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SUMMARY
Genomics-driven drug discovery is indispensable for accelerating the development of novel therapeutic tar-
gets. However, the drug discovery framework based on evidence from genome-wide association studies
(GWASs) has not been established, especially for cross-population GWASmeta-analysis. Here, we introduce
a practical guideline for genomics-driven drug discovery for cross-populationmeta-analysis, as lessons from
theGlobal BiobankMeta-analysis Initiative (GBMI). Our drug discovery framework encompassed threemeth-
odologies and was applied to the 13 common diseases targeted by GBMI (Nmean = 1,329,242). Individual
methodologies complementarily prioritized drugs and drug targets, which were systematically validated
by referring previously known drug-disease relationships. Integration of the three methodologies provided
a comprehensive catalog of candidate drugs for repositioning, nominating promising drug candidates target-
ing the genes involved in the coagulation process for venous thromboembolism and the interleukin-4 and
interleukin-13 signaling pathway for gout. Our study highlighted key factors for successful genomics-driven
drug discovery using cross-population meta-analyses.
INTRODUCTION

Efficient screening of novel therapeutic targets is an essential

process to accelerate drug discovery. Despite the enormous

effort to develop novel drugs, the overall success rate of clinical

application has been decreasing because of the considerable in-

crease in both the cost and the duration.1 Genomics-driven drug

discovery is one of the promising solutions, as drug targets with

human genetic support aremore likely to be successful in clinical

development.2,3 In particular, rare-variant studies for Mendelian

diseases have led to drug development, such as PSCK9 inhibi-

tors for low-density lipoprotein cholesterol.4 For common dis-

eases, genome-wide association studies (GWAS) have provided

valuable opportunities for drug discovery; nevertheless, drug

discovery based on GWAS remains challenging.5 Few bioinfor-

matics tools directly prioritize candidate drugs,6 and there exist
C
This is an open access article under the CC BY-N
no practical guidelines regarding how to conduct genomics-

driven drug discovery.

Recently, an increasing number of large-scale GWAS meta-

analyses of multiple populations have been carried out. These

have revealed key insights into the biological processes underly-

ing complex diseases,7,8 thus affording the possibility of in-

depth application of genomics-driven drug discovery. However,

the majority of previous genomics-driven drug discovery

projects were carried out for GWAS of a single ancestry of Euro-

peans,6 and there are few successful applications to cross-pop-

ulation GWAS meta-analyses. The global heterogeneity in ge-

netic background (e.g., different allele frequencies and linkage

disequilibrium [LD]) among populations makes it difficult to

perform downstream analyses such as gene expression predic-

tion9 and colocalization analysis.10 In addition, causal effect

sizes are population specific especially in functionally important
ell Genomics 2, 100190, October 12, 2022 ª 2022 The Author(s). 1
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regions.11 Therefore, a specialized drug discovery framework is

required for cross-population GWAS meta-analyses.

In this study, we introduce a practical guideline as lessons

from the Global Biobank Meta-analysis Initiative (GBMI).7

GBMI meta-analyzed GWASs of global biobanks from diverse

ancestries incorporating several recruitment strategies (e.g.,

population-based or hospital-based biobanks), including up to

1.8 million participants from the 18 biobanks in four continents

(341,000 East Asians [EAS]; 31,000 Central and South Asians;

33,000 Africans; 18,000 admixed Americans; 1,600Middle East-

erners; 156,000 Finns; and 1,220,000 non-Finnish Europeans

[NFE]), serving as a gold standard cross-population GWAS

meta-analysis.

We propose a cross-population drug discovery framework

comprising threemajormethodologies. First, overlap enrichment

of disease risk genes with targets of existing drugs12–14 identifies

drug repurposing opportunities. Second, endophenotype Men-

delian randomization (MR), and subsequent quality controls,

including colocalization analyses,15 establishes causal links be-

tween proteins and disease processes. Finally, screening of

negative correlations between genetically regulated disease

case-control gene expression (GReX) and compound-regulated

gene expression profiles16 can be used to identify compounds

thatmight correct disease-related alterations in gene expression.

We applied our framework to the 13 common and relatively

rare disease GWAS included in GBMI: asthma, primary open-

angle glaucoma (POAG), gout, chronic obstructive pulmonary

disease (COPD), venous thromboembolism (VTE), thyroid can-

cer (ThC), abdominal aortic aneurysm (AAA), heart failure (HF),

idiopathic pulmonary fibrosis (IPF), stroke, uterine cancer

(UtC), acute appendicitis (AcApp), and hypertrophic cardiomy-

opathy (HCM). We validated individual methodologies by exam-

ining the overlap enrichment of the prioritized results in the dis-

ease-relevant medication categories. The integration of the

candidate drugs and compounds across methodologies nomi-

nated 266 drug/compound-disease pairs as a comprehensive

catalog for repositioning. Our results demonstrated the utility

of genomics-driven drug discovery using a cross-population

GWAS meta-analysis and suggest key factors for successful

drug discovery.

RESULTS

Overview of the genomics-driven drug discovery
framework
Various types of omics-based approaches have been proposed

for novel target identification and drug repositioning from GWAS

summary statistics.6 Each type of omics data necessitates

specialized methodologies. Furthermore, no simple method

has emerged that enables the interpretation of genomics discov-

eries for drug discovery. Therefore, our framework was

composed of three parts, in which each component utilized

different external omics data and knowledge bases to obtain bio-

logical insights from GWAS summary statistics (Figure 1). First,

we performed an overlap enrichment analysis of the disease

risk genes with the target genes of existing drugs.12–14 Gene pri-

oritization tools summarized variant-level p values at the gene

level, and the pharmacological agents targeting the prioritized
2 Cell Genomics 2, 100190, October 12, 2022
genes served as drug candidates. Genes that are modulated

by approved drugs are known to be enriched in disease-relevant

clinical classifications, such as drug medication categories (i.e.,

Anatomical Therapeutic Chemical Classification System [ATC])

and disease categories (i.e., International Statistical Classifica-

tion of Diseases and Related Health Problems [ICD-10]),13,14

which were utilized to assess the validity of the drug candidates.

