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Abstract: Currently, the increasing resistance of microorganisms to antibiotics is a serious problem.
Marine organisms are the source of thousands of substances, which also have antibacterial and
antifungal effects. Among them, marine macrolides are significant. In this review, the antibacterial
and/or antifungal activities of 34 groups of marine macrolides are presented. Exemplary groups are
chalcomycins, curvulides, halichondramides, lobophorins, macrolactins, modiolides, scytophycins,
spongistatins, or zearalanones. In the paper, 74 antibiotics or their analog sets, among which 29
with antifungal activity, 25 that are antibacterial, and 20 that are both antifungal and antibacterial
are summarized. Also, 36 macrolides or their sets are produced by bacteria, 18 by fungi, ten by
sponges, seven by algae, two by porifera, and one by nudibranch. Moreover, the chemical structures
of representatives from each of the 34 groups of these antibiotics are presented. To summarize, marine
organisms are rich in natural macrolides. Some of these may be used in the future in the treatment of
bacterial and fungal infections. Marine macrolides can also be potential drugs applicable against
pathogens resistant to currently known antibiotics.
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1. Introduction

The marine world is rich in species and very diverse. Thus, marine organisms are a source of
many substances with biological activity, including cytotoxic and antimicrobial. According to Burja et
al., it was determined that in the marine world, there are over 13,000 unique compounds [1]. Important
marine groups containing biologically active substances, including macrolides, are, among others,
sponges [2] and cyanobacteria [3]. Swian et al. only described 121 compounds with antimicrobial
activity among cyanobacteria, including the following chemical classes: alkaloids, aromatic compounds,
pigments, fatty acids, phenols, macrolides, peptides, polyketides, porphinoids, and terpenoids [4].
Liu et al. described 118 marine macrolides, most with cytotoxic activity [5].

Macrolides are a group of polyketides. Currently, few of these substances are used in medicine.
Among the antibacterial macrolides, the most important are erythromycin, azithromycin, roxithromycin,
clarithromycin, josamycin, and spiramycin; among ketolides, telithromycin [6]. On the other hand,
among antifungal polyene macrolides, amphotericin B, nystatin, and natamycin are most often
used [7]. In general, antibacterial macrolides are active against Staphylococcus sp., Streptococcus sp.,
Neisseria gonorrhoea, Haemophilus influenzae, Bordetella pertussis, and Neisseria meningitis. Additionally,
they are used in infections caused by intracellular pathogens, Mycoplasma sp. and Chlamydia sp. [8,9].
Clarithromycin is one of the antibiotics used in Helicobacter pylori infections [10]. The action of
antibacterial macrolides is bacteriostatic. They reversibly bind to 23S ribosomal RNA of the 50s subunit
of the bacterial ribosome inhibiting RNA-dependent protein synthesis [11]. The antifungal macrolides
bind to ergosterol and lead to pore formation, leakage of monovalent ions (K+, Na+, H+ and Cl−),
and finally to fungal cell death [12].
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Recently, the increasing resistance of bacteria to antibiotics has become a serious problem. Globally,
about 700,000 deaths every year may be caused by microorganisms resistant to antimicrobials [13].
In epidemiology, the most significant are the multidrug-resistant bacteria, e.g., Escherichia coli,
Klebsiella pneumoniae, Acinetobacter baumanii, methicillin-resistant Staphylococcus aureus (MRSA),
vancomycin-resistant MRSA, penicillin-resistant Streptococcus pneumoniae (PRSP), vancomycin-resistant
Enterococcus (VRE), and extensively drug-resistant (XDR) Mycobacterium tuberculosis [14]. Antimicrobial
resistance is increasingly common among both human and animal pathogens [10,15–17]. Antimicrobial
resistance related to food containing zoonotic and fecal bacteria (Salmonella sp., Campylobacter sp.,
Escherichia coli and Enterococcus sp.) is also gaining importance [18]. The hope is to find new antibiotics
to fight against multidrug-resistant strains. The source of these drugs could be marine macrolides.

In this paper, literature regarding the structures and biological (antibacterial and antifungal)
activities of marine macrolides was examined. This literature was found by searching for
articles published in PubMed/MEDLINE using combinations of the following keywords: “marine”,
“macrolide/s”, “antibacterial”, “antifungal” and “antimicrobial”. Titles and abstracts of the resulting
papers were examined to exclude or include articles for review. From the references of the included
articles, additional works were selected. Finally, ninety-four papers have been incorporated into this
narrative review.

The antibacterial and/or antifungal activities of 34 groups of marine macrolides are presented in
this review. Moreover, the chemical structures of representatives from each group of these antibiotics
are also represented. The origin and biological target of marine macrolides are presented in Table.

2. Antimicrobial Activity of Marine Macrolides

2.1. Macrolides 10-Membered

2.1.1. Curvulides

Curvulides are compounds obtained from strains of the fungus Curvularia sp. From one strain
associated with the red alga Acanthophora spicifera occurring in Fingers Reef, Apra Harbor and Guam,
10-membered lactones have been isolated: curvulide A (Figure 1a [19]), curvulide B1 and B2 [20].
Curvularin and (S)-dehydrocurvularin obtained from Curvularia sp. strain M12, showed activity
against fungus-like Phytophthora capsici exhibited in zoospore motility disorder [21]. Curvularin
stereoisomers additionally possess anti-inflammatory activity [22] and are cytotoxic toward human
tumor cell lines [23]. The two 11-hydroxycurvularin isomers isolated from the marine actinomycete
Pseudonocardia sp. HS7 obtained from the sea cucumber Holothuria moebii, showed antibacterial
activity towards Escherichia coli [24]. It was demonstrated that curvularin and αβ-dehydrocurvularin
have anti-fungal activity against Saccharomyces cerevisiae (minimum inhibitory concentration (MIC)
375–750 µg/mL) and Sclerotinia sclerotiorum (MIC > 3000 µg/mL). Both substances also inhibited
the growth of Bacillus subtilis (MICs of 1500 and > 3000 µg/mL), while αβ-dehydrocurvularin was
additionally active against Staphylococcus aureus with an MIC of 375 µg/mL. Presented macrolides
were not active against Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa.
Both compounds were produced by the fungus Eupenicillium sp. associated with marine sponge
Axinella sp. collected in the South China Sea near Sanya, China [25]. Curvulalide, curvulapyrone,
and an uncyclized modiolide macrolide, curvulalic acid isolated from a sea fan-derived Curvularia sp.
PSUF22 were not active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus SK1,
or Microsporum gypseum SHMU-4 [26].

