCC 14,579 and B. thuringiensis ATCC 10792) and
79 strains of Bacillus species isolated in our laboratory [38–41] were selected to screen for
potential biomarkers. Detailed information on the strains are provided in Table S1. Thirteen
common foodborne pathogens were used to verify the specificity of the biomarkers.
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2.2. Genomic Data Mining

The genome sequences of 106 B. cereus and 175 B. thuringiensis strains (Table S2) were
downloaded from the National Center for Biotechnology Information (NCBI) database to
mine potential biomarkers. The definite classification of selected strains was determined
using the GTDB (https://gtdb.ecogenomic.org/, accessed on 1 January 2021) and rMLST
databases (https://pubmlst.org/rmlst, accessed on 1 January 2021). The genome sequences
were annotated using the Prokka software [42]. The output GFF files were used to per-
form genome alignment using Roary [43] with an 80% sequence identity cut-off. Aligned
sequences of ribosomal proteins were obtained using TBtools [44]. Theoretical molecular
weights of ribosomal proteins were calculated from translated amino acid sequences us-
ing the web-based compute pI/Mw tool (https://web.expasy.org/compute_pi/, accessed
on 15 January 2021) and protein molecular weight tool (http://www.detaibio.com/sms2
/protein_mw.html, accessed on 15 January 2021). When the second residue in the amino
acid chain was Gly, Ala, Pro, Ser, Thr, Val, or Cys, molecular weights were calculated by
considering the N-terminal methionine loss.

2.3. Species Identification Based on Phylogenetic Tree of pycA

Genomic DNA was extracted using an ultrasonic-assisted method. Briefly, the bacterial
colony suspended in 50 µL of ddH2O was treated with an ultrasonic bath operating at 40 kHz
for 5 min. The suspension was centrifuged at 15,000× g for 2 min. Then, 1 µL of supernatant
was used for the following PCR reaction, the reaction mixture contained 12.5 µL of Premix Taq™
(TaKaRa Taq™ Version 2.0 plus dye, Guangzhou, China), 1 µL of each primers (10 µM), 1 µL
of DNA template, and 9.5. µL of sterile water. PCR amplification of the pycA gene was carried
out using the following primers: forward primer, 5′-GTGAAAGCAAGAACACAAGC-3′, and
reverse primer, 5′-ATAGTTTTTGTATCCAACTGCG-3′. PCR reactions were conducted as
follows: one cycle of initial denaturation at 98 ◦C for 3 min, followed by 35 cycles of 98 ◦C
for 10 s, 55 ◦C for 30 s, and 72 ◦C for 100 s, and a final extension at 72 ◦C for 10 min. The
PCR products were purified and sequenced by Tianyi Huiyuan Bioscience & Technology Inc.
(Guangzhou, China).

Identification of B. cereus and B. thuringiensis was performed as described previ-
ously [45]. Briefly, the obtained sequences were aligned with the pycA genes of B. cereus
group reference strains in Liu’s study [23], after which a phylogenetic analysis using the
maximum likelihood algorithm was performed with the MEGA X software [46]. Visualiza-
tion of the phylogenetic tree was performed using iTOL [47].

2.4. MALDI-TOF MS Analysis

For MALDI-TOF MS analysis, Campylobacter jejuni was inoculated in Skirrow agar
plates (Guangdong Huankai Co., Ltd., Guangzhou, China), Vibrio parahaemolyticus was
inoculated in the Luria-Bertani (LB) agar (Guangdong Huankai Co., Ltd.,) with 3% NaCl,
and the other strains were inoculated in the LB agar. All strains were incubated at
37 ◦C for 16 h. Bacterial colonies were smeared directly onto a 96-well MALDI target
plate (Bruker Daltonics, Bremen, Germany) using sterile toothpicks and overlaid with
1 µL of 70% formic acid. After air-drying, 1 µL of the matrix solution containing 10 mg/mL
of α-cyano-4-hydroxy-cinnamic acid (HCCA) in 50% (v/v) acetonitrile with 2.5% (v/v)
trifluoroacetic acid was applied and allowed to dry. The detection was carried out on three
different days in quadruplicates for each strain.

