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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) techniques have revolutionized the investigation of transcrip-
tomic landscape in individual cells. Recent advancements in spatial transcriptomic technologies further enable gene
expression profiling and spatial organization mapping of cells simultaneously. Among the technologies, imaging-
based methods can offer higher spatial resolutions, while they are limited by either the small number of genes
imaged or the low gene detection sensitivity. Although several methods have been proposed for enhancing spatially
resolved transcriptomics, inadequate accuracy of gene expression prediction and insufficient ability of cell-popula-
tion identification still impede the applications of these methods.

Results: We propose stPlus, a reference-based method that leverages information in scRNA-seq data to enhance
spatial transcriptomics. Based on an auto-encoder with a carefully tailored loss function, stPlus performs joint
embedding and predicts spatial gene expression via a weighted k-nearest-neighbor. stPlus outperforms baseline
methods with higher gene-wise and cell-wise Spearman correlation coefficients. We also introduce a clustering-
based approach to assess the enhancement performance systematically. Using the data enhanced by stPlus, cell
populations can be better identified than using the measured data. The predicted expression of genes unique to
scRNA-seq data can also well characterize spatial cell heterogeneity. Besides, stPlus is robust and scalable to data-
sets of diverse gene detection sensitivity levels, sample sizes and number of spatially measured genes. We antici-
pate stPlus will facilitate the analysis of spatial transcriptomics.

Availability and implementation: stPlus with detailed documents is freely accessible at http://health.tsinghua.edu.
cn/software/stPlus/ and the source code is openly available on https://github.com/xy-chen16/stPlus.

Contact: ruijiang@tsinghua.edu.cn

1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) techni-
ques have stimulated efforts to unravel the heterogeneity of cell
types, revolutionized the understanding of various complex tissues
and boosted the development of modern cellular and molecular biol-
ogy. However, scRNA-seq requires a dissociation step to obtain cell
suspension, leading to a loss of spatial context. The maintenance of
spatial context is crucial for understanding cellular characteristics
and reconstructing tissue architecture in normal physiology or under
perturbation.

To elucidate single-cell heterogeneity and define cell types while
also retaining spatial information, a number of remarkable method-
ologies have been recently developed to profile spatially resolved
transcriptomics. These methodologies can be grouped into two main
categories: (i) sequencing-based technologies that provide unbiased
capture of the transcriptomic landscape via capturing and

quantifying the mRNA population of molecules in situ, such as ST
(Stahl et al., 2016), HDST (Vickovic et al., 2019) and Slide-seq
(Rodriques et al., 2019) and (ii) imaging-based technologies that
offer higher spatial resolutions by fluorescence in situ hybridization
(FISH) or in situ sequencing, such as osmFISH (Codeluppi et al.,
2018), seqFISHþ (Eng et al., 2019), MERFISH (Moffitt et al.,
2018) and STARmap (Wang et al., 2018). These approaches are
often complementary and differ in their target throughput, coverage
and spatial resolution. For example, sequencing-based methods offer
relatively high throughput but have been limited by spatial reso-
lution, while imaging-based methods can provide subcellular reso-
lution but have been limited in terms of sequence coverage and
overall throughput (Larsson et al., 2021; Zhuang, 2021). In this
study, we focus on the imaging-based methods with the understand-
ing that increasing spatial resolution can help define transcriptomic
gradients within tissues more accurately, and allow detection of the
subcellular localization of transcripts (Chen et al., 2021a).
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In imaging-based methodologies, early methods based on FISH,
such as osmFISH, can provide excellent signal quality in tissue imag-
ing with even higher gene detection sensitivity than scRNA-seq
(Codeluppi et al., 2018). Nevertheless, the molecular crowding
problem presents a challenge to scaling up the number of genes
imaged. Although recent advanced technologies can help mitigate
the molecular crowding problem and image more than 10 000 genes
in individual cells (Eng et al., 2019; Xia et al., 2019), increasing the
number of genes imaged will, in general, lead to increment of the
overall measurement time and/or reduction of the measurement ac-
curacy for multiplexed FISH and in situ sequencing (Zhuang, 2021).
Therefore, a more general challenge for imaging-based profiling of
spatially resolved transcriptomics is to balance the number of genes
imaged and the gene detection sensitivity. As suggested by Wang
et al. (2018), a conceptually simple approach based on the idea of
divide-and-conquer is to divide the targeted genes into multiple
groups and image them sequentially one group at a time. Moreover,
computational approaches can help fill this gap by incorporating
scRNA-seq data as reference and predicting genome-wide expres-
sion of cells profiled with a targeted gene set (Zhuang, 2021), given
that recent efforts of cell atlas consortiums have generated massive
amounts of scRNA-seq data.