2.1.2. Modiolides

To the 10-membered macrolides, belong modiolides A (Figure 1b) and B. Both are produced
by fungus Paraphaeosphaeria sp. strain N-119, which was obtained from a marine horse mussel
Modiolus auriculatus occurring in Hedo Cape, Japan. Modiolides A and B showed antibacterial activity
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against Micrococcus luteus (MIC = 16.7 mg/mL) and antifungal activity against Neurospora crassa
(MIC = 33.3 mg/mL) [27]. Modiolide A is also the secondary metabolite of the marine-derived fungus
Curvularia sp. Modiolide A and at least four substances resembling 10-membered lactones but featuring
modified oxidation patterns around their macrocycles were shown to occur in this species [20]. In other
studies, it was demonstrated that modiolide A obtained from Curvularia sp. strain M12, acts against the
fungus-like eukaryotic microorganism Phytophthora capsici, leading to the disorder of zoospore motility
at high concentrations (IC50: 50–100 µg/mL) [21]. Trisuvan et al. showed a lack of modiolide A activity
against strains Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus, and Microsporum
gypseum SH-MU-4 at the initial concentration of 200 µg/mL [26].

2.1.3. Phomolides

Two 9-propyl-substituted 10-membered macrolides, phomolide A (Figure 1c) and B have been
isolated from the marine fungus Phomopsis sp. hzla01-1. Both substances had significant activities
against bacteria Escherichia coli CMCC44103, and fungi Candida albicans AS2.538 and Saccharomyces
cerevisiae ATCC9763 with MIC values of 5–10 mg/mL [28,29]. Another similar chemical constituent,
phomolide C, was obtained from the strain Phomopsis sp. B27 [30] and from the fungus Diaporthe sp.,
however it did not show antifungal activity against Cochliobolus miyabeanus [31].

2.1.4. Xestodecalactones

Xestodecalactones A–C, were obtained from an isolate of the fungus Penicillium cf. montanense
from the marine sponge Xestospongia exigua collected from the Bali Sea, Indonesia. Among these
metabolites, xestodecalactone B was found to have anti-fungal activity against the yeast Candida
albicans at concentrations of 20 µM and higher. Simultaneously, xestodecalactones A–C (Figure 1d)
were inactive toward the bacteria Bacillus subtilis, Staphylococcus aureus, and Escherichia coli [32,33].
Xestodecalactones D–F obtained from Corynespora cassiicola, isolated from the Chinese mangrove plant
Laguncularia racemosa, neither showed antibacterial nor antifungal activity [34].
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Figure 1. Chemical structures of 10-membered macrolides: (a) Curvulide A [19]; (b); Modiolide A 
[27]; (c) Phomolide A [28,29]; (d) Xestodecalactone B [33]. 

2.2. Macrolides 12-Membered  

2.2.1. Amphidinolides 

Amphidinolide Q (Figure 2a) and four analogs; amphidinins C–F, were isolated from the 
symbiotic dinoflagellate Amphidinium sp. The dinoflagellate Amphidinium sp. (2012-7-4A strain) was 
obtained from the marine acoel flatworm Amphiscolops sp. collected at Ishigaki Island, Okinawa, 
Japan. All compounds were active against Trichophyton mentagrophytes (MIC 16–32 μg/mL). 

Figure 1. Chemical structures of 10-membered macrolides: (a) Curvulide A [19]; (b); Modiolide A [27];
(c) Phomolide A [28,29]; (d) Xestodecalactone B [33].

2.2. Macrolides 12-Membered

2.2.1. Amphidinolides

Amphidinolide Q (Figure 2a) and four analogs; amphidinins C–F, were isolated from the
symbiotic dinoflagellate Amphidinium sp. The dinoflagellate Amphidinium sp. (2012-7-4A strain) was
obtained from the marine acoel flatworm Amphiscolops sp. collected at Ishigaki Island, Okinawa,
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Japan. All compounds were active against Trichophyton mentagrophytes (MIC 16–32 µg/mL). Moreover,
amphidinolide Q was active against S. aureus, B. subtilis, Escherichia coli, and Candida albicans (MICs
16–32 µg/mL) [35].

2.2.2. Dendrodolides

Marine-derived Cladosporium fungi are a source of 12-membered macrolides dendrodolides A
(Figure 2b), C, L, M and cladospolide B. Cladosporium sp. were cultivated from the gorgonian Anthogorgia
ochracea obtained from the South China Sea. Three dendrodolides (A, C and M) showed antibacterial
activity against Bacillus cereus, Tetragenococcus halophilus, Staphylococcus epidermidis, Staphylococcus
aureus, Escherichia coli, Pseudomonas putida, Nocardia brasiliensis, and Vibrio parahaemolyticus, with MIC
values ranging from 3.13 to 25.0 µM [36].

2.2.3. Lasiodiplodins

Lasiodiplodins (Figure 2c) are resorcinolic macrolides [37] isolated among others from marine
endophytic fungus No. ZZF36 connected with brown alga (Sargassum sp.). The fungus was
collected from Zhanjiang Sea, China. Compound de-O-methyllasiodiplodin exhibited inhibitory
activity against Staphylococcus aureus with an MIC of 6.25 µg/mL, and lower activities against
Bacillus subtilis, Salmonella enteritidis, Candida albicans and Fusarium oxysporum f.sp. cubense.
Lasiodiplodin inhibited the growth of S. aureus, B. subtilis, and F. oxysporum (MICs 25–100 µg/mL),
while 5-hydroxy-de-O-methyllasiodiplodin was shown to be only effective against S. aureus at 100µg/mL.
Compound 6-oxo-de-O-methyllasiodiplodin was not active against all tested pathogens [38].