Second, we performed endophenotype MR and subsequent

quality controls, including colocalization analyses.15 MR is a

method that is used for estimating the causal effect of one trait

(exposure) on another trait (outcome) using genetic variants as

instrument variables (IVs).17We used the lead variants of the pro-

tein quantitative trait loci (pQTL) as IVs to examine the disease-

causing effects of the proteins. Subsequent quality controls

were effective in avoiding false-positive causalities.18 Particu-

larly, colocalization analysis is an important step for the exclu-

sion of confounding by LD. Finally, we performed a screening

of negative correlations between case-control GReX and com-

pound-regulated gene expression profiles.16 Transcriptome-

wide association studies (TWAS) use expression QTL (eQTL)

acting in cis to impute disease-specific GReX from the GWAS

summary statistics.9 The compounds that have inverse effects

on gene expression against case-control GReX serve as candi-

dates for the disease of interest.16,19 We imputed GReX for the

tissues included in the Genotype-Tissue Expression project

(GTEx) v.720 and used compound-induced gene expression pro-

files for thousands of compounds in various conditions and cell

lines collected in one of the largest public databases available,

the Library of Integrated Network-based Cellular Signatures

project (LINCS) L1000 connectivity map.21

Overlap enrichment of disease risk genes in medication
categories
The first component prioritized disease risk genes by calculating

gene scores or p values, and examined whether the prioritized

genes are enriched in drug-target genes of specific medication

categories. There exist several gene prioritization tools, although

it remains unclearwhich tool is best optimized for drug discovery.

Therefore, we evaluated four tools in parallel, i.e., MAGMA,22

DEPICT,23 Priority index (Pi),5 and Polygenic Priority Score

(PoPS),24 by applying to the summary statistics of GBMI cross-

population GWAS meta-analyses.

MAGMA is a simple method that is used to summarize variant-

level p values according to gene positions and LD structure. The

prioritized genes by MAGMA were nominally overlapped with

drug-target genes in the disease-relevant ATC codes for Gout,

COPD, and VTE (p < 0.05; Figure S1A). DEPICT, which uses

co-regulated gene expression for gene prioritization,23 showed

clearer enrichment than did MAGMA for gout and VTE; however,

no genes were prioritized for diseases with a relatively small

number of genome-wide significant loci, such as IPF and UtC

(Figure S1B). Pi is a scoring system that was designed for drug

development of immune-related diseases, and integrates multi-

ple annotations, including eQTL, chromatin interaction, and

genes implicated in immune functions.5 The genes targeted by

antineoplastic and immunomodulating agents were enriched

for all diseases using Pi (Figure S1C), suggesting that Pi could

specifically provide enrichment of the immune genes regardless



Figure 1. Overview of the genomics-driven drug discovery framework
The framework consisted of three components. Each component utilizes the summary statistics of genome-wide association analyses and external resources to

prioritize candidate drugs. GBMI, Global Biobank Meta-analysis Initiative; ATC, Anatomical Therapeutic Chemical Classification System; ICD-10, International

Statistical Classification of Diseases and Related Health Problems; pQTL, protein quantitative trait loci; LD, linkage disequilibrium;MR,Mendelian randomization;

IV, instrumental variable; GTEx, the Genotype-Tissue Expression project; TWAS, transcriptome-wide association study; LINCS, the Library of Integrated

Network-based Cellular Signatures project.
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of the disease categories, even including non-immune diseases.

PoPS estimates responsible genes using various gene features,

such as cell-type-specific gene expression and biological path-

ways.24 We observed enrichment of drug-target genes for broad

ATC codes, suggesting that PoPS provided relatively high

scores for the entire drug-target gene collection, regardless of

their medication categories (Figure S1D). We replicated the ana-

lyses using ICD-10 and observed a similar pattern of enrichment

as ATC codes (Figure S2).

In addition to the four gene prioritization tools, TWAS also pri-

oritizes disease-risk genes by incorporating cis-eQTL informa-

tion. Therefore, we also evaluated the enrichment of the genes

prioritized by TWAS in the medication categories. Because a

large sample size and population-specific LD structure are

required for robust in silico estimation of GReX by TWAS,9 we

applied TWAS to the summary statistics of GBMI NFE-specific

and EAS-specific GWASmeta-analyses and subsequently com-

bined the results (STAR Methods). TWAS successfully captured

the disease-relevant drug targets for asthma (p = 3.0 3 10�3 for

the ‘‘respiratory system’’ category) (Figure S1E). For other dis-

eases, the prioritized genes were concentrated on the diseases

with a relatively large number of genome-wide significant loci

(asthma, POAG, gout, COPD, and VTE).

Next, we summarized the overlap enrichment into disease-

relevant and disease-irrelevant medication categories across

the diseases. For both ATC and ICD-10 codes, all tools

confirmed enrichment in the relevant codes, although a relatively
high enrichment in the irrelevant codes was also observed for Pi

and PoPS (Figures 2A–2C and S3), reflecting biased enrichment

in immune genes and non-specific enrichment in drug-target

genes, respectively. DEPICT yielded a lower enrichment in irrel-

evant codes than did MAGMA. As a sensitivity analysis, we

sequentially changed the thresholds of the gene scores and p

values. Among the five tools, TWAS showed the largest enrich-

ment for relevant codes and the smallest enrichment for irrele-

vant codes. However, TWAS also showed the largest 95% con-

fidence intervals, reflecting the small number of prioritized

genes. The pattern of the overall enrichment was robust for a

wide range of thresholds (Figure S4). The enrichment of disease

genes prioritized by DEPICT in the relevant ATC codes became

smaller with the stringent thresholds. DEPICT calculates p

values for the genes in the genome-wide significant loci exclu-

sively by default; therefore, liberal thresholds such as a false dis-

covery rate (FDR) of 0.2 might be suitable for DEPICT.

Given that the five tools separately prioritized genes according

to the different methodologies, we hypothesized that omnibus

integration of the five methods could efficiently improve the

enrichment of disease-relevant drug-target genes. While each

tool was previously constructed for gene prioritization, the effec-

tiveness of combining these methods has not been explored in

the context of drug discovery. As an omnibus approach, we

selected 177 gene-disease pairs that were prioritized by at least

4 of the 5 tools (Table S1), and showed a twice larger odds ratio

(OR) than those of any single tool for the relevant ATC codes
Cell Genomics 2, 100190, October 12, 2022 3
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Figure 2. Enrichment of prioritized drug-target genes in the disease-relevant medication categories

(A) Overall enrichment of drug-target genes nominated by five gene prioritization tools and their omnibus results. The error bars represent 95% confidence

intervals.

(B andC) Enrichment of the prioritized drug-target genes in the disease-relevant ATC codes (B) and the disease-irrelevant ATC codes (C). The diseases are sorted

in the descending order of the number of genome-wide significant loci determined in GBMI GWAS.