Computational methods for enhancing spatially resolved tran-
scriptomics are anticipated to accurately predict expression of un-
measured genes on the data with small number of genes imaged, and
effectively impute expression of imaged genes to better identify cell
populations on the data with low gene detection sensitivity. Existing
computational methods can be divided into two major categories: (i)
probabilistic methods, such as gimVI (Lopez et al., 2019), that gen-
eratively model spatial transcriptomic data while integrating refer-
ence scRNA-seq data by domain adaptation and (ii) joint
embedding-based methods, such as Seurat (Stuart et al., 2019) and
Liger (Welch et al., 2019), that perform joint dimensionality reduc-
tion for spatial data and reference data, and then impute the un-
measured genes in spatial transcriptomic data based on the linkage
between cells in these two datasets. Most recently, SpaGE performs
linearly joint embedding using genes shared between spatial and
scRNA-seq datasets, and then predicts spatial gene expression by a
k-nearest-neighbor (k-NN) approach (Abdelaal et al., 2020). For the
joint embedding-based methods, the first step plays the most import-
ant role in the enhancement of spatial transcriptomic data (Abdelaal
et al., 2020), while the second step is usually based on a general idea
that integrates the information of neighboring cells in reference
scRNA-seq data (Abdelaal et al., 2020; Welch et al., 2019).
Abdelaal et al. also provided an evaluation of the existing methods
for the first time, and demonstrated that SpaGE achieves overall
state-of-the-art performance. However, the use of only a certain

fraction of the features (i.e. genes present in both datasets) cannot
take full advantage of the reference scRNA-seq data, and thus limits
the performance of joint embedding and final enhancement. Besides,
although evaluation based on Spearman correlation coefficients can
assess the prediction accuracy to some extent, it may not be the opti-
mal evaluation metric because the Spearman correlation coefficients
are relatively low in most instances even the visual inspection shows
good enhancement for genes with known spatial pattern (Abdelaal
et al., 2020; Lopez et al., 2019). In addition, Spearman correlation
coefficients cannot reflect performance for the identification of cell
populations using enhanced spatial transcriptomic data.

Motivated by the above understanding, we propose stPlus, a ref-
erence-based method for the accurate enhancement of spatial tran-
scriptomics. stPlus is built upon an auto-encoder with a carefully
tailored loss function for leveraging the holistic information in refer-
ence scRNA-seq data instead of only genes shared with spatial tran-
scriptomic data. With the learned cell embeddings, stPlus predicts
gene expression in spatial transcriptomics via a weighted k-NN ap-
proach. We also introduce a clustering-based approach to assess the
cell heterogeneity maintained in the predicted spatial profiles by
metrics suitable for different scenarios. We conduct a comprehensive
evaluation by gene-wise and cell-wise Spearman correlation coeffi-
cients and four metrics for cell clustering. Benchmarked against
state-of-the-art methods across a variety of spatial and scRNA-seq
dataset pairs, stPlus provides superior enhancement performance
and can scale to large datasets. We also demonstrate that the pre-
dicted spatial gene expression can offer comparable or even better
performance to identify cell populations than the measured spatially
resolved transcriptomics. We anticipate stPlus will help mitigate the
technical limitations and better characterize the transcriptomic pat-
tern of complex tissues.

2 Materials and methods

2.1 The model of stPlus
stPlus aims at enhancing spatial transcriptomics by accurately pre-
dicting expression of unmeasured genes and effectively imputing ex-
pression of measured genes. The input of stPlus is the target spatial
data and the reference scRNA-seq data profiled from matching or
similar tissue as the spatial data. These two data can be represented
by two gene-by-cell matrixes, respectively. Note that the cells be-
tween these two data are not matched, and the genes in reference
data usually include most of the genes in spatial data. Users can spe-
cify any genes from the reference data to be predicted. The output of
stPlus is a gene-by-cell matrix containing the predicted expression of
each specified gene for each cell in the spatial data.

Fig. 1. A graphical illustration of the stPlus model. stPlus first augments spatial transcriptomic data and combines it with reference scRNA-seq data. The data are then jointly

embedded using an auto-encoder. Finally, stPlus predicts the expression of spatially unmeasured genes based on weighted k-NN
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The enhancement process of stPlus can be divided into three
main steps: (i) data processing to prepare for joint embedding; (ii)
joint embedding of the single cells in spatial transcriptomic data and
reference scRNA-seq data; and (iii) predicting the expression of spa-
tially unmeasured genes based on the cell embedding and reference
scRNA-seq data (Fig. 1).

In the data processing step, to avoid introducing highly noisy
genes, stPlus selects the top 2000 highly variable genes from genes
only present in scRNA-seq data, as suggested by the widely used
toolkits for scRNA-seq analysis (Stuart et al., 2019; Wolf et al.,
2018). The set of selected genes is denoted as U, while the set of
genes shared between spatial transcriptomic data and reference
scRNA-seq data is denoted as S. For the spatial transcriptomic data,
stPlus augments expression measurements of genes U with zeros,
and unifies the gene order with that of the processed scRNA-seq
data. Then, the spatial transcriptomic and scRNA-seq datasets are
merged together, shuffled across cells and fed into the next step.

The joint embedding step aims to fit each spatial transcriptomic
cell to the most similar scRNA-seq cells, but not to perform single-
cell data integration and batch-effect correction (Tran et al., 2020),
or dimensionality reduction for downstream analyses such as data
visualization and cell clustering (Sun et al., 2019). The joint embed-
ding step plays the most crucial role in the enhancement of spatial
transcriptomic data (Abdelaal et al., 2020), while the state-of-the-
art method performs linearly embedding without incorporating the
information of genes unique to scRNA-seq data, which constitutes
major hindrances to the enhancement performance. In this step,
stPlus uses an auto-encoder with a carefully tailored loss function to
incorporate the biological variation of scRNA-seq-unique genes.