2.2.4. Sporiolides

Sporiolides are 12-membered macrocyclic lactones. Sporiolides A (Figure 2d) and B were isolated
from the fungus Cladosporium sp., which was separated from a marine brown alga Actinotrichia fragilis
(Okinawa Island, Japan). Both sporiolides were active against Micrococcus luteus with a MIC value
of 16.7 µg/mL. Moreover, sporiolide A showed antifungal activity against Aspergillus niger, Candida
albicans, Cryptococcus neoformans, and Neurospora crassa with MICs of 8.4–16.7 µg/mL. Neither of the
sporiolides were active against Bacillus subtilis, Escherichia coli, or Paecilomyces variotii [39,40].
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2.3. Macrolides 14-Membered

2.3.1. Lobophorins

Lobophorins A (Figure 3a) and B were isolated from a marine Actinomycete strain #CNB-837
isolated from the surface of the Caribbean brown alga Lobophora variegata [41,42]. Spirotetronate
antibiotics; lobophorins E and F, were isolated from Streptomyces sp. SCSIO 01127 obtained from
sediment in the South China Sea [40]. Lobophorins H and I were obtained from Streptomyces sp. strain
12A35, which was isolated from the deep-sea sediment of the South China Sea [43]. Lobophorins
A, B, E, and F exhibited activities against Bacillus thuringensis SCSIO BT01 with MIC values of
2–8 µg/mL. Lobophorin F displayed antibacterial activities against Staphylococcus aureus ATCC 29213
and Enterococcus faecalis ATCC 29212 with MIC values of 8 µg/mL [43]. Additionally, lobophorins
B, F, I and H exhibited inhibitory activities against Bacillus subtilis CMCC63501. Lobophorins B
and H showed strong activities (MICs of 1.57–3.13 µg/mL), while lobophorins F and I possessed
moderate activities (MICs 6.25–50 µg/mL). Lobophorins F and H also had moderate activities against
Staphylococcus aureus ATCC29213 with MIC values of 6.25–50 µg/mL. However, none of the studied
compounds inhibited bacterium Escherichia coli, fungi Candida albicans or Fusarium moniliforme [44].

2.3.2. Zearalanones

β-resorcylic acid lactones were obtained from the culture of a Penicillium sp. derived from
cotton clothing drifting off Namhae Island, which were zearalanone analogs: 8’-hydroxyzearalanone,
2’-hydroxyzearalanol, zearalanone, β-zearalanol, zearalenone (Figure 3b), and β-zearalenol [45,46].
Some β-resorcylic macrolides were obtained from the marine Fusarium sp. O5ABR26 isolated from
a sponge collected in the Miura Peninsula of Japan. Among these substances, zearalenone displayed
the best inhibitory activity against fungus Pyricularia oryzae (MIC 6.25 µg/mL). Simultaneously,
8′-hydroxyzearalenone was less active with a MIC value of 200 µg/mL [47]. It was demonstrated
that fungus Fusarium sp. PSU-ES73, isolated from the seagrass Thalassia hemprichii found
throughout the shores of the Indian and the Western Pacific Oceans, contains β-resorcylic macrolides
5’-hydroxyzearalenone, zearalenone, 8’-hydroxyzearalenone, 7’-dehydrozearalenone, β-zearalenol,
5’-hydroxyzearalenol, and relgro. Only zearalenone exhibited weak activity against Staphylococcus
aureus ATCC25923, methicillin-resistant S. aureus SK1 (MIC 400 µM), and Cryptococcus neoformans
ATCC90113 (MIC 50.26 µM). The remaining compounds were inactive [48].
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2.4. Macrolides 15- and 16-Membered

Bromophycolides

15- and 16-membered bromophycolides J-Q were isolated from extracts of the red alga Callophycus
serratus from Yanuca, Fiji. Bromophycolides P (Figure 4b) and Q exhibited antibacterial activity
against methicillin-resistant Staphylococcus aureus (MRSA) with an IC50 of 1.4 and 1.8 µM, respectively,
and vancomycin-resistant Enterococcus faecium (VRE) with an IC50 of 13 and 5.8 µM, respectively [49].

2.5. Macrolides 16-Membered

2.5.1. Butremycin

Butremycin (Figure 4a) was isolated from Micromonospora sp. K310 obtained from mangrove river
sediment in the Western Region of Ghana. Macrolide showed weak activity against Staphylococcus
aureus ATCC 25923, Escherichia coli ATCC 25922 with a MIC of 50 µg/mL and some strains of
methicillin-resistant S. aureus (MRSA) with a MIC > 50 µg/mL [50].

2.5.2. Chalcomycins

Chalcomycin A and chalcomycin B (Figure 4c) were isolated from the marine strain Streptomyces
sp. B7064 derived from mangrove sediment near Pohoiki, Hawaii (Pacific Ocean). Both compounds
exhibited excellent activities against bacteria Staphylococcus aureus (MIC 0.39 µg/mL) and Bacillus
subtilis (MIC 6.25 µg/mL), and low activities against Escherichia coli (MIC >50 µg/mL). Chalcomycins
did not show any activity towards fungi Candida albicans or Mucor miehei [51]. Dihydrochalcomycin,
chalcomycin and chalcomycin E were isolated from marine-derived Streptomyces sp. HK-2006-1.
Two compounds, dihydrochalcomycin and chalcomycin, exhibited activities against Staphylococcus
aureus with MICs of 4–32µg/mL but were not active against Escherichia coli, Candida albicans, or Aspergillus
niger [52].

2.5.3. Neurymenolides

Two α-pyrone macrolides, neurymenolides A and B [53,54], were isolated from the red alga
Neurymenia fraxinifolia collected from Taveuni, Fiji. Neurymenolide A (Figure 4d) possessed activity
against methicillin-resistant Staphylococcus aureus with an IC50 of 2.1 µM and vancomycin-resistant
Enterococcus faecium with an IC50 of 4.5 µM [53].
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2.6. Macrolides 18-Membered

2.6.1. Borrelidins

Halophilic actinomycete Nocardiopsis sp. strain HYJ128 inhabiting a hypersaline saltern in Jeungdo,
Jeollanam-do, Republic of Korea, produced 18-membered macrolides: borrelidin (Figure 5a) and
borrelidins C–E. Borrelidin inhibited Enterococcus faecalis ATCC 19433, E. faecium ATCC 19434, Proteus
hauseri NRBC 3851, Klebsiella pneumoniae ATCC 10031, and Salmonella enterica ATCC 14028 with MICs
of 0.51–65 µM. Borrelidins C and D displayed inhibitory activity against S. enterica with MIC values of
16–63 µM. Borrelidin E did not exhibit any inhibitory activity against the tested bacteria [55].