(D) Enrichments for the omnibus results per disease and ATC code. OR, odds ratio; POAG, primary open-angle glaucoma; COPD, chronic obstructive pulmonary

disease; VTE, venous thromboembolism; ThC, thyroid cancer; AAA, abdominal aortic aneurysm; HF, heart failure; IPF, idiopathic pulmonary fibrosis; UtC, uterine

cancer; AcApp, acute appendicitis; HCM, hypertrophic cardiomyopathy; RA, rheumatoid arthritis; HAE, acute attacks of hereditary angioedema.
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(OR = 4.14, p = 2.2 3 10�5) (Figures 2A–2C). Conversely, the

enrichment in the irrelevant ATC codes (OR = 1.33, p = 0.19)

was close to that of the single tools, indicating an advantage of

combining multiple gene prioritization methods to confine the

prioritized genes to the highly disease-relevant genes while re-

taining controlled type 1 errors. We also confirmed the efficacy

of the omnibus strategy using ICD-10 (Figure S3). In addition,

we found that the omnibus approach successfully incorporated

multiple gene prioritization features, including proximity to the

lead variants, tagging of the functional variants, protein-protein

interaction with the nearest genes, gene functions, and tissue-

specific expression status (Data S1; Figure S5).
4 Cell Genomics 2, 100190, October 12, 2022
The examination of the omnibus results for each disease re-

vealed an enrichment in the relevant ATC codes for asthma,

gout, and VTE (Figure 2D), which corresponded to 154 drugs in

total (Table S1). For asthma and gout, all prioritized genes in

the disease-relevant ATC codes were targeted by the drugs

with approved indication, except for ICAM1 for asthma, which

was targeted by investigational drugs. The genes prioritized for

VTE were involved in the coagulation cascade, and four of

them (F2, F10, FGA, and PROC) were the approved drug targets

for VTE. The prioritized genes for asthma were also enriched in

antineoplastic and immunomodulating agents. Although the

drugs in this category have not been indicated for asthma, their
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target genes involved immune genes, such as IL1R1, suggesting

that the omnibus approach correctly prioritized genes related to

asthma.

We conducted two sensitivity analyses. First, instead of using

the summary statistics of cross-population GWAS meta-ana-

lyses, we applied individual gene prioritization tools to the sum-

mary statistics of population-specific GWAS meta-analyses and

subsequently meta-analyzed the results. The gene scores of indi-

vidual tools were more similar to those calculated from NFE-spe-

cific GWAS summary statistics than those from cross-population

GWAS summary statistics (Figure S6). This was possibly because

NFE were the majority even in GBMI, and the population-specific

GBMI GWAS summary statistics were currently not available for

some non-NFE populations (Table S2). In GBMI, the population-

specific summary statistics were currently not available to avoid

distributing biobank-specific summary statistics if only one bio-

bank corresponds to a particular single population (e.g., Finnish

GWAS results from FinnGen). The omnibus gene prioritization

nominated 90 gene-disease pairs in the approach using the pop-

ulation-specific dataset, much fewer than the approach using

cross-population summary statistics (Figure S7A). The smaller

number ofparticipants included in thepopulation-specificdataset

might explain the difference in the number of prioritized genes.

The enrichment of the prioritized genes in the medication cate-

gories was not apparently different between the two approaches

(Figures S7B–S7D). Next, we examined whether the overlap

enrichment analysis was affected by potential confounders,

such as gene-gene correlations and gene length. The enrichment

in the disease-relevant ATC codes was consistent after account-

ing for confounders (STAR Methods; Figure S8).

Endophenotype MR
Understanding protein regulation is essential for drug discovery.

Therefore, we conducted MR analyses to infer disease-causing

proteins.15,25 Although the current eQTL studies yield larger sam-

ple sizes than pQTL,26 there exists low correlation between tran-

script expression and protein abundance.27 Here, we utilized the

lead variants summarized from five European pQTL studies27–31

as IVs for MR. To avoid confounding factors, such as horizontal

pleiotropy, we restricted IVs to those with low heterogeneity be-

tween studies and low pleiotropy between proteins, whereas

we used both cis- and trans-pQTL to target a wide range of pro-

teins, as described previously18 (STAR Methods). We conducted

an MR analysis using the 894 IVs associated with the 818 pro-

teins, to test the causal effects on the 13 diseases. After applying

multiple test corrections, 64 protein-disease pairs, including 24

pairs with drug-target proteins, showed significant causality

(FDR < 0.05; Table S3). Twenty-six pairs were derived from cis-

pQTL, whereas the remaining ones were derived from trans-

pQTL.

To protect against false positives from the results of the MR

analysis, we applied two quality-control metrics, i.e., colocaliza-

tion analysis and concordance of directional effects. The coloc-

alization analysis was used to check whether two signals were

equally distributed on the local LD structure. Therefore, we

used the GBMI GWAS of the NFE-specific meta-analysis for

MR and colocalization analysis, rather than the all-ancestry

meta-analysis, to match the population background to the
pQTL studies. All pairs passed the directionality check, while co-

localization was confirmed for 34 pairs, including 18 pairs with

drug-target proteins (Figure 3A). The colocalization of F11-VTE

is shown in Figure 3B as an illustrative example. Most of the co-

localization methods assume only a single causal variant per lo-

cus; however, recent methodological advances enabled us to

address the possibility of multiple causal variants in one locus.32

We applied coloc33 to conditionally independent signals decom-

posed by SuSiE.34 SuSiE detected three and two signals for the

GWAS of VTE and pQTL of F11, respectively, of which two sig-

nals were inferred to be colocalized.

To validate the prioritized proteins in the context of drug dis-

covery, we examined the overlap enrichment analysis of the

prioritized proteins in the medication categories. We observed

relative enrichment in the disease-relevant codes (OR = 2.91,

p = 0.11; Figure 3C) and not in the disease-irrelevant codes

(OR = 1.13, p = 0.51; Figure 3D), supporting the validity of the

MR-prioritized proteins. Restricting the analysis to the proteins

supported by the colocalization had little effect on the

enrichment.

Next, we assessed whether the inferred causal relationships

were consistent with clinical implications and experimental evi-

dence. We found literature-based support of the causal signs

of the MR effect sizes for six drug-target protein-disease pairs

(Table S4). For example, lipoprotein(a) (LPA) for AAA and

PDGFB for VTE have been reported to be disease bio-

markers.36,37 Similarly, ApoB-containing lipoproteins were asso-

ciated with angiotensin II-induced AAA in a mouse model.38 In

contrast, we found that the negative sign of the MR effect size

for PROC-VTE was not consistent with the knowledge that pro-

tein C, which is encoded by PROC, itself, is used for the treat-

ment of VTE. The pQTL of PROC was identified as a trans-

pQTL, which might confound the sign because PROC may not

be the direct target of the pQTL effects.