More specifically, the auto-encoder projects the gene expression
data with a dimension of Sþ U into a 1000-dimension latent space
with a fully connected layer. The latent embedding is then decoded to
the original space with another fully connected layer. Both the layers
use the rectified linear (ReLU) activation function, which outputs zero
for negative values, to achieve non-linear transformation and overcome
the vanishing gradient problem. As the essence of stPlus, the loss func-
tion consists of two parts: (i) loss of the reconstruction for shared genes
S in the spatial transcriptomic data and (ii) data sparsity-penalized loss
of the prediction for genes U in the reference scRNA-seq data.

To access the two parts of loss function, stPlus feedforwards each
training batch twice, respectively. First, stPlus feeds the batch into the
auto-encoder, and extracts the decoded results corresponding to genes
S for the spatial transcriptomic cells (denoted as ÊS ). With the origin-
al expression data of genes S in the spatial transcriptomic cells
(denoted as ES), the first part of loss function is calculated as follows:

l1 ¼
X

SEðES; ÊS Þ;

where SEð�; �Þ denotes squared error (squared L2 norm) between
each element in the two inputs. Second, to mimic the augmented
spatial transcriptomic data, stPlus extracts scRNA-seq cells in the
batch, and masks the entries of genes U by setting the expression of
genes U (denoted as EU) to zero. The masked scRNA-seq data is
then fed into the auto-encoder, and the decoder output correspond-
ing to genes U (denoted as ÊU ) is regarded as the prediction result
for genes U in scRNA-seq cells. The element-wise squared error can
thus be obtained by SEðEU; ÊU Þ. Given that scRNA-seq data usually
contains technical artifacts (e.g. dropouts) and does not reflect the
actual expression level, stPlus further penalizes SEðEU; ÊU Þ by
down-weighting the errors of zero elements in EU with the percent-
age of non-zero elements in reference scRNA-seq data (denoted as
Q), i.e. one minus data sparsity. This strategy is based on the idea
that the sparser the scRNA-seq data is, the more likely the zero ele-
ments are false negatives, and the prediction error should be penal-
ized with lower weights. The second part of loss function is then
computed as the following formula:

l2 ¼
X

SEðEU; ÊU Þ � C�;
h

where � denotes element-wise multiplication, C denotes a matrix
with the same dimension as EU, in which an entry is set to Q if the

corresponding entry in EU is zero, and is set to 1 otherwise. The two
parts of loss function are then scaled by the number of gene sets S
(denoted as NS) versus that of U (denoted as NU), and the number of
spatial transcriptomic cells (denoted as MT) versus that of scRNA-
seq cells (denoted as MR). The final loss is the sum of these two
scaled losses:

loss ¼ l1 þ al2 ¼ l1 þ
NSMT

NUMR
l2:

After feedforwarding each training batch twice, stPlus performs
backward propagation with the final loss. stPlus optimizes parame-
ters in the auto-encoder until convergence, and finally obtains cell
embeddings of spatial transcriptomic data and reference scRNA-seq
data. We also introduce two variations of stPlus, i.e. stPlus without
the first part of loss (stPlus w/o P1) and stPlus without the second
part of loss (stPlus w/o P2), to demonstrate how the two parts of
loss affect the enhancement results.

In the predicting step, stPlus predicts the expression of spatially
unmeasured genes using a strategy similar to SpaGE. For each spa-
tial transcriptomic cell Ti, stPlus calculates its cosine distance with
each scRNA-seq cell Rj based on the learned cell embeddings. The
neighboring 50 scRNA-seq cells are then used to predict the expres-
sion of unmeasured genes in cell Ti via a weighted k-NN approach.
Specifically, stPlus filters out the neighbors with negative cosine
similarity, and calculates the weight between Ti and kth neighbor in
the remaining K neighbors by:

wik ¼ 1� distanceðTi;RkÞP
kdistanceðTi;RkÞ

 !
= K� 1ð Þ:

Finally, stPlus predicts expression of spatially unmeasured genes
in cell Ti by the weighted expression of these genes in the K neigh-
bors from reference scRNA-seq data:

Yi ¼
X

k
wikXk;

where Xk denotes expression data of genes to predict in the kth
neighbor.

Leveraging the ensemble learning strategy, stPlus automatically
adopts five epochs with minimal loss when training the auto-en-
coder, and averages the prediction results to achieve better and sta-
ble performance.