2.6.2. Leucascandrolides

Leucascandrolide A (Figure 5c) [56] was isolated from the calcareous sponge Leucascandra caveolata,
collected along the east coast of the Coral Sea, New Caledonia. This compound strongly inhibited
fungi Fusarium oxysporum, Helminthosporium sativum, Phytophthora hevea, Botrytis cinerea, Pyricularia
oryzae, and yeast Candida albicans [57].
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2.6.3. Tedanolides

13-Deoxytedanolide (Figure 5b) is an 18-membered macrolide, which was isolated from the
sponge Mycale adhaerens in Japan [58]. This macrolide strongly binds to the 60S large ribosomal subunit,
causing inhibition of polypeptide elongation in fungus Saccharomyces cerevisiae, however it does not
inhibit the polypeptide synthesis in bacterium Escherichia coli [59].

2.7. Macrolides 20-Membered

2.7.1. Macrocyclic Polyesters

The marine fungus Hypoxylon oceanicum (strain LL-15G256) from mangrove wood collected
in Shenzhen, China, produced macrocyclic polyesters [60]. A 20-membered compound 15G256ι
(Figure 6a) exhibited low activity against the fungus Neurospora crassa acting as inhibitors of fungal cell
wall formation. The 30-membered substance 15G256w had similar activity [61].
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2.7.2. Misakinolides

According to Sakai et al. misakinolide A (Figure 6b) is a 20-membered macrolide [62], however
this macrolide occurs as 40-membered dimer [63]. Misakinolide A was isolated from the sponge
Theonella sp., collected at Maeda-misaki, Okinawa, Japan. This compound possesses antifungal activity
against Candida albicans (MIC 5 µg/mL) [62].
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2.8. Macrolides 22-Membered

2.8.1. Kabiramides

Kabiramide C (Figure 7a) was isolated from the eggmasses of an unidentified nudibranch collected
at Kabira Bay on Ishigaki-jima Island of the Ryukyus Islands, Japan. This 22-membered macrolide
showed marked antifungal activity against Candida albicans ATCC 10234, Aspergillus niger ATCC 9642,
Penicillium citrium ATCC 9849 and Trichophyton interdigitale [64]. Kabiramides G, J and K were isolated
from the sponge Pachastrissa nux collected in the Gulf of Thailand. These macrolides, together with
kabiramides B–D, showed anti-parasite activity against Plasmodium falciparum K1 [65].

2.8.2. Scytophycins

Ishibashi et al. demonstrated that scytophycins A–E isolated from terrestrial blue-green
alga Scytonema pseudohofmanni collected from Oahu, Hawaii, exhibited cytotoxicity and antifungal
activity [66]. Scytophycin B, scytophycin E, 6-hydroxyscytophycin B, and tolytoxin (Figure 7b)
(6-hydroxy-7-O-methylscytophycin B) obtained from the terrestrial blue-green alga Cylindrospermum
muscicola, isolated on the island of Kauai, Hawaii also had antifungal activity [67]. Tolytoxin and two
analogs; 6-hydroxyscytophycin B and 19-O-demethylscytophycin C were also produced by strains of
Scytonema mirabile, S. burmanicum, and S. ocellatum. These macrolides had antifungal activity against
Aspergillus oryzae, Candida albicans, Penicillium notatum, and Saccharomyces cerevisiae [68]. Tolytoxin
isolated from blue-green alga Tolypothrix conglutinata var. colorata found at Fanning Island, Kiribati,
exhibited additional inhibitory activity against Alternaria alternata, Bipolaris incurvata, Calonectria critalarae,
Colletotrichum coccodes, Phyllosticta capitalensis, Phytophthora nicotianae, Rhizoctonia solani, Sclerotium rofsii,
Thielaviopsis paradoxa, and Trichophyton mentagrophytes with MICs of 0.25–8 nM. Tolytoxin did not show
any inhibitory activity against bacteria [69]. The presence of scytophycins with activity against Candida
albicans and Aspergillus flavus has also been demonstrated in cyanobacteria Anabaena sp. HAN21/1,
Anabaena cf. cylindrica PH133, Scytonema sp. HAN3/2, and Nostoc sp. HAN11/1 [70].
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2.9. Macrolides 22–25-Membered

2.9.1. Gageomacrolactins

Bacillus subtilis isolated from marine sediment collected from Gageocho, Republic of Korea,
produced three gageomacrolactins (Figure 8a), which are 24-membered macrolactin derivatives.
Gageomacrolactins displayed strong activity against some bacteria (Staphylococcus aureus, Bacillus
subtilis, B. cereus, Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa) with MIC values of
0.02–0.05 µM. Additionally, isolated gageomacrolactins and macrolactins A, B, F, and W inhibit the
growth of Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum, Candida albicans, and Rhizoctonia
solani with MIC values of 0.04–0.3 µM [71].

2.9.2. Halichondramides

An oxazole-containing macrolide, halichondramide (Figure 8b), is a 25-membered antibiotic [72].
It was obtained from the sponge Halichondria sp. from Kwajalein Island, Marshall Islands, and showed
significant activity against Candida albicans (MIC 0.2 pg/mL) and Trichophyton mentagrophytes (MIC
12.5 pg/mL). Halichondramide did not inhibit bacteria [73]. Further studies revealed that the sponge
of the genus Halichondria sp. also contains two other macrolides (dihydrohalichondramide and
isohalichondramide) having significant activity against C. albicans. In this same paper, the authors
showed that anti-C. albicans activity had the nudibranch Hexabranchus sanguineus, from which
dihydrohalichondramide and tetrahydrohalichondramide were isolated [74]. From the marine
sponge Chondrosia corticata collected from Guam, more oxazole-containing macrolides were isolated:
neohalichondramide, (19Z)-halichondramide, and secohalichondramide. These compounds exhibited
antifungal activity toward the Candida albicans and Aspergillus niger [75]. Chung et al. in the sponge
C. corticata identified the following macrolides: halichondramide, jaspisamide A, halishigamide
D, neohalichondramide, and (19Z)-halichondramide. None of the compounds were active against
Gram-positive or Gram-negative bacteria at 100 µg/mL. Halichondramide showed inhibitory activity
against Candida albicans, Aspergillus fumigatus, Trichophyton rubrum, and T. mentagrophytes with MIC
values of 0.2 to 0.91 µM. Compound (19Z)-halichondramide showed inhibitory activity against all
tested fungi with MIC values of 0.78 to 14.55 µM. In the presented study, jaspisamide A, halishigamide
D, and neohalichondramide were inactive at 100 µg/mL [76].