The mass spectra were acquired using a Microflex LT/SH smart MALDI-TOF MS
(Bruker Daltonics, Bremen, Germany) equipped with a 200 Hz smartbeam solid-state
laser and operated in positive linear mode. Mass spectra were automatically recorded
within a mass range of 2–20 kDa with a total of 240 laser shots. A bacterial test standard
(Bruker Daltonics, Bremen, Germany) was used for external spectral calibration before
every experiment.

https://gtdb.ecogenomic.org/
https://pubmlst.org/rmlst
https://web.expasy.org/compute_pi/
http://www.detaibio.com/sms2/protein_mw.html
http://www.detaibio.com/sms2/protein_mw.html
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2.5. Data Processing and Identification of Biomarker Proteins

Raw mass spectra were converted to mzML files using the R package MALDIquant [48].
The output mzML files were imported into the Mass-Up software (Mass-Up, Vigo, Spain)
for data processing [49]. Mass-Up provided intensity transformation (square root method),
spectral smoothing (Savitzky-Golay method), baseline correction (TopHat method), stan-
dardization (Total Ion Current method), and peak detection (MassSpecWavelet method;
SNR = 6, PeakScaleRange = 2, amp.Th = 0.0001). Output peak lists from the replicates
of each strain were used to construct intra- and inter-sample matching using the for-
ward method (tolerance = 300 ppm, reference type = AVG). Species-specific peaks were
screened using the biomarker discovery module. Biomarker identification was performed
by comparing the species-specific m/z against the theoretical m/z of differential ribosomal
proteins in the above genome analysis. The identification result was further validated
by searching against proteins below 10,000 Da from genome analysis and proteins with
corresponding molecular weights from the UniProt database. All spectra were visual-
ized using FlexAnalysis (v3.4, Bruker Daltonics, Bremen, Germany) after smoothing and
baseline subtraction.

3. Results
3.1. Genome Analysis

In total, 106 strains of B. cereus and 175 strains of B. thuringiensis (Table S2) that
possessed consistent classification in NCBI, GTDB, and rMLST were selected for biomarker
mining. Among the theoretical molecular weights of 53 ribosomal proteins (Table S3),
13 of these (L30, L31 type B, S20, S6, S10, L18, S13, L15, L13, S7, L6, L5, and L3) showed
mass variations between B. cereus and B. thuringiensis, with a sensitivity greater than 98%
(Table 1). Eleven ribosomal proteins with molecular weights below 20,000 Da could serve
as potential biomarkers for MALDI-TOF MS measurements.

Table 1. Theoretical molecular weight and sensitivity of ribosomal proteins with variations between
Bacillus cereus and Bacillus thuringiensis from the genome analysis.

Gene Annotation Post-Translational
Modification

Theoretical Molecular
Weight (Da) Sensitivity (%)

B. cereus B. thuringiensis B. cereus B. thuringiensis

rpmD 50S ribosomal protein L30 methionine removed 6424.60 6438.62 100 (106/106) 100 (175/175)

rpmE2 50S ribosomal protein L31 type B - 9184.33 9157.30 98.11 (104/106) 100 (175/175)

rpsT 30S ribosomal protein S20 methionine removed 9210.58 9226.58 100 (106/106) 99.43 (174/175)

rpsF 30S ribosomal protein S6 - 11,298.99 11,284.92 100 (106/106) 98.86 (173/175)

rpsJ 30S ribosomal protein S10 methionine removed 11,552.45 11,566.48 100 (106/106) 100 (175/175)

rplR 50S ribosomal protein L18 - 13,105.97 13,093.92 100 (106/106) 100 (175/175)

rpsM 30S ribosomal protein S13 methionine removed 13,687.83 13,661.79 100 (106/106) 100 (175/175)

rplO 50S ribosomal protein L15 - 15,477.74 15,521.79 100 (106/106) 100 (175/175)

rplM 50S ribosomal protein L13 - 16,427.96 16,457.98 100 (106/106) 100 (175/175)

rpsG 30S ribosomal protein S7 methionine removed 17,779.61 17,914.77 99.06 (105/106) 100 (175/175)

rplF 50S ribosomal protein L6 methionine removed 19,384.34 19,341.32 99.06 (105/106) 100 (175/175)

rplE 50S ribosomal protein L5 - 20,165.48 20,136.44 100 (106/106) 100 (175/175)

rplC 50S ribosomal protein L3 methionine removed 22,560.99 22,544.99 99.06 (105/106) 99.43 (174/175)

3.2. Identification of B. cereus and B. thuringiensis Based on the pycA Gene

As the phylogenetic analysis of the pycA gene was able to rapidly differentiate between
B. cereus and B. thuringiensis [23], we used this gene as a criterion to select the correct strains
for further experiments. The pycA amplicon sequences of B. cereus, B. thuringiensis, and
reference strains were listed in Table S1. A phylogenetic tree was constructed based on
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the pycA gene (Figure 1). B. subtilis ATCC 6051 was used to root the tree, and the strains
within the B. cereus group in Liu’s study were used as reference strains. Different strains
of B. cereus or B. thuringiensis were clearly divided into two branches. The pycA gene
sequence-based phylogenetic analysis assigned the isolated strains to definite B. cereus and
B. thuringiensis, which were used for further MALDI-TOF MS measurements to discover
potential biomarkers.
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Figure 1. pycA gene-based phylogenetic tree of Bacillus cereus, Bacillus thuringiensis, and other
Bacillus cereus group species. Branch quality was evaluated using 1000 bootstrap replicates. The
reference strains are indicated in color, and the isolated strains are indicated in black.