2.2 Data collection and preprocessing
We collected the five benchmarking dataset pairs adopted in SpaGE
(Abdelaal et al., 2020) to evaluate the enhancement performance of
different computational methods. As shown in Table 1, the dataset
pairs have diverse gene detection sensitivity levels, sample sizes and
number of spatially measured genes. Specifically, the five dataset
pairs are made up of three spatial transcriptomic datasets (osmFISH,
MERFISH and STARmap) from different mouse brain regions, and
four reference scRNA-seq datasets (Zeisel, AllenVISp, AllenSSp and
Moffit). The osmFISH dataset was retrieved from http://linnarsson
lab.org/osmFISH/ (Codeluppi et al., 2018). The MERFISH dataset
was downloaded from https://doi.org/10.5061/dryad.8t8s248
(Moffitt et al., 2018). The STARmap dataset is available at https://
www.starmapresources.com/data (Wang et al., 2018). Note that the
labels of cell populations in the osmFISH and MERFISH datasets
are accessible, while that of the STARmap dataset cannot be suc-
cessfully aligned with cells. For the reference scRNA-seq data, the
Zeisel dataset, which is provided by the same lab as that of the
osmFISH dataset, was downloaded from http://linnarssonlab.org/
cortex/ (Zeisel et al., 2015). The AllenVISp (Tasic et al., 2018) and
AllenSSp (Chatterjee et al., 2018) datasets collected from https://por
tal.brain-map.org/atlases-and-data/rnaseq were more deeply
sequenced than the Zeisel dataset. The AllenVISp was measured
from a different brain region than the osmFISH dataset, while the
AllenSSp dataset was measured from the somatosensory cortex,
similar to the osmFISH dataset. The Moffit dataset, which was pub-
lished in the same study of MERFISH, was retrieved from NCBI
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Gene Expression Omnibus with the accession number GSE113576
(Moffitt et al., 2018).

For the implementation of stPlus, we followed the data prepro-
cessing procedure of SpaGE except for the final z-score step
(Abdelaal et al., 2020). To be more specific, we filtered out the
blank genes and the Fos gene (non-numerical values), and filtered
out the cells labeled as ‘Ambiguous’ in the MERFISH dataset. We
only kept the cells from cortical regions in the osmFISH dataset.
Each spatial transcriptomic dataset was then normalized via divid-
ing the counts within each cell by the total number of transcripts
within that cell, scaled by the median number of transcripts per cell
and log-transformed with a pseudo-count. For the reference scRNA-
seq datasets, we filtered out genes expressed in <10 cells. We also
filtered out low-quality cells in the AllenVISp dataset according to
the metadata (‘Low Quality’ and ‘No Class’ cells), and filtered out
the hippocampus cells in the Zeisel dataset according to the meta-
data. The filtered scRNA-seq datasets were next independently nor-
malized by dividing the counts within each cell by the total number
of transcripts within that cell, scaled by 10e6, and log-transformed
with a pseudo-count.

2.3 Evaluation approaches
Considering that the technical challenge for imaging-based profiling
of spatially resolved transcriptomics is to balance the number of
genes imaged and the gene detection sensitivity, computational
methods for data enhancement are anticipated to (i) accurately pre-
dict expression of unmeasured genes, especially for the data with
small number of genes imaged and (ii) effectively impute expression
of imaged genes to better identify cell populations, especially for the
data with low gene detection sensitivity. We hence conduct a com-
prehensive evaluation of enhancement performance from two
perspectives.

First, we evaluated the prediction performance of gene expres-
sion by gene-wise and cell-wise Spearman correlation coefficients
between the measured and predicted spatial profiles. The Spearman
correlation coefficient over cells for each gene (gene-wise) can dir-
ectly reflect the correlation between predicted and measured spatial
profiles since the prediction object is a gene. The gene-wise coeffi-
cient was adopted as the primary evaluation metric in the two state-
of-the-art methods specifically designed to enhance the spatial tran-
scriptomic data (Abdelaal et al., 2020; Lopez et al., 2019). Given
that cell heterogeneity is essential to single-cell studies, we addition-
ally assessed cellular characteristics maintained in the predicted spa-
tial profiles by Spearman correlation coefficients over genes for each
cell (cell-wise) based on the idea that higher correlation per cell can
better maintain cellular characteristics. We obtained the predicted
spatial transcriptomics of all genes iteratively in cross-validation
experiments, and then calculated Spearman correlation coefficients
at cell-wise.

Second, we evaluated performance for the identification of cell
populations by four clustering metrics. It is intuitive that, based on
the ground-truth cell labels and the enhanced spatial transcriptomic
data, a higher score of cell clustering metric indicates better

performance for the identification of cell populations, and thus a
better enhancement of spatial transcriptomics. Therefore, we assess
clustering results based on the computationally predicted spatial
transcriptomics, using clustering results based on the spatially pro-
filed data as the baseline. Specifically, we used the standard pipeline
with default parameters in Scanpy (Wolf et al., 2018), a widely used
Python library for the analysis of single-cell data, to perform dimen-
sion reduction and cell clustering. We adopted a recently suggested
clustering strategy for benchmark studies (Chen et al., 2019). The
strategy is based on Louvain clustering, a community detection-
based clustering method (Blondel et al., 2008; Levine et al., 2015;
Wolf et al., 2018), and uses a binary search to tune the resolution
parameter in Louvain clustering to make the number of clusters and
the number of ground-truth cell labels as close as possible.