2.9.3. Macrolactins

Macrolactins are a big group of 22- to 25-membered lactone macrolides. Some of these were
isolated from a culture of Bacillus sp. PP19-H3 obtained from the macroalga Schizymenia dubyi collected
on the Omaezaki coast of Shizuoka prefecture in Japan. Macrolactins A (Figure 8c), F, G, I, J, K, and L are
24-membered macrolides, macrolactin H is 22-membered, and macrolactin is M a 25-membered lactone.
Macrolactins A, G, H, I, J, L, and M were effective against Staphylococcus aureus (MICs 5–10 ppm),
and Bacillus subtilis (MICs 30–60 ppm). The macrolactins F and K had low activity against the above
bacteria (MICs 80 and >100). None of the studied macrolides inhibited Escherichia coli or Salinivibrio
costicola [77,78]. In other studies, macrolactin A did not have any antimicrobial activity [79,80].

Macrolactins A, B, F, and W isolated from marine Bacillus subtilis from Gageocho, Republic of
Korea, inhibit the growth of Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum, Candida albicans,
and Rhizoctonia solani with MIC values of 0.04–0.3 µM [71].

7-O-succinylmacrolactin A and 7-O-succinylmacrolactin F, together with macrolactin F,
were isolated from the marine Bacillus sp. Sc026 occurring in sediments around Sichang Island, Thailand.
These two succinylmacrolactins showed activity against Bacillus subtilis and Staphylococcus aureus [78].
7-O-malonylmacrolactin A was isolated from soil B. subtilis from Takalar, South Sulawesi in Indonesia.
This compound inhibited methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA),
vancomycin-resistant enterococci (VRE), Burkholderia cepacia, and Candida crusei [79,80].
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Macrolactin N was obtained from Bacillus subtilis AT29 and had antibacterial activity against
Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. It inhibited the growth of E. coli with a MIC
value of 100 µg/mL, while for S. aureus and B. subtilis, the MIC50 is 100 µg/mL. Macrolactin N inhibited
S. aureus peptide deformylase with an IC50 value of 7.5 µM [81].

From the marine Bacillus sp. derived from the sea sediment of East China Sea, macrolactin S,
a 24-membered ring lactone, was obtained. Macrolactin S, together with macrolactins A and B had
antibacterial activity against Escherichia coli, and Staphylococcus aureus [82].

Macrolactins T and U, along with macrolactins A, B, D, O, and S, were isolated from the bacterium
Bacillus marinus, which was separated from Suaeda salsa collected in the coastline of the Bohai Sea of
China. In the study, authors reported the inhibitory activity of macrolactins B (MIC 4.5–20.1 µg/mL) and
D (MIC > 100 µg/mL) against fungi Pyricularia oryzae and Alternaria solani, and bacterium Staphylococcus
aureus [83].

From marine bacterium B. amyloliquefaciens SCSIO 00856 isolated from the South China Sea
gorgonian Junceella juncea, macrolactin V and S. Macrolactin V were obtained and had strong antibacterial
activities against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with a MIC value of 0.1µg/mL.
Macrolactin S showed potent activity against E. coli and S. aureus (MICs 0.1–0.3 µg/mL), and weak
against B. subtilis (MIC 100µg/mL) [84].

Macrolactin W was isolated from a marine Bacillus sp. 09ID194 collected from Ieodo, a southern reef
of South Korea. This macrolide showed antibacterial activities towards Bacillus subtilis, Staphylococcus
aureus, Escherichia coli, and Pseudomonas aeruginosa with a MIC of 64 µg/mL [85].

One of the marine Bacillus sp. produces three 24-membered macrolactins, which contain an oxetane,
an epoxide, and a tetrahydropyran ring, respectively. All three macrolactins showed antimicrobial
activity against Bacillus subtilis and Escherichia coli (MIC 0.16 µM). The macrolactin with an epoxide
ring also had excellent activity against Saccharomyces cerevisiae (MIC 0.02–0.16 µM) [86].

From Bacillus subtilis MTCC 10403, isolated from the brown seaweed Anthophycus longifolius
collected from the Gulf of Mannar of India, new antimicrobial aryl-crowned polyketide macrolactin
was obtained. This substance had bactericidal properties against Escherichia coli, Aeromonas hydrophilla,
Pseudomonas aeruginosa, and Vibrio sp. at a low concentration with MIC < 13 µg/mL, and against
Klebsiella pneumoniae with MIC ~25 µg/mL. The mode of antimicrobial action of this new acryl-crowned
macrolactin was found to be iron chelating similar to siderophores [87].

2.9.4. Maduralide

Maduralide (Figure 8d) is 24-membered ring macrolide. It was isolated from an unidentified
marine bacterium of the order Actinomycetales in the shallow waters of Bodega Bay, USA. Maduralide
shows weak antibiotic activity against Bacillus subtilis [88].
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2.10. Macrolides 26-Membered

2.10.1. Neomaclafungins

Neomaclafungins A–I (Figure 9a) were produced by the bacteria Actinoalloteichus sp. NPS702
isolated from the marine sediment of Usa Bay, Kochi Prefecture, Japan. These oligomycin macrolides
exhibited significant antifungal activity in vitro against Trichophyton mentagrophytes ATCC 9533,
with MIC values of 1–3 µg/mL [89].

2.10.2. Phorboxazoles

Phorboxazoles A (Figure 9b) and B were isolated from the Indian Ocean marine sponge Phorbas sp.
Both antibiotics had antifungal activity against Candida albicans and Saccharomyces carlsbergensis. None of
these compounds showed any activity against Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus
aureus [90].
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2.11. Macrolides 31-Membered

Reedsmycins

Reedsmycins are nonglycosylated polyene-polyol macrolides produced by marine-derived
Streptomyces youssoufiensis OUC6819 [91] and by Streptomyces sp. CHQ-64 [92]. Reedsmycin A
(Figure 10a) exhibited antifungal activity against Candida albicans (MIC 25–50 µM). Other compounds
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in this group had lower activity. MICs for reedsmycins C–E were 50–100 µM, for reedsmycin B were
100–200 µM. Reedsmycin F exhibited no inhibitory activity [92].