3.3. Discovery and Identification of Biomarkers in MALDI-TOF MS

Comparative analysis of mass patterns showed that B. cereus and B. thuringiensis each
possessed four species-specific peaks (Figure 2), which were highly conserved and could
be considered as species-level biomarkers (Table 2). The peaks at m/z 6427 and 9214 were
reproducibly found in 100% (36 of 36) B. cereus strains in the present study, and the peaks at
m/z 3211 and 9188 were observed in 97.2% of the MS acquisitions. Meanwhile, the peaks
at m/z 3218, 6441, 9160, and 9229 were detected in 100% (45 of 45) B. thuringiensis strains
used in the present study.
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Table 2. Frequencies and assignments of species-specific peaks for Bacillus cereus and Bacillus thuringiensis.

Experimental
m/z

Presence of Peak (%)
Protein Name Post-Translational

Modification
Theoretical

m/z
Amino Acid
SubstitutionB. cereus B. thuringiensis

3211 97.22 (35/36) 0.00 (0/45) 50S ribosomal
protein L30 * methionine

removed

3213

V→ L3218 0.00 (0/36) 100.00 (45/45) 3220

6427 100.00 (36/36) 0.00 (0/45) 50S ribosomal
protein L30

6426

6441 0.00 (0/36) 100.00 (45/45) 6440

9160 0.00 (0/36) 100.00 (45/45) 50S ribosomal
protein L31 type B

- 9158
N→ S, L→ I

9188 97.22 (35/36) 0.00 (0/45) 9185

9214 100.00 (36/36) 0.00 (0/45) 30S ribosomal
protein S20

methionine
removed

9212
A→ S

9229 0.00 (0/36) 100.00 (45/45) 9228

* doubly charged ions.

By comparing the experimental m/z with genome data, the ion peaks at m/z 3211
and 3218 m/z were putatively identified as double-charged ions of the 50S ribosomal
protein L30 at m/z 6427 and 6441. The peaks at m/z 9160 and 9188 were assigned to 50S
ribosomal protein L31 type B, and the peaks at m/z 9214 and 9229 were characterized
as 30S ribosomal protein S20. While a fraction of B. cereus lacked the peak at m/z 9188
representing 50S ribosomal protein L31 type B in the MALDI-TOF MS measurement
(Table 2), the same result was consistently observed in the genome analysis (Table 1).
Furthermore, the sequences of corresponding genes revealed non-synonymous mutations
resulting amino acid substitutions in corresponding proteins, producing peak shifts from
B. cereus to B. thuringiensis (Table 2).



Microorganisms 2022, 10, 918 7 of 11

3.4. Assessment of Practical Application of MALDI-TOF MS

To characterize biomarker specificity, the performance of MALDI-TOF MS targeting
four biomarkers was evaluated with 13 common foodborne pathogens. Most of the other
foodborne pathogens we tested did not possess the biomarkers owned by B. cereus or
B. thuringiensis (Table 3 and Figure S1). The four biomarkers avoided overlapping with
other common foodborne pathogenic strains and therefore achieved high specificity in
routine application.

Table 3. Bacillus strains and other common foodborne pathogens tested in the present study and
MALDI-TOF MS results of specificity tests.

Bacterial Species Strain
m/z of Biomarkers

3211 6427 9188 9214 3218 6441 9160 9229

Bacillus cereus ATCC 14579 + + + + − − − −
Bacillus thuringiensis ATCC 10792 − − − − + + + +
Bacillus megaterium ATCC 14581 − − − − − − − −

Escherichia coli ATCC 25922 − − − − − − − +
Escherichia coli ATCC 8739 − − − − − − − +

Salmonella Enteritidis CMCC 50335 − − − − − − − −
Salmonella Typhimurium ATCC 14028 − − − − − − − −
Vibrio parahaemolyticus ATCC 33847 + + − − − − − −
Listeria monocytogenes ATCC 19115 − − − − − − − −
Staphylococcus aureus ATCC 25923 + + − − − − − −
Cronobacter sakazakii ATCC 29544 − − − − − − − −

Pseudomonas aeruginosa ATCC 15442 − − − − − − − −
Campylobacter jejuni ATCC 33291 − − − − + − + −
Yersinia enterocolitica CMCC 52204 − − − − − − − −
Klebsiella pneumoniae ATCC 700603 − − − − − − − −

+/− indicate the positive and negative results, respectively.