2.4 Metrics for assessment of clustering results
The clustering results were evaluated based on four widely used met-
rics: adjusted mutual information (AMI), adjusted Rand index
(ARI), homogeneity (Homo) and normalized mutual information
(NMI). A comparison of ARI, NMI and AMI was presented in
Romano et al. (2016). Rand index (RI) represents the probability
that the predicted clusters and the true cell labels will agree on a ran-
domly chosen pair of cells. ARI is an adjusted version of RI, where
it adjusts for the expected agreement by chance. ARI is preferred
when there are large equal-sized clusters (Romano et al., 2016).
Both NMI and AMI are based on mutual information (MI), which
assesses the similarity between the predicted clusters and true cell
labels. NMI scales MI to be between 0 and 1, while AMI adjusts MI
by considering the expected value under random clustering. AMI is
theoretically preferred to NMI, even though NMI is also very widely
used and usually provides roughly the same results. Compared with
ARI, AMI is preferred when the sizes of clusters are unbalanced and
when there are small clusters (Romano et al., 2016). We note that
the sizes of cell populations in most spatial transcriptomic data,
including the datasets used in this study, are unbalanced since some
rare cell populations exist. Therefore, AMI is more appropriate in
most cases, while ARI should be adopted when the clusters have
nearly equal sizes. The homogeneity score assesses whether the
obtained clusters contain only cells of the same population, and it
equals 1 if all the cells within the same cluster correspond to the
same population.

To be more specific, suppose T is the known ground-truth labels
of cells, P is the predicted clustering assignments, N is the total number
of single cells, xi is the number of cells assigned to the ith unique clus-
ter of P, yj is the number of cells that belong to the jth unique label of
T and nij is the number of overlapping cells between the ith cluster
and the jth unique label. Then the ARI score is computed as follows:

ARI ¼

P
ij

nij

2

� �
�
P

i
xi
2

� �P
j

yj

2

� �h i
= N

2
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� � :
The NMI score is computed as the following formula:

Table 1. Summary of the five benchmarking dataset pairs

Spatial/scRNA-seq

dataset pair

Spatial transcriptomic data Reference scRNA-seq data

Number

of cells

Number

of genes

Data

sparsity

(%)

Tissue Number

of cells

Number

of genes

Data

sparsity

(%)

Tissue

osmFISH_Zeisel 3405 33 29.7 SMSc 1691 15 075 78.9 SMSc

osmFISH_AllenVISp 3405 33 29.7 SMSc 14 249 34 617 74.7 VISc

osmFISH_AllenSSp 3405 33 29.7 SMSc 5577 30 527 69.8 SMSc

MERFISH_Moffit 64 373 155 60.6 POR 31 299 18 646 85.6 POR

STARmap_AllenVISp 1549 1020 79.0 VISc 14 249 34 617 74.7 VISc

Note: POR: pre-optic region; SMSc: somatosensory cortex; VISc: visual cortex.
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NMI ¼ MIðP;TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Pð ÞHðTÞ

p ;

where Hð�Þ is the entropy function, and MIð�; �Þ is the mutual
entropy.

The AMI score is calculated as follows:

AMI ¼ MI P;Tð Þ � E½MI P;Tð Þ�
avg½H Pð Þ;HðTÞ� � E½MI P;Tð Þ�

;

where Eð�Þ denotes the expectation function.
The homogeneity score is computed as follows:

Homo ¼ 1�H TjPð Þ
H Tð Þ

;

where HðTjPÞ denotes the uncertainty of true labels based on the
knowledge of clustering assignments.

2.5 Baseline methods
We compared the performance of stPlus with four baseline methods,
including SpaGE (Abdelaal et al., 2020), Seurat (Stuart et al., 2019),
Liger (Welch et al., 2019) and gimVI (Lopez et al., 2019), with their
default parameters or settings provided in the accompanying exam-
ples. Source code for implementing the baseline methods was
obtained from the study of SpaGE, which is the first to systematical-
ly benchmark existing methods using the five dataset pairs intro-
duced above (Abdelaal et al., 2020). Data processing procedures,
such as normalization and scaling, were also performed following
the source code of each method.

3 Results

3.1 stPlus accurately predicts spatial transcriptomic

data
To demonstrate the advantage of stPlus for predicting spatial gene
expression, we conducted a series of 5-fold cross-validation experi-
ments using five dataset pairs of diverse gene detection sensitivity
levels, sample sizes and number of spatially measured genes
(Table 1). On each dataset pair, we randomly split genes shared be-
tween the two datasets into five folds, and predicted expression of
the genes in each fold by the stPlus model trained with the genes in
the remaining four folds. The predicted spatial transcriptomics of all
genes in all cells can be obtained iteratively in the cross-validation
experiments.

We first compared the Spearman correlation coefficients at gene-
wise of stPlus to that of other methods. The gene-wise coefficients
can directly reflect the correlation between predicted and measured
spatial profiles since the prediction object is a gene. For each compari-
son, we conducted one-sided paired Wilcoxon signed-rank tests to
test if stPlus achieves significantly higher Spearman correlation coeffi-
cients than the baseline methods at gene-wise. As shown in Figure 2,
stPlus consistently and significantly outperformed Seurat and Liger
across all datasets. On the osmFISH_Zeisel dataset pair, stPlus signifi-
cantly outperformed SpaGE (one-sided paired Wilcoxon test P-value
< 0.01), and greatly improved the median Spearman correlation coef-
ficient by 61.0% than gimVI although the P-value is not less than
0.01 (Fig. 2a). On the osmFISH_AllenVISp dataset pair, stPlus
improved the median Spearman correlation coefficient by 11.2%
than SpaGE, while slightly outperformed gimVI (Fig. 2b). On the
osmFISH_AllenSSp dataset pair, stPlus again significantly outper-
formed SpaGE, and improved the median Spearman correlation coef-
ficient by 7.6% than gimVI (Fig. 2c). On the above three dataset
pairs, Seurat provided overall the lowest performance with Spearman
correlation coefficients close to 0, which is consistent with the obser-
vations in the study of SpaGE (Abdelaal et al., 2020), and suggests
that the performance of Seurat heavily decreases when there are very
few shared genes. On the MERFISH_Moffit dataset pair, which con-
tains over 95 000 cells, stPlus consistently achieved significantly bet-
ter performance than other methods with at least 8.8% improvement