2.12. Macrolides 34-Membered

Marinisporolides

Two polyene-polyol macrolides; marinisporolides A (Figure 10b) and B were isolated from the
marine actinomycete Marinispora strain CNQ-140, collected offshore from La Jolla, California, USA.
Both marinisporolides showed weak or no antifungal activity against Candida albicans with a MIC
value of 22 µM [93].
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2.13. Macrolides 36-Membered

2.13.1. Azalomycins

Two macrocyclic lactones, azalomycin F4a 2-ethylpentyl ester and azalomycin F5a 2-ethylpentyl
ester, were identified from metabolites of Streptomyces sp. 211726 isolated from mangrove rhizosphere
soil of Heritiera globosa collected in Wenchang, China. Both compounds showed moderate activity
against Candida albicans ATCC 10231 at the MICs of 2.34 and 12.5 µg/mL [94]. Seven analogs of
azalomycin F (Figure 11a) were identified from this strain with the same fermentation condition and
showed antimicrobial activity against C. albicans ATCC 10231 (MICs 1.56–6.25 µg/mL), Staphylococcus
aureus S014 (MICs 0.39–1.56 µg/mL), Bacillus subtilis S028 (MICs 0.20–0.78 µg/mL), and Escherichia coli
S002 (MICs 3.13–25.00 µg/mL) [95].

2.13.2. Bahamaolides

From the marine actinomycete Streptomyces sp. CNQ343 derived from sediment collected at North
Cat Cay in the Bahamas, bahamaolides A and B. Bahamaolide A (Figure 11b) displaying significant
inhibitory activity against Candida albicans ATCC 10231 with a MIC value of 12.5 µg/mL acting on
enzyme isocitrate lyase were isolated. It also possessed antifungal activity against various pathogenic
fungi: Aspergillus fumigatus HIC 6094, Trichophyton rubrum IFO 9185, T. mentagrophytes IFO4 0996.
Bahamaolide B did not inhibit any tested strain [96].
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2.13.3. Polyhydroxyl Macrolides

Two polyhydroxyl macrolide lactones, PM100117 (Figure 11c) and PM100118 were isolated from
the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. Both substances possessed antifungal
activity against Candida albicans ATCC10231 [97]. PM100117 also showed antibiotic activity against
Saccharomyces cerevisiae W303.1A but was not active towards Micrococcus luteus [98].

2.14. Macrolides 40-Membered

Amantelides

Amantelides A (Figure 11d) and B were isolated from gray cyanobacterium belonging to the family
Oscillatoriales, collected near Puntan dos Amantes, Tumon Bay, Guam. The antifungal activity of
amantelide A was observed against the marine fungi Dendryphiella salina, Lindra thalassiae, and Fusarium
sp. at a concentration of 62.5 µg/mL. Moreover, macrolide had weak antibacterial activity against
Staphylococcus aureus and Pseudomonas aeruginosa with a MIC of 32 µM. Amantelide B inhibited the
growth of Dendryphiella salina at a concentration of 6.25 µg/mL [99].
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2.15. Macrolides 42-Membered

Spongistatins

The spongistatins are macrocyclic lactone polyethers isolated from marine porifera. Spongistatin
1 (Figure 12) was discovered in an Indian Ocean Spongia species [100] and Hyrtios erecta together
with spongistatins 2 and 3 [101]. Spongistatins 4–7 were obtained from the southeast African
Spirastrella spinispirulifera [102,103]. All of these antibiotics inhibited the growth of Candida albicans
and Cryptococcus neoformans in disk diffusion assays. Furthermore, Spongistatin 1 acted against
Issatchenkia orientalis, Rhodotorula mucilaginosa, Aspergillus fumigatus, and Rhizopus oligosporus with MICs
of 0.195–12.5 µg/mL [104].
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In Table 1 has been presented the general characteristic of marine macrolides described in
this review.
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Table 1. The general characteristic of marine macrolides having antimicrobial activity.

No. Macrolide Source Target References

1 (19Z)-halichondramide sponge Chondrosia corticata Fungi: Candida albicans, Aspergillus niger, Aspergillus fumigatus,
Trichophyton rubrum, T. mentagrophytes [75,76]

2 (S)-dehydrocurvularin fungi Curvularia sp. Fungi: Phytophthora capsici [21]

3 11-hydroxycurvularin actinomycete Pseudonocardia sp. Bacteria: Escherichia coli [24]

4 13-Deoxytedanolide sponge Mycale adhaerens Fungi: Saccharomyces cerevisiae [59]

5 15G256w fungus Hypoxylon oceanicum Fungi: Neurospora crassa [60,61]

6 15G256ι fungus Hypoxylon oceanicum Fungi: Neurospora crassa [60,61]

7 19-O-demethylscytophycin C algae Scytonema mirabile, S. burmanicum, S. ocellatum Fungi: Aspergillus oryzae, Candida albicans, Penicillium notatum,
Saccharomyces cerevisiae [68]

8 5-hydroxy-de-O-methyllasiodiplodin fungus No. ZZF36 Bacteria: Staphylococcus aureus [38]

9 6-hydroxyscytophycin B algae Cylindrospermum muscicola, Scytonema mirabile,
S. burmanicum, S. ocellatum

Fungi: Aspergillus oryzae, Candida albicans, Penicillium notatum,
Saccharomyces cerevisiae [67,68]

10 7-O-malonylmacrolactin A bacteria Bacillus subtilis Bacteria: Staphylococcus aureus, Enterococcus sp., Burkholderia cepacia;
Fungi: Candida crusei [79,80]

11 7-O-succinylmacrolactin A and F bacteria Bacillus sp. Bacteria: Bacillus subtilis, Staphylococcus aureus [78]

12 8’-hydroxyzearalanone fungi Penicillium sp. Fungi: Pyricularia oryzae [45,47]

13 Amantelide A cyanobacterium from family Oscillatoriales Bacteria: Staphylococcus aureus, Pseudomonas aeruginosa;
Fungi: Dendryphiella salina, Lindra thalassiae, Fusarium sp. [99]