For the prioritized proteins with colocalization evidence, we

curated drugs from the four major drug databases: DrugBank,39

Therapeutic Target Database,40 PharmGKB,41 and the Open Tar-

gets Platform,42 resulting in 83 drugs for 14 protein-disease pairs

(Table S4). These drugs included MAP2K inhibitors for HF, which

experimentally ameliorate cardiac hypertrophy and cardiomyop-

athy.43,44 Regarding the F11-VTE pair, an F11 inhibitor, abelaci-

mab, showed efficacy for the prevention of VTE in a phase II

trial.45 In addition, as an agonist of PLAU for asthma, the uroki-

nase-type plasminogen activator was reported to reduce airway

remodeling in a mouse model.46

Negative correlation tests between genetically
determined and compound-regulated gene expression
Finally, we performed an in silico screening of negative correla-

tions between TWAS-based disease case-control GReX and

compound-regulated gene expression profiles16 to identify com-

pounds with a potentially beneficial effect for treatment of each

disease. By matching the cell and tissue specificity between

TWAS (based on the GTEx tissues) and compound-regulated

gene expression profiles (cell lines collected in the LINCS

L1000 library), we tested the negative correlation for 308,872

compound-tissue-condition pairs per disease (STAR Methods).

Asmentioned earlier, a large sample size and population-specific
Cell Genomics 2, 100190, October 12, 2022 5
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Figure 3. Endophenotype Mendelian randomization

(A) Drug-target proteins with significant causal effects inferred by Mendelian randomization and with colocalization between GBMI GWAS and protein quanti-

tative trait loci (pQTL).

(B) LocusZoom35 plots showing colocalization between GWAS for VTE and pQTL for F11. The fine-mapped variants are shown with their rsID. Only the variants

shared between GBMI GWAS and pQTL summary statistics are shown for visualization purposes.

(C and D) Enrichment of the prioritized drug-target proteins in the disease-relevant ATC codes (B) and the disease-irrelevant ATC codes (C). The error bars

represent 95% confidence intervals.
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LD structure are required for robust in silico estimation of GReX

by TWAS.9 Therefore, we restricted our analysis to the results

of the population-specific meta-analyses of EAS and NFE. An

EAS-specific meta-analysis was not performed in GBMI for three

diseases, i.e., ThC, AAA, and AcApp, which were excluded. We

calculated correlation coefficients in the two populations sepa-

rately and subsequently combined them in a random-effect

meta-analysis framework. We obtained 31 compound-disease

pairs with an FDR < 0.05 with no apparent inflation (inflation fac-

tors [lambda] ranged from 0.86 [POAG] to 1.18 [COPD]) (Fig-

ure 4A). In particular, while most of the compounds with

FDR < 0.05 were prioritized for gout, inflation was not observed

for gout (lambda = 0.97). Despite our thorough investigation, we

observed no features significantly correlated with the inflation

factors (Data S2; Figures S9 and S10).

The negative correlation tests can be applied even to com-

pounds without known targets when the compound-induced

gene expression changes are assayed. In fact, most of the prior-

itized compounds (14 out of 31) were understudied or had no
6 Cell Genomics 2, 100190, October 12, 2022
known targets. These compounds were valuable, because

they could be therapeutic drugs with different modes of action

from existing drugs. Nevertheless, several prioritized com-

pounds were well studied and had supporting evidence. A his-

tone deacetylase (HDAC) inhibitor, vorinostat, was prioritized

for asthma; concordantly, HDAC inhibition was an effective

treatment in an animal model of asthma.47

To validate the concept of the negative correlation tests, we

compared the negative correlations of the approved com-

pound-indication pairs to those of non-approved pairs. The

approved pairs had larger negative correlations consistently for

all diseases (Table S5), supporting the concept of this approach.

We further examined whether the prioritized compounds were

enriched in the disease-relevant medication categories. Howev-

er, ATC codes were assigned only for 6 of the 31 compounds

because most of the compounds were understudied. We then

used 123 unique compound-disease pairs with marginal signifi-

cance (FDR < 0.1). There were 72 compounds with knownmech-

anistic actions, andATC codeswere assigned for 35 compounds.
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Figure 4. Negative correlation tests between genetically determined

and compound-regulated gene expression profiles

(A) Quantile-quantile plots of the negative correlation tests between genetically

determined and compound-regulated gene expression profiles. Compounds

with false discovery rates (FDR) < 0.05 are indicated by larger dots. The

compound names are shown for at most three significant compounds, for

visualization purposes.

(B andC) Enrichment of the prioritized compounds in the disease-relevant ATC

codes (B) and the disease-irrelevant ATC codes (C). No compound was

prioritized for HF, IPF, stroke, UtC, and HCM (colored in gray). The error bars

represent 95% confidence intervals, and the confidence interval was infinite

for the compounds with FDR < 0.05 in (B).
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We observed enrichment in the disease-relevant codes (OR =

3.40, p = 9.03 10�3; Figure 4B) and not in the disease-irrelevant

codes (OR = 1.38, p = 0.12; Figure 4C), again validating the com-

pounds prioritized by the negative correlation tests.

When we expanded our literature search also for the com-

pound-disease pairs with FDR < 0.1, the supporting literature

was identified for 26 pairs. Indacaterol (a beta-2 adrenergic re-

ceptor [ADRB2] agonist) and masatinib (a proto-oncogene

c-Src [SRC] inhibitor) have undergone phase III clinical trials for

asthma.48,49 There are approved drugs (acetazolamide, fluoro-

uracil, and naproxen and indomethacin, respectively) with the

samemechanistic action as cianidanol (a carbonic anhydrase in-

hibitor) and raltitrexed (a thymidylate synthase inhibitor) for

POAG,50 and piketoprofen and diclofenac (cyclooxygenase 1/2

inhibitors) for gout, respectively. We also prioritized several com-

pounds currently under investigation, including phosphatidylino-

sitol 3-kinase inhibitors for asthma,51 a sodium channel inhibitor

for POAG,52 and a cyclooxygenase-2 inhibitor for VTE.53 We

comprehensively summarized the screened drug list and their

relevant evidence in Table S6, which should provide genetic sup-

port to the compounds under investigation and the understudied

compounds. In addition, we searched for structurally similar

compounds (similarity > 0.85) for the compounds without known

targets by using BindingDB.54 We identified potential targets for

seven compounds (Table S7), which would help investigate

those compounds as therapeutic candidates.