of the median Spearman correlation coefficient (Fig. 2d). On the
STARmap_AllenVISp dataset pair, stPlus significantly outperformed
gimVI, while SpaGE achieved comparable performance (Fig. 2e).
This is consistent with the observation in the study of SpaGE
(Abdelaal et al., 2020) that gimVI performs worse on data with low

Fig. 2. Spearman correlation coefficients of different methods on various dataset

pairs. The median Spearman correlation coefficient and P-value of one-sided paired

Wilcoxon signed-rank tests are reported. (a) osmFISH_Zeisel. (b)

osmFISH_AllenVISp. (c) osmFISH_AllenSSp. (d) MERFISH_Moffit. (e)

STARmap_AllenVISp
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gene detection sensitivity. We note that there might exist inconsisten-
cies between the results of 5-fold cross-validation in this study and
the results of leave-one-out cross-validation in the study of SpaGE
(Abdelaal et al., 2020), which simplifies the task because the training
set contains more genes highly correlated with the gene to predict.

We then compared the Spearman correlation coefficients of dif-
ferent methods at cell-wise. The cell-wise coefficients can reflect cel-
lular characteristics maintained in the predicted spatial profiles. For
each comparison, we also conducted one-sided paired Wilcoxon
signed-rank tests to test if stPlus achieves significantly higher
Spearman correlation coefficients at cell-wise. As shown in Figure 2,
stPlus consistently achieved significantly higher coefficients than all
the four baseline methods across all the five dataset pairs (one-sided
paired Wilcoxon test P-value < 0.01), and has an average improve-
ment of 23.2% on the median Spearman correlation coefficient over
the second best method. All these results suggest the superior per-
formance of stPlus for the prediction of spatially unmeasured gene
expression. Compared with stPlus w/o P1, stPlus improved the me-
dian gene-wise and cell-wise Spearman correlation coefficients by an
average of 2.9% and 0.1%, respectively. However, compared with
stPlus w/o P2, the average improvements are 8.9% and 7.5%, re-
spectively, which suggests that the accurate prediction of gene ex-
pression mainly benefits from the second part of loss function.

3.2 stPlus facilitates the identification of cell populations
The essential step in single-cell analyses is the characterization of
known or novel cell types, which is based on the accurate identifica-
tion of cell populations. However, in technical limitations, either
small number of genes imaged or low gene detection sensitivity con-
stitutes major hindrances to the identification of cell populations in
spatial transcriptomic data. Therefore, we used the measured spatial
transcriptomic data as the baseline to verify if the computationally
enhanced spatial transcriptomics can better identify cell populations.
Specifically, we obtained cell labels of the osmFISH and MERFISH
datasets from the original studies, while that of the STARmap data-
set cannot be successfully aligned with cells. We then used the cell
labels as ground truth, and evaluated the performance by four clus-
tering metrics, including AMI, ARI, Homo and NMI. It is intuitive
that, based on the enhanced data, a higher score of clustering metric
indicates better performance for the identification of cell popula-
tions, and thus a better enhancement of spatial transcriptomics.
Note that the sizes of different cell populations in most spatial tran-
scriptomic data, including the datasets used in this study, are unbal-
anced since there exist some rare cell populations, and AMI is
preferred in this case compared with ARI (Romano et al., 2016).

First, we performed cell clustering using the predicted gene ex-
pression in each fold of the 5-fold cross-validation, which means
that only one-fifth of the genes are used for clustering. As shown in
Figure 3a, clustering performance using the originally profiled

spatial transcriptomic data is unsatisfactory and fluctuates greatly,
which is expected since few genes were used (e.g. about six genes for
the osmFISH dataset). However, the clustering performance can be
significantly improved using the computationally predicted gene ex-
pression. For example, SpaGE and gimVI achieved better clustering
performance with smaller variance on the first three dataset pairs
that are based on the osmFISH dataset. Consistent with the perform-
ance evaluated by Spearman correlation coefficients, Seurat pro-
vided the lowest clustering performance on the first three dataset
pairs, while the advantages of Seurat over other methods were
observed on the MERFISH dataset, which again suggests that the
performance of Seurat is greatly affected by the number of genes
shared between two datasets. Among these four dataset pairs, stPlus
achieved the overall best clustering performance, especially on the
first three dataset pairs (Fig. 3a).