14 Amantelide B cyanobacterium from family Oscillatoriales Fungi: Dendryphiella salina [99]

15 Amphidinolide Q dinoflagellate Amphidinium sp. Bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli;
Fungi: Candida albicans [35]

16 Aryl-crowned
polyketide macrolactin bacterium Bacillus subtilis Bacteria: Escherichia coli, Aeromonas hydrophilla, Pseudomonas aeruginosa,

Klebsiella pneumoniae, Vibrio sp. [87]

17 Azalomycin F analogs bacteria Streptomyces sp. Bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli;
Fungi: Candida albicans [94,95]

18 Bahamaolide A actinomycete Streptomyces sp. Fungi: Candida albicans, Aspergillus fumigatus, Trichophyton rubrum,
T. mentagrophytes [95]

19 Borrelidin actinomycete Nocardiopsis sp. Bacteria: Enterococcus faecalis, E. faecium, Proteus hauseri, Klebsiella pneumoniae,
Salmonella enterica [53]

20 Borrelidins C and D actinomycete Nocardiopsis sp. Bacteria: Salmonella enterica [55]

21 Bromophycolides P and Q alga Callophycus serratus Bacteria: Staphylococcus aureus, Enterococcus faecium [50]

22 Butremycin bacteria Micromonospora sp. Bacteria: Staphylococcus aureus; Escherichia coli [49]

23 Chalcomycins A and B bacteria Streptomyces sp. Bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli [51,52]
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Table 1. Cont.

No. Macrolide Source Target References

24 Curvularin fungi Curvularia sp., Eupenicillium sp. Bacteria: Bacillus subtilis; Fungi: Phytophthora capsici, Saccharomyces cerevisiae,
Sclerotinia sclerotiorum [21,25]

25 Dendrodolides A, C and M fungi Cladosporium sp.
Bacteria: Bacillus cereus, Tetragenococcus halophilus, Staphylococcus epidermidis,

Staphylococcus aureus, Escherichia coli, Pseudomonas putida, Nocardia brasiliensis,
Vibrio parahaemolyticus

[36]

26 de-O-methyllasiodiplodin fungus No. ZZF36 Bacteria: Staphylococcus aureus, Bacillus subtilis, Salmonella enteritidis;
Fungi: Candida albicans, Fusarium oxysporum f.sp. cubense [38]

27 Dihydrochalcomycin bacteria Streptomyces sp. Bacteria: Staphylococcus aureus [52]

28 Dihydrohalichondramide sponge Halichondria sp. Fungi: Candida albicans [74]

29 Gageomacrolactins bacterium Bacillus subtilis
Bacteria: Staphylococcus aureus, Bacillus subtilis, B. cereus, Escherichia coli,

Salmonella typhi, Pseudomonas aeruginosa; Fungi: Aspergillus niger, Botrytis
cinerea, Colletotrichum acutatum, Candida albicans, Rhizoctonia solani

[71]

30 Halichondramide sponge Halichondria sp. Fungi: Candida albicans, Trichophyton mentagrophytes, Aspergillus fumigatus,
Trichophyton rubrum, T. mentagrophytes [73,76]

31 Isohalichondramide sponge Halichondria sp. Fungi: Candida albicans [74]

32 Kabiramide C unidentified nudibranch Fungi: Candida albicans, Aspergillus niger, Penicillium citrium,
Trichophyton interdigitae [64]

33 Lasiodiplodin fungus No. ZZF36 Bacteria: Staphylococcus aureus, Bacillus subtilis; Fungi: Fusarium oxysporum [38]

34 Leucascandrolide A sponge Leucascandra caveolata Fungi: Fusarium oxysporum, Helminthosporium sativum, Phytophtora hevea,
Botrytis cinerea, Pyricularia oryzae, Candida albicans [57]

35 Lobophorin A bacteria actinomycete Bacteria: Bacillus thuringensis [41,43]

36 Lobophorin B bacteria actinomycete Bacteria: Bacillus thuringensis, Bacillus subtilis [41,44]

37 Lobophorin E bacteria Streptomyces sp. Bacteria: Bacillus thuringensis, Bacillus subtilis [43,44]

38 Lobophorin F bacteria Streptomyces sp. Bacteria: Bacillus thuringensis, Bacillus subtilis, Staphylococcus aureus,
Enterococcus faecalis [43,44]

39 Lobophorin H bacteria Streptomyces sp. Bacteria: Bacillus subtilis, Staphylococcus aureus [44]

40 Lobophorin I bacteria Streptomyces sp. Bacteria: Bacillus subtilis [44]

41 Macrolactin A bacteria Bacillus sp., B. subtilis, B. marinus
Bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli; Fungi:

Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum, Candida albicans,
Rhizoctonia solani

[71,77,82,83]

42 Macrolactin B bacteria Bacillus subtilis, B. marinus
Bacteria: Staphylococcus aureus, Escherichia coli; Fungi: Aspergillus niger, Botrytis
cinerea, Colletotrichum acutatum, Candida albicans, Rhizoctonia solani, Pyricularia

oryzae, Alternaria solani
[71,82,83]

43 Macrolactin D bacterium Bacillus marinus Bacteria: Staphylococcus aureus; Fungi: Pyricularia oryzae, Alternaria solani [83]
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No. Macrolide Source Target References

44 Macrolactin F bacteria Bacillus sp., B. subtilis Bacteria: Staphylococcus aureus, Bacillus subtilis; Fungi: Aspergillus niger, Botrytis
cinerea, Colletotrichum acutatum, Candida albicans, and Rhizoctonia solani [71,77,78]

45 Macrolactin K bacteria Bacillus sp. Bacteria: Staphylococcus aureus, Bacillus subtilis [77]

46 Macrolactin N bacteria Bacillus subtilis Bacteria: Escherichia coli, Staphylococcus aureus, Bacillus subtilis [81]

47 Macrolactin S bacteria Bacillus sp., B. marinus, B. amyloliquefaciens Bacteria: Escherichia coli, Bacillus subtilis, Staphylococcus aureus [82–84]

48 Macrolactin V bacterium Bacillus amyloliquefaciens Bacteria: Escherichia coli, Bacillus subtilis, Staphyloccocus aureus [84]

49 Macrolactin W bacteria Bacillus sp., B. subtilis

Bacteria: Bacillus subtilis, Staphylococcus aureus, Escherichia coli,
Pseudomonas aeruginosa;