Combining the three approaches for in-depth drug
discovery
We summarize the representative drugs and their targets, which

were prioritized through the three drug discovery approaches, in

Table 1. The overlap enrichment analysis of the omnibus gene

prioritization and the endophenotype MR analysis identified

154 and 83 drugs for 14 and 14 drug targets, respectively, and

31 compounds were nominated by the negative correlation

tests. Eight drug-target genes were prioritized by both the

omnibus gene prioritization and the endophenotype MR

(Table S8), providing further support for these genes. In addition,

one gene prioritized by the omnibus approach (HSP90AA1 for

gout) was also targeted by a compound marginally prioritized

by the negative correlation tests (ganetespib, FDR < 0.1). Multi-

ple components nominated drug candidates for asthma, gout,

COPD, and VTE, indicating that the three components were

complementarily for these diseases. These nominated diseases

had a relatively large number of case sample sizes and genome-

wide significant loci. Conversely, no drugs were nominated for

diseases with a relatively small number of loci by either the over-

lap enrichment analysis or negative correlation tests (e.g., IPF,

UtC, and HCM). As these two components require relatively

large numbers of GWAS signals in their schemes, further accu-

mulation of samples is warranted.

We noted that the VTE GWAS was most successful in the

screening of the drug targets: it prioritized drugs corresponding

to the eight drug-target genes and one compound in total (Fig-

ure 5). All drug targets but PDGFB were involved in the coagula-

tion cascade. PDGFB has been reported to induce the expres-

sion of a tissue factor that triggers the coagulation cascade,55

which underscores the strong enrichment of candidate drug
Cell Genomics 2, 100190, October 12, 2022 7



Table 1. Drug targets and representative drugs prioritized in this study

Disease Overlap enrichment in disease-relevant ATC codes Endophenotype MR Negative correlation tests

Asthma ibudilast (IL6); omalizumab

(FCER1A/FCER1G); alicaforsen

(ICAM1)

SAR164653 (CTSA); KHK-2866 (HBEGF);

amediplase (PLAU)

donepezil (ACHE);

vorinostat (HDAC family);

BRD-K50748030 (unknown)

POAG – – LY-288513 (unknown)

Gout probenecid (SLC22A6/SLC22A11);

lesinurad (SLC22A11/SLC22A12)

anfibatide (GP1BA); berotralstat (KLKB1) mesoridazine (DRD2/HTR2A);

CP-724714 (unknown)a

COPD – GMA-161 (FCGR3B) BRD-K48950795 (unknown);

RAN-29 (unknown)

VTE alteplase (FGA); edoxaban (F10);

ancrod (PROC); dabigatran etexilate (F2);

abelacimab (F11); ecallantide (KLKB1);

drotrecogin alfa (F5)

abelacimab (F11); CR-002 (PDGFB) WH-4025 (unknown)

ThC – tosedostat (XPNPEP2) (excluded from the analysis)

AAA – MG-1102 (LPA); amediplase (PLAU) (excluded from the analysis)

HF – MG-1102 (LPA) –

IPF – – –

Stroke – – –

UtC – Anfibatide (GP1BA) –

AcApp – GNF-PF-5434 (CTSB) (excluded from the analysis)

HCM – – –

The diseases are sorted in the decreasing order of the number of the genome-wide significant loci in GBMI GWAS.
aDrugs without known target genes were not shown except for the drug with the lowest p value, CP-724714. Full results can be found in Table S2.
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targets in coagulation-related genes. Of the eight drug targets,

three (PROC, F2, and F10) were targeted by the approved drugs,

and two (KLKB1 and F11) were targeted by drugs under clinical

trials for VTE, thus supporting the validity of genomics-driven

drug discovery and repositioning for VTE.

We further evaluated the overlap of the prioritized gene-dis-

ease pairs at the pathway level. We observed significant enrich-

ment for 163 pathways (Table S9), and the enrichment for 20

pathways became significant when combining three ap-

proaches. One such pathway was the interleukin-4 (IL-4) and

IL-13 signaling pathway for gout (FDR = 5.4 3 10�3) (Figure 6).

This pathway included five genes separately prioritized by the

three approaches (HSP90AA1 by the omnibus approach,

SAA1 and CCL12 by endophenotype MR, and MAOA and

STAT3 by the negative correlation tests of gene expression pro-

files), illustrating that the three approaches prioritized drug tar-

gets synergistically.

The enhanced sample sizes and power of cross-
population GWAS meta-analyses contributed to
genomics-driven drug discovery
The enhanced sample sizes and power of the GWAS for a wide

range of phenotypes in the framework of global biobank collab-

oration should contribute to the acceleration of novel drug dis-

covery. The novel loci in GBMI7 indeed led to the prioritization

of PROC for VTE (via the overlap enrichment analysis) and

PLAU for AAA (via the endophenotype MR). To further evaluate

the effect of the enhancedGWAS sample sizes and power on ge-

nomics-driven drug discovery, we compared the prioritized re-

sults with the identical analyses conducted with European-only

GWAS summary statistics. We note that we here focused on
8 Cell Genomics 2, 100190, October 12, 2022
the European population because Europeans are generally the

primary population in GWAS. When using GBMI NFE-specific

GWAS summary statistics (Nmean = 859,137) and the GBMI sum-

mary statistics of theNFEparticipants in theUKBiobank (Nmean=

396,227), smaller numbers of genes, proteins, and compounds

were prioritized for all three approaches (Figure S11). We also

applied our framework to seven publicly available GWAS sum-

mary statistics (primarily consisting of Europeans, Nmean =

435,450) (Table S2). The number of prioritizations using the pub-

lic dataset was generally smaller than those using the GBMI da-

taset except for some diseases for which the public dataset had

larger GWAS power than the GBMI dataset. For such diseases,

we anticipate that cross-biobank meta-analysis approaches will

surpass most of the disease-oriented studies in sample sizes in

the near future. Together, these results clearly show that the

enhanced GWAS sample sizes and power of global biobank

collaboration also increased the statistical power of genomics-

driven drug discovery as well.

DISCUSSION

In this study, we present a practical framework that combines

three approaches for in-depth genomics-driven drug discovery,

and demonstrate its utility through application to the GBMI

GWAS meta-analysis. Each approach has specific advantages.

