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Green tea (Camellia sinensis; #2% 10 cha) extracts have been shown to possess anti-oxidant and anti-
inflammatory effects in various cell types. Green tea extract (GTX) has been shown to significantly
inhibit the activity of collagenase-3 (matrix metalloproteinase-13 (MMP-13)) in vitro. MMPs, such as
MMP-9, are known to be involved in many inflammatory diseases including periodontal disease. GTX and
a major catechin, epigallocatechin-gallate (EGCG), were examined for their ability to inhibit purified
MMP-9 activity and its release from stimulated neutrophils.

Methanol extract of Green tea and commercially purchased EGCG (>95 % purity) were tested in vitro
for their ability to inhibit MMP-9 activity and/or its release from neutrophils using a B-casein cleavage
assay and gelatin zymography, respectively. Statistical analysis was performed by Student's t-test.

GTX and EGCG at 0.1% (w/v) completely inhibited the activity of MMP-9. In addition, GTX and EGCG
(0.1 %) significantly inhibited (p < 0.001) the release of MMP-9 from formyl-Met-Leu-Phe (FMLP)-
stimulated human neutrophils by 62.01% + 6.717 and 79.63% + 1.308, respectively. The inhibitory effects
of GTX and EGCG occurred in unstimulated neutrophils