Fungi: Aspergillus niger, Botrytis cinerea, Colletotrichum acutatum,
Candida albicans, Rhizoctonia solani

[71,85]

50 Macrolactins G, H, I, J, L and M bacteria Bacillus sp. Bacteria: Staphylococcus aureus, Bacillus subtilis [77]

51 Maduralide bacteria actinomycete Bacteria: Bacillus subtilis [88]

52 Marinisporolides A and B actinomycete Marinispora sp. Fungi: Candida albicans [93]

53 Misakinolide A sponge Theonella sp. Fungi: Candida albicans [62]

54 Modiolide A fungi Paraphaeosphaeria sp., Curvularia sp. Bacteria: Micrococcus luteus, Staphylococcus aureus; Fungi: Neurospora crassa,
Phytophthora capsici, Microsporum gypseum [21,26,27]

55 Modiolide B fungi Paraphaeosphaeria sp. Bacteria: Micrococcus luteus; Fungi: Neurospora crassa [27]

56 Neohalichondramide sponge Chondrosia corticata Bacteria:
Fungi: Candida albicans, Aspergillus niger [75]

57 Neomaclafungins A-I bacteria Actinoalloteichus sp. Fungi: Trichophyton mentagrophytes [89]

58 Neurymenolide A alga Neurymenia fraxinifolia Bacteria: Staphylococcus aureus, Enterococcus faecium [53]

59 Phomolide A fungi Phomopsis sp. Bacteria: Escherichia coli; Fungi: Candida albicans, Saccharomyces cerevisiae [28]

60 Phomolide B fungi Phomopsis sp. Bacteria: Escherichia coli; Fungi: Candida albicans, Saccharomyces cerevisiae [28]

61 Phorboxazoles A and B sponge Phorbas sp. Fungi: Candida albicans, Saccharomyces carlsbergensis [90]

62 PM100117 bacterium Streptomyces caniferus Fungi: Candida albicans, Saccharomyces cerevisiae [97,98]

63 PM100118 bacterium Streptomyces caniferus Fungi: Candida albicans [97]

64 Reedsmycins A-E bacteria Streptomyces sp., S. youssoufiensis Fungi: Candida albicans [91,92]

65 Scytophycins algae Scytonema sp., S. pseudohofmanni, Cylindrospermum
muscicola, Anabaena sp., Nostoc sp. Fungi: Candida albicans, Aspergillus flavus [66,67,71]

66 Secohalichondramide sponge Chondrosia corticata Fungi: Candida albicans, Aspergillus niger [75]

67 Spongistatin 1 porifera Spongia sp., Hyrtios erecta Fungi: Candida albicans, Cryptococcus neoformans, Issatchenkia orientalis,
Rhodotorula mucilaginosa, Aspergillus fumigatus, Rhizopus oligosporus [100,101,104]
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68 Spongistatins 2-7 porifera Hyrtios erecta, Spirastrella spinispirulifera Fungi: Candida albicans, Cryptococcus neoformans [101–104]

69 Sporiolide A fungi Cladosporium sp. Bacteria: Micrococcus luteus; Fungi: Aspergillus niger, Candida albicans,
Cryptococcus neoformans, Neurospora crassa [39]

70 Sporiolide B fungi Cladosporium sp. Bacteria: Micrococcus luteus [39]

71 Tolytoxin
(6-hydroxy-7-O-methylscytophycin B)

algae Cylindrospermum muscicola, Scytonema mirabile,
S. burmanicum, S. ocellatum, Tolypothrix conglutinata

var. colorata

Fungi: Aspergillus oryzae, Candida albicans, Penicillium notatum, Saccharomyces
cerevisiae Alternaria alternata, Bipolaris incurvata, Calonectria critalarae,
Colletotrichum coccodes, Phyllosticta capitalensis, Phytophtora nicotianae,

Rhizoctonia solani, Sclerotium rofsii, Thielaviopsis paradoxa.
Trichophyton mentagrophytes

[67–69]

72 Xestodecalactone B fungus Penicillium cf. montanense Fungi: Candida albicans [32]

73 Zearalanone fungi Penicillium sp., Fusarium sp. Bacteria: Staphylococcus aureus; Fungi: Pyricularia oryzae
Cryptococcus neoformans [45,47,48]

74 αβ-dehydrocurvularin fungi Eupenicillium sp. Bacteria: Bacillus subtilis, Staphylococcus aureus; Fungi: Saccharomyces cerevisiae,
Sclerotinia sclerotiorum [25]
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3. Conclusions

Marine organisms produce 34 groups of macrolides with antibacterial and/or antifungal activities.
Among seventy-six antibiotics or their analog sets summarized in the Table, 36 are produced by
bacteria, 18 by fungi, ten by sponges, seven by algae, two by porifera and one by nudibranch. At the
same time, 29 macrolides or their groups have antifungal activity, 25 have antibacterial, and 20 have
both antifungal and antibacterial. Summarizing, marine organisms are abundant in natural macrolides,
which may be used in the future for the treatment of bacterial and fungal infections. Marine macrolides
can also be potential drugs applicable against pathogens resistant to currently known antibiotics,
which is also presented in other papers [105–107].
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Sciences, Poland.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J.G.; Wright, P.C. Marine cyanobacteria - a prolific
source of natural products. Tetrahedron 2001, 57, 9347–9377. [CrossRef]

2. El-Demerdash, A.; Tammam, M.A.; Atanasov, A.G.; Hooper, J.N.A.; Al-Mourabit, A.; Kijjoa, A. Chemistry
and biological activities of the marine sponges of the genera Mycale (Arenochalina), Biemna and Clathria. Mar.
Drugs 2018, 16, 214. [CrossRef] [PubMed]

3. Wang, M.; Zhang, J.; He, S.; Yan, X. A review study on macrolides isolated from cyanobacteria. Mar. Drugs
2017, 15, 126. [CrossRef]

4. Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Antibacterial, antifungal and antimycobacterial compounds from
cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–776. [CrossRef] [PubMed]

5. Liu, Q.-A.; Zheng, J.-J.; Gu, Y.-C.; Wang, C.-Y.; Shao, C.-L. Chapter 7. The chemistry and bioactivity of
macrolides from marine microorganisms. Stud. Nat. Prod. Chem. 2015, 44, 353–401.
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