By focusing on the genes prioritized in the disease-relevant

medication codes, we obtained a list of candidate drugs, most

of which were indicated for the diseases. Endophenotype MR

and subsequent quality controls estimated the causality of pro-

teins regarding diseases, which could not be inferred by gene

prioritization. Finally, the negative correlation tests of gene
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expression profiles were able to nominate compounds with or

without known target genes. Our study demonstrated the impor-

tance of combining the three components for the thorough eval-

uation of candidate drugs.

Multi-ethnic GWAS meta-analyses incorporated populations

with diverse genetic backgrounds and architectures. Matching

of genetic ancestry is important to follow-up functional interpre-

tation of the GWAS results with omics information, including

drug discovery. To address the difference in the LD structure be-

tween populations, we used the GWAS summary statistics from

the population-specific meta-analysis for endophenotype MR

and the negative correlation tests, whereas we used those

from the all-population meta-analyses for gene prioritization.

The differences in ancestry-matching strategies among compo-

nents depended on the current availability of the corresponding

omics resource requested for each analysis. Further accumula-

tion of public resources with diverse ancestry should be

expected.25,57

A large number of GWAS loci were required for genomics-

driven drug discovery, especially for the overlap enrichment

analysis and the negative correlation tests. Global biobank

collaborations, such as GBMI, have the potential to improve

the power of genetic association studies to detect novel

GWAS signals by incorporating diverse populations with large

sample sizes, and will facilitate genomics-driven drug discov-

ery. Of note, our framework successfully nominated drug can-

didates and their target genes, particularly for VTE, which had

the fifth-largest number of GWAS loci among the 13 diseases.

There may be additional factors other than the number of
Ce
GWAS loci that are important for the suc-

cess of drug discovery in VTE. Among

the traits with a large number of loci,

VTE showed a relatively modest polyge-

nicity,7 which might be beneficial for pin-

pointing the disease-relevant genes. The

genes implicated in the VTE GWAS

were mainly centered at the coagulation

cascade.58 The drugs targeting coagula-

tion factors have been under active

development,59 and these drugs can be

promising candidates immediately repo-

sitioned to coagulation disorders other

than the disease for which the drugs

were originally developed. The further

evaluation of the suitability of drug dis-

covery for a broader range of pheno-
types, including cancer, autoimmune diseases, and coagula-

tion disorders, would be an interesting direction for future

research.

In conclusion, our drug discovery framework practically af-

forded the in silico screening of abundant drugs and targets

with supporting evidence. It enables the routine to conduct

the post-GWAS genomics-driven drug discovery in the era of

cross-population GWAS meta-analysis, which would further

facilitate the translation of GWAS findings to therapeutic

targets.

Limitations of the study
There are several potential limitations for each drug discovery

component. Drug-target and drug classification information

need to be annotated to conduct the overlapping enrichment

analysis in medication categories. Endophenotype MR could

be applied to proteins targeted by pQTL studies; however,

the number of proteins in the pQTL studies is currently limited

because of the technological difficulty of proteomics.60

Regarding the negative correlation tests, the LINCS L1000

compound library does not contain gene expression profiles

for all pairs of compounds and cell lines.21 Therefore, we

used all tissue types in GTEx, regardless of disease relevance.

In addition, the methodological limitations of TWAS9,61 might

affect drug discovery using GReX. Finally, although we vali-

dated individual approaches by referring known drug-disease

relationships, direct in vivo or in vitro experimentation should

be warranted as a next step for the prioritized genes and com-

pounds in this study.
ll Genomics 2, 100190, October 12, 2022 9
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M., Sennblad, B., Baldassarre, D., Veglia, F., Humphries, S.E., Rauramaa,

R., et al. (2017). Mapping of 79 loci for 83 plasma protein biomarkers in car-

diovascular disease. PLoS Genet. 13, e1006706. https://doi.org/10.1371/

JOURNAL.PGEN.1006706.

30. Emilsson, V., Ilkov, M., Lamb, J.R., Finkel, N., Gudmundsson, E.F., Pitts, R.,

Hoover, H., Gudmundsdottir, V., Horman, S.R., Aspelund, T., et al. (2018).

Co-regulatory networks of human serum proteins link genetics to disease.

Science 361, 769–773. https://doi.org/10.1126/science.aaq1327.

31. Yao, C., Chen, G., Song, C., Keefe, J., Mendelson, M., Huan, T., Sun, B.B.,

Laser, A., Maranville, J.C., Wu, H., et al. (2018). Genome-wide mapping of

plasma protein QTLs identifies putatively causal genes and pathways for

cardiovascular disease. Nat. Commun. 9, 3268. https://doi.org/10.1038/

s41467-018-05512-x.

32. Wallace, C. (2021). A more accurate method for colocalisation analysis al-

lowing for multiple causal variants. PLoS Genet. 17, e1009440. https://doi.

org/10.1371/journal.pgen.1009440.

33. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani,

A.D., Wallace, C., and Plagnol, V. (2014). Bayesian test for colocalisation

between pairs of genetic association studies using summary statistics.

PLoS Genet. 10, e1004383. https://doi.org/10.1371/JOURNAL.PGEN.

1004383.

34. Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. (2020). A simple

new approach to variable selection in regression, with application to ge-

netic fine mapping. J. R. Stat. Soc. B 82, 1273–1300. https://doi.org/10.

1111/rssb.12388.

35. Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt,

T.P., Boehnke, M., Abecasis, G.R., and Willer, C.J. (2010). LocusZoom:

regional visualization of genome-wide association scan results. Bioinfor-

matics 26, 2336–2337. https://doi.org/10.1093/BIOINFORMATICS/

BTQ419.

36. Kotani, K., Sahebkar, A., Serban, M.-C., Ursoniu, S., Mikhailidis, D.P.,

Mariscalco, G., Jones, S.R., Martin, S., Blaha, M.J., Toth, P.P., et al.

(2017). Lipoprotein(a) levels in patients with abdominal aortic aneurysm.

Angiology 68, 99–108. https://doi.org/10.1177/0003319716637792.

37. Bruzelius, M., Iglesias, M.J., Hong, M.-G., Sanchez-Rivera, L., Gyorgy, B.,
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Materials availability
This study did not generate new unique reagents.