Second, we obtained the predicted spatial transcriptomics of all
genes iteratively in the cross-validation experiments. The conduction
of cross-validation experiments can be regarded as a strategy for
data enhancement. As expected, the baseline performance (dotted
lines in Fig. 3b) was significantly improved using the data with all
genes. On the first three dataset pairs, only when using the gene ex-
pression data predicted by stPlus can the clustering performance ex-
ceed the baseline. On the MERFISH_Moffit dataset pair, stPlus
again outperformed the baseline and other computational methods,
while Seurat also achieved better clustering performance than the
baseline. These results not only suggest that stPlus is capable of pre-
dicting spatially unmeasured gene expression, but also demonstrate
that the data enhanced by stPlus can provide superior performance
for the identification of cell populations than that enhanced by exist-
ing methods and even the originally profiled spatial transcriptomic
data. Compared with stPlus w/o P1, stPlus improved AMI, ARI,
Homo and NMI by an average of 7.9%, 21.0%, 6.3% and 7.8%,
respectively. However, compared with stPlus w/o P2, the average
improvements are 5.6%, 3.4%, 4.0% and 5.5%, respectively, which
suggests that the effective characterization of cell heterogeneity
mainly benefits from the first part of loss function.

3.3 stPlus is scalable to large datasets
Recent efforts of cell atlas consortiums have generated massive
amounts of scRNA-seq data, providing a wealth of reference data
on the diversity of cell types across organisms, developmental stages
and disease states (Davie et al., 2018; Han et al., 2018; Rozenblatt-
Rosen et al., 2017; Tabula Muris et al., 2018; Zeisel et al., 2018;
Zheng et al., 2017). Besides, high-throughput technologies now
allow the simultaneous profiling of massive cells. Therefore, compu-
tational efficiency and scalability are important for a computational
method to facilitate the enhancement of spatial transcriptomics. We
have demonstrated the superior enhancement performance of stPlus
on the MERFISH_Moffit dataset pair, which is composed of 64 373
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Fig. 3. Clustering results of spatial transcriptomic cells evaluated by AMI, ARI, Homo and NMI. (a) Clustering results using the measured or computationally predicted expres-

sion of genes in each fold of the 5-fold cross-validation. (b) Clustering results using the measured or computationally predicted expression of all shared genes
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spatial transcriptomic cells and 31 299 scRNA-seq cells. To assess
the computational efficiency and scalability of different methods,
we benchmarked the average running time and the peak memory
usage in experiments of the 5-fold cross-validation on the
MERFISH_Moffit dataset pair. The experiments were run on a ma-
chine with an Intel Xeon E5-2660 v4 X CPU, a GeForce GTX 1080
and 500GB of RAM on CentOS 7 operating system. As shown in
Table 2, stPlus provided satisfactory computational efficiency and
scalability in large data, while SpaGE achieved the best computa-
tional efficiency. The efficiency advantage of SpaGE mainly bene-
fited from the joint embedding step, where it is based on principal
component analysis while stPlus needs iterative training. Seurat,
Liger and gimVI performed relatively worse for the computational
efficiency. Note that gimVI, a probabilistic method, directly per-
forms prediction without the embedding step. The peak memory
usage of stPlus is moderate among all the methods, and is reasonable
since stPlus additionally incorporated genes unique to the reference
31 299 scRNA-seq cells.

Data visualization is fundamental to single-cell analyses by pro-
viding an intuitive understanding of cellular composition. To test if
the predicted spatial transcriptomics of large data can provide satis-
factory data visualization results, we used the standard pipeline with
default parameters in Scanpy (Wolf et al., 2018) to perform dimen-
sion reduction and UMAP visualization (McInnes et al., 2018). As
shown in Figure 4, compared to other methods, using the expression
of spatial genes enhanced by stPlus, the patterns of various cell types
can be better re-characterized, and some biological variations are
even better distinguished than using the measured data. For ex-
ample, the excitatory and inhibitory cells can be better separated
using the expression data enhanced by stPlus. To assess the identifi-
cation of minor cell types quantitatively, we left out the cell types
that account for more than 10% (Inhibitory: 38.5%, Excitatory:
18.3% and Astrocyte: 13.0%), resulting in more balanced and
minor cell types. We evaluated the clustering performance of differ-
ent methods. stPlus again provided better performance than the
measured data. Compared with the second best method, stPlus
improved AMI, ARI, Homo and NMI by 3.8%, 13.3%, 7.4% and
3.8%, respectively. All the above observations suggest that stPlus
can not only offer satisfactory computational efficiency and memory
usage, but also provide the scalability to visualization of large data
based on the enhanced spatial transcriptomics.