4. Discussion

Genome-based taxonomy has become increasingly important in bacterial taxonomy
and is now recognized as a more standardized taxonomic framework based on robust
phylogenetic analysis than traditional classification methods [21]. However, genome-based
taxonomy is time-consuming, expensive, and labor-intensive; thus, it cannot be used for fast
and high-throughput microbial identification. As MALDI-TOF MS is a fast, cost-efficient,
and robust approach for microbial identification, in the present study, we screened the
correct B. cereus and B. thuringiensis using the GTDB and rMLST databases and transformed
the robust genome variations (especially variations in ribosomal protein genes) into visible
peak differences in MALDI-TOF MS, providing an easy and rapid tool for differentiating
between B. cereus and B. thuringiensis. This method greatly shortened the detection time
(Figure 3) and enabled high accuracy.
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Several studies have been conducted on the applicability of MALDI-TOF MS for
discriminating strains within B. cereus group. MALDI-TOF MS combined with statis-
tical method and classifying model showing great clustering for B. anthracis, B. cereus,
B. mycoides, B. wiedmannii, B. thuringiensis, B. toyonensis, and B. weihenstephanensis [33].
Small molecules secreted by B. cereus group also showed the discriminatory power, Ha
pointed out that m/z at 714.2 and 906.5 can be potential biomarkers to differentiate B. cereus
and B. thuringiensis [32]. Detection of specific mass peaks in the low-mass range may
requires better performing instrument, which is not available in every laboratory. In the
present study, we utilized the wealth of the genome data to identify ribosomal proteins
that are useful for taxonomic identification, resulting in clear differentiation of B. cereus and
B. thuringiensis. The species-specific peaks detected in our study were also observed in other
studies, such as m/z at 6427 ± 3 and 9214 ± 3 for B. cereus, m/z at 6441 ± 3 and 9229 ± 3
for B. thuringiensis [50], showing the inter-laboratory reproducibility of this method. As one
biomarker was insufficient for high-resolution taxonomy, we combined three ribosomal
proteins (four specific peaks) to reliably differentiate B. cereus and B. thuringiensis with
high specificity.

In this study, the genomic analysis focused on ribosomal proteins, as the corresponding
genes were the basis of molecular taxonomy [51]. Conserved ribosomal proteins were
highly abundant in the cytoplasm and readily detected by MALDI-TOF MS, which showed
its discriminatory power by detecting slight variations in the mass of ribosomal proteins
due to amino acid substitutions. The robust substitutions in the amino acid sequences
were derived from non-synonymous mutations in the corresponding genes [52]. The
steady accumulation of non-synonymous mutations offered genetic diversity to resolve
phylogenetic relationships between isolates [53]. Recent taxonomic studies have revealed
that a MALDI-TOF MS-based typing tool showed high concordance with molecular typing
methods such as MLST [36,54] and core-genome analysis [34]. Tamura and co-workers
developed the S10-GERMS (S10-spc-alpha operon gene encoded ribosomal protein mass
spectrum) method and confirmed ribosomal subunit proteins (S10, S16, S20 and L30) could
discriminate psychrotolerant species of the B. cereus group [50]. Fiedoruk analyzed the
peak masses of B. cereus group and observed that ribosomal proteins L31 had the highest
discriminative value to differentiate emetic B. cereus [55].

The combination of genomics and MALDI-TOF MS measurement not only transferred
reliable genome-based taxonomy to a faster MALDI-TOF MS platform but also supported
the interpretation of different mass patterns with objective genome data. As ribosomal
proteins provide phylogenetic information and are accessible to many bacteria [56], this ap-
proach provides a framework to identify other closely related species. In the future, MALDI-
TOF MS has the potential to differentiate other closely related species and phylogenetically-
related strains with different levels of virulence [57], antibiotic resistance [58,59], and
host origin [34].

5. Conclusions

By combining genomics and MALDI-TOF MS measurement, we identified four spe-
cific mass peaks for differentiating B. cereus and B. thuringiensis with high specificity.
Genome-guided MALDI-TOF MS is suitable for high-throughput, cost-efficient, and reli-
able differentiation of B. cereus and B. thuringiensis; could serve as a first-line identification
tool, and can be extended to other closely related species.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/microorganisms10050918/s1. Table S1. B. cereus and B. thuringiensis
isolates and reference strains used in this study and identification result based on pycA gene sequences,
Table S2. Information for B. cereus and B. thuringiensis used in genome analysis, Table S3. Theoretical
molecular weight of 53 ribosomal proteins in B. cereus and B. thuringiensis from the genome analysis,
Figure S1. MALDI-TOF mass spectra of B. cereus (orange), B. thuringiensis (green), and common
foodborne pathogens. Orange and green arrows represent species-specific peaks of B. cereus and
B. thuringiensis, respectively.
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