Data and code availability
TheGBMIGWASsummarystatisticsarepubliclyavailableathttps://www.globalbiobankmeta.org/resources.Thegenomics-drivendrug

discovery analysis was conducted using the following publicly available tools: MAGMA (https://ctg.cncr.nl/software/magma), DEPICT

(https://data.broadinstitute.org/mpg/depict/), PoPS (https://github.com/FinucaneLab/pops), FOCUS (https://github.com/bogdanlab/

focus), GREP (https://github.com/saorisakaue/GREP), Trans-Phar (https://github.com/konumat/Trans-Phar), LocusZoom (http://

locuszoom.org/), and the Pi, TwoSampleMR, coloc, susieR, and metacor R packages.

METHOD DETAILS

GBMI GWAS meta-analysis
GBMI GWAS is a meta-analysis of 18 biobanks incorporating up to 1.8 million participants with diverse ancestries (341,000 EAS;

31,000 Central and South Asians; 33,000 Africans; 18,000 Admixed Americans; 1,600 Middle Easterners; 156,000 Finns; and

1,220,000 NFE).7 We used the GBMI GWAS of 13 common diseases: asthma, POAG, gout, COPD, VTE, ThC, AAA, HF, IPF, stroke,

UtC, AcApp, and HCM. Although a GBMI GWAS was also conducted for appendectomy, we excluded this trait because it was a

procedure endpoint rather than a disease. We defined genome-wide significant loci in the same way as the GBMI flagship paper.7

Specifically, we iteratively spanned the ±500 kb region around the most significant variant and merging overlapping regions until no

genome-wide significant variants were detected within ±500 kb. We estimated the polygenicity and the SNP heritability by applying

SBayesS64 with default parameters to the summary statistics of the variants with minor allele frequency >0.01.
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Gene prioritization
We used four tools for gene prioritization from GWAS summary statistics, i.e., MAGMA,22 DEPICT,23 Pi,5 and PoPS.24 We also used

TWAS for gene prioritization, and themethods for TWASwere described later. We used the default settings, unless otherwise stated.

MAGMA is a simple method that summarizes variant-level p-values into gene-level p-values according to gene positions and LD

structure. For MAGMA, we used the ‘‘—gene-model snp-wise = mean’’ option. DEPICT aims to capture a set of genes within asso-

ciated loci so that the genes share functional annotations. Briefly, DEPICT maps lead variants to proximal genes and then prioritize

the genes with gene set memberships similar to genes from other associated loci. Variants with p-values < 1.03 10�5 were used as

input for DEPICT. Pi is a scoring system designed for drug development of immune-related diseases. Pi first maps lead variants to

genes using proximity, chromatin interaction, and eQTL. These ‘‘seed’’ genes were annotated for immune-related functions, pheno-

types, and diseases. Then, higher p-value-like scores are assigned for genes with higher network connectivity to the seed genes. The

scores are combined using Fisher’s method and rescaled to 0–5. We followed the original paper for the setup of Pi.5 Specifically, we

used the lead variants with p < 5.03 10�8 as input, eQTL in the peripheral blood and immune cells, chromatin interaction in immune

cells, topologically associating domain boundary in the GM12878 cell line, and the STRING56 protein–protein interaction network,

with a high confidence score. PoPS is a tool that assigns high scores to genes with features characteristic of the genes with strong

gene-level associations. PoPS models MAGMA gene-level association scores by gene features derived from cell-type specific gene

expression, biological pathways, and protein–protein interactions. Then, association scores predicted by the model, not the original

ones, are reported. PoPSwas originally developed to pinpoint one responsible gene per locus, and chooses the genewith the highest

score at the locus of interest.24 Here, we used top-ranked genes, rather than pinpointed genes, to incorporate multiple genes per

locus for drug discovery.

We used the summary statistics of the all-population GWAS meta-analyses as input and the European subset of the 1000 Ge-

nomes Project (Phase 3) as a reference, given that more than half of the GBMI samples were NFE.7 We note that the annotations

internally used in the individual tools weremainly derived from European samples.We prioritized genes with conventional thresholds,

i.e., FDR <0.05 for MAGMA, and top 5% of the genes in the descending order of gene scores for Pi and PoPS. We used an FDR <0.2

for DEPICT, as DEPICT calculates p-values only for the genes in the pre-featured target loci, by default. When we examined sequen-

tially changed thresholds as a sensitivity analysis, we used FDR thresholds of 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5 for MAGMA

and DEPICT. Pi and PoPS calculate the gene score instead of FDR. We used the top 1%, 5%, and 10% of the genes with the highest

gene scores. In addition, a Pi score >1.5, 2.0, 2.5, and 3.0 for Pi, and a PoPS score >0, 0.5, 1.0, 1.5, and 2 for PoPS were also

examined.

Meta-analysis of gene prioritization results
As a sensitivity analysis, we applied gene prioritization tools to population-specific GWAS summary statistics and subsequently

meta-analyzed the results. The four gene prioritization tools calculate different metrics from each other. MAGMA calculates Z-scores

and p-values, and we meta-analyzed the Z-scores by Stouffer’s method using the function implemented in MAGMA. DEPICT calcu-

lates p-values only for the genes in the genome-wide significant loci. Therefore, we imputed the missing p-values with 0.5 and con-

verted the p-values into Z-scores using the inverse normal distribution. Subsequently, we meta-analyzed the Z-scores by Stouffer’s

method. For Pi and PoPS, we took the median scores weighted by the squared root of the GWAS effective sample sizes.

Transcriptome-wide association study
We conducted probabilistic TWAS fine-mapping using FOCUS.62 FOCUS is a Bayesian approach that takes GWAS summary sta-

tistics and eQTL weights as inputs and estimates causal effects of genes mediated by gene expression changes. We used the

same parameters used internally in Trans-Phar.16 Specifically, we used default parameters and priors, except that we set the p-value

threshold to 1 to target genome-wide regions. We ran FOCUS repeatedly for 44 GTEx v7 tissues and took the median of their pos-

terior inclusion probabilities (PIP). We further combined the PIP calculated from population-specific GWAS summary statistics by

taking the median weighted by the squared root of the GWAS effective sample sizes. We prioritized genes with PIP >0.1, and

used PIP thresholds of 0.01, 0.05, 0.1, and 0.2 for the sensitivity analysis. We note that the GTEx project largely contains European

participants, which might lead to potential LD mismatch for EAS-specific GWAS meta-analyses. We used European and East Asian

participants in the 1000 genomes project as the LD reference for NFE and EAS, respectively.

Gene prioritization features
We compiled 50 features for protein-coding genes and performed one-sided Fisher’s exact test to evaluate their enrichment in the

genes prioritized by the omnibus approach. Out of the 50 features, we calculated seven locus-to-gene features for each disease

(the genes nearest to the lead variants, the genes with protein–protein interaction [PPI] to the nearest genes, and the genes for which

the GWAS loci tagged functional variants with p < 1.0 3 10�4 in five categories: putative loss-of-function [pLoF] variants, non-syn-

onymous variants, exonic variants, promoter-region variants, and enhancer-region variants). We also curated five gene features

(gene length, amino-acid [AA] length, transcription factors, immune-related genes, cancer-related genes) and the genes expressed

specifically to 38 tissues from the GTEx project.65 Two numeric gene features (gene length and AA length) were converted to binary

features by dividing the genes into the top-5% longest genes and the other. To examine whether the features were associated with
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the prioritized genes conditioned on the nearest genes, we conducted logistic regression by jointly modelling the nearest genes and

other features. We calculated p-values by the one-sided Wald test.

Mendelian randomization of the pQTL signals
We used two-sided Wald ratio tests for MR analyses. The lead variants of the five European protein QTL studies27–31 were evaluated

as described previously.18 For all evaluated proteins, including those currently not targeted by drugs, we used the lead variants clas-

sified as tier 1 as instrumental variables. The tier 1 variants were defined as the variants that were associated with no more than five

proteins and did not show heterogeneity in the five studies. When the lead variant of the pQTL was missing in the GBMI GWAS

summary statistics, we used a proxy variant with the largest R2, if the R2 was larger than 0.8. We checked the directionality of causal

relationships using Steiger filtering.66 All MR analyses were performed using the TwoSampleMR R package.63

Colocalization analysis
To test colocalization in the presence of multiple causal variants, we applied coloc to the signals decomposed by SuSiE32 for each

locus, including the variants located within ±500 kb of the lead variant (coloc + SuSiE). If SuSiE34 did not converge in 100 iterations for

either pQTL or GBMI GWAS, we instead used coloc.33 Coloc + SuSiE and coloc were performed using their default parameters. The

summary statistics were not publicly available for two pQTL studies30,31; therefore, we compared R2 between the lead variants of

the pQTL and the GBMI GWAS for those studies. We considered that the signals of pQTL and GBMI GWAS were colocalized

if the maximum posterior probability of colocalization (i.e., PP.H4 for coloc and coloc + SuSiE) was larger than 0.8, or the R2 between

the lead variants was larger than 0.8.

Negative correlation tests of gene expression
We utilized Trans-Phar16 for the negative correlation tests. Specifically, we performed a series of negative correlation tests between

disease case–control GReX and compound-regulated gene expression profiles for 308,872 compound–tissue–condition pairs per

disease. Trans-Phar internally used FOCUS62 to infer disease case–control GReX for 44 GTEx v7 tissues based on the GWAS sum-

mary statistics. Compound-regulated gene expression profiles were obtained from the LINCS L1000 library.21 We calculated Spear-

man’s rho between GReX and compound-regulated gene expression profiles using the GReX inferred from the NFE-specific and

EAS-specific GWAS meta-analyses, separately. The correlation coefficients were combined by a random-effect model using the

metacor R package and p-values were calculated by the one-sided tests. In the LINCS L1000 library, some compounds had multiple

compound-regulated gene expression profiles evaluated with different conditions. When we compared the negative correlations be-

tween approved and non-approved compounds, we kept one condition per compound by selecting the compound-regulated gene

expression profiles that showed the largest negative correlation with genetically determined gene expression profiles. The target-

gene information of the LINCS L1000 library was curated from its official database via Google BigQuery (https://github.com/

cmap/cmapBQ) and the drug repurposing hub (https://clue.io/repurposing),67 in addition to the four major drug databases

(DrugBank,39 TTD,40 PharmGKB,41 and the Open Targets Platform42).

Filtering of GWAS summary statistics
Because of the diverse ancestries in the GWASs for meta-analysis, there was remarkable heterogeneity in the effective sample sizes

across the genome-wide variants of the GBMI results of each phenotype. This heterogeneity affected the performance of down-

stream analyses, including those of polygenic risk score.68 Therefore, we excluded variants with effective sample sizes <50% of

the maximum effective sample size from the GWAS summary statistics of each phenotype.

QUANTIFICATION AND STATISTICAL ANALYSIS

Enrichment analysis in medication categories
Weused the list of prioritized genes as input to perform a series of Fisher’s exact tests for ATCor ICD-10 codes, to test the enrichment

of drug-target genes in particular codes. We used the drug-target database provided by GREP,14 which was constructed by curating

two major drug databases, Drug Bank and TTD. The ICD-10 codes were summarized into the 21 large categories, as shown in Fig-

ure S2. Because ICD-10 is a disease-classification system, we simply defined the relevant ICD-10 category as the category that con-

tained the disease. Conversely, ATC is a drug-classification system, and the approved drugs can belong to multiple ATC codes.

Therefore, we defined the disease-relevant ATC code as the ATC code with the largest number of approved drugs for the dis-

ease-relevant ICD-10 category. We defined the disease-irrelevant ATC codes as the ATC codes without any approved drugs for

the disease-relevant ICD-10 category. Regarding ATC, we limited the enrichment analyses to the diseases for which there were

more than four approved drugs in the disease-relevant ATC codes. As a result, four diseases (i.e., AAA, IPF, AcApp, and HCM)

were excluded. We also utilized MAGMA gene set enrichment analysis to evaluate the enrichment accounting for potential con-

founders. MAGMA gene set enrichment analysis is a linear regression model of gene-level Z-scores. We used the default covariates:

gene length, gene density, and inverse minor allele counts, and their logarithmic values. Technically, MAGMA gene set enrichment

analysis uses all analyzed genes as the background genes, but the background genes of the overlap enrichment analysis in medi-

cation categories should be restricted to the drug-target genes. To address that, we created the subset of the output file MAGMA
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gene analysis containing only drug-target genes and used it for MAGMA gene set enrichment analysis. p-values were calculated by

one-sided tests for both Fisher’s exact tests and MAGMA gene set enrichment analysis.

Pathway enrichment analysis
We conducted one-sided hypergeometric tests implemented in the ReactomePA R package69 for the enrichment analysis of the

prioritized genes in the Reactome pathways. Following the default settings, we considered the pathways as significant if

p-values < 0.05 after being adjusted by the Benjamini-Hochberg method and Q-values < 0.2. We subsequently filtered out the path-

ways with less than three prioritized genes to ensure that multiple genes in the pathways were prioritized.
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