3.4 stPlus is robust to the choice of hyperparameters
The major hyperparameters of stPlus are the number of neighboring
cells used to predict, and the number of epochs adopted to perform
ensemble learning. In this section, we further used the
MERFISH_Moffit dataset pair to demonstrate the robustness of
stPlus to the choice of these two hyperparameters. We note that in
the MERFISH dataset, the dominant cell types, i.e. excitatory and
inhibitory cells, constitute over 56.7% of the total cells, while the
rare cell types, i.e. OD Immature 2, OD Mature 3 and OD Mature 4
cells, constitute <0.8%. Therefore, compared with ARI, AMI is pre-
ferred for the assessment of cell clustering on this dataset (Romano
et al., 2016). When we varied one hyperparameter, we fixed the
other parameters to the default setting. We used the spatial tran-
scriptomics of all genes iteratively predicted in the 5-fold cross-

validation experiments to evaluate the robustness of stPlus. As
shown in Figure 5a, stPlus achieved stable gene-wise and cell-wise
Spearman correlation coefficients with different choices of the num-
ber of neighboring cells used to predict. Besides, there are no signifi-
cant fluctuations in the clustering metrics except ARI. We next
varied the number of epochs adopted to perform ensemble learning.
As shown in Figure 5b, the performance assessed by gene-wise and
cell-wise Spearman correlation coefficients is stable, and the cluster-
ing metrics show no significant fluctuations except ARI. The results
indicate that stPlus is robust to the choice of hyperparameters.

3.5 Genes unique to reference data contain cell

heterogeneity
The above assessments are based entirely on the profiled spatially
resolved transcriptomics. To verify if the genes inherent to reference
scRNA-seq data can characterize the cellular composition, instead
of 5-fold cross-validation, we further used all shared genes to train
models and predicted expression of the genes unique to scRNA-seq
data. Since expression of these genes was not measured in spatial
transcriptomic cells, we only evaluated the clustering performance
using the predicted expression of these genes, and compared it with
the clustering performance using the predicted expression of genes
shared between spatial and scRNA-seq datasets, i.e. the results in
Figure 3b. The measured spatial transcriptomic data was again used
as the baseline (light blue markers and dotted lines in Fig. 6). As
shown in Figure 6, most methods provided better clustering per-
formance on the first three dataset pairs using the genes unique to
scRNA-seq data than using the 33 shared genes. However, on the
MERFISH_Moffit dataset pair that has more shared genes, most
methods achieved better clustering performance using the 153
shared genes, while stPlus offered comparable performance using
the genes unique to scRNA-seq data. In addition, stPlus outper-
formed other methods by all the four metrics across all the four
dataset pairs, which indicates that the spatial expression of genes
unique to scRNA-seq data predicted by stPlus will continue

Table 2. Average running time and peak memory usage in experi-

ments of the 5-fold cross-validation on the MERFISH_Moffit dataset

pair

Method Time (s) Memory (GB)

Embedding Prediction Total Peak usage

stPlus 94.2 186.0 280.2 35.6

SpaGE 30.7 163.7 194.4 15.5

Seurat 1617.0 213.6 1830.6 49.0

Liger 217.0 373.3 590.3 141.0

gimVI — 4367.7 4367.7 24.7

Measured data stPlus

SpaGE Seurat

Liger gimVI

UMAP1

U
M

AP
2

Fig. 4. UMAP visualization of cells in the MERFISH dataset using the measured or

computationally predicted expression of all shared genes
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to deepen our understanding of the characterization of cell
heterogeneity.

We further demonstrated that the predicted expression of
scRNA-seq-unique genes can provide biological insight into the
identified cell population. Taking the MERFISH_Moffit dataset pair
as an example, we used Wilcoxon rank-sum test in Scanpy (Wolf
et al., 2018) to find the top five differentially expressed genes
(DEGs) for each cluster. We performed gene ontology enrichment
analysis using the DEGs uniquely obtained by each method
(Ashburner et al., 2000; Gene Ontology Consortium, 2021). Using
the DEGs uniquely obtained by stPlus, the significantly enriched
results (generation of neurons, axon development, nervous system
development, cell development, neuron differentiation and neuro-
genesis) are related to the biological process of neurons, which is
consistent with the original spatial data. However, none of the sig-
nificantly enriched biological process using the DEGs uniquely
obtained by each of other methods is directly related to the original
spatial data. These results indicate that stPlus opens a new avenue
for the identification of marker genes and further provides biological
insight into spatial transcriptomics analysis.

4 Discussion

In this work, we proposed stPlus for the accurate enhancement
of spatial transcriptomics, and introduced a clustering-based

approach for the systematical assessment of enhancement
performance. stPlus simultaneously models the genes shared be-
tween spatial transcriptomic data and reference scRNA-seq data
and the genes unique to scRNA-seq data. We demonstrated that
stPlus outperforms baseline methods in accurately predicting expres-
sion of unmeasured genes. Besides, stPlus facilitates the identifica-
tion of cell populations by enhancing spatial transcriptomics.
The predicted spatial expression of scRNA-seq-unique genes also
provides potential for the characterization of cell heterogeneity. In
addition, stPlus is robust and scalable to dataset pairs of diverse
gene detection sensitivity levels, sample sizes and number of spatial-
ly measured genes. We also provided user-friendly interfaces,
detailed documents and quick-start tutorials to facilitate the applica-
tion of stPlus.

Certainly, our modeling framework is flexible and can be
extended easily. First, gene expression data used in this study can be
further combined with spatial coordinates. Second, we can incorpor-
ate other types of profiles, e.g. epigenetic profiles, as the additional
reference data (Chen et al., 2021b,c). Third, we can also extend
stPlus by incorporating advanced deep neural networks to capture
higher-level features of the profiled cells in spatial transcriptomic
data (Liu et al., 2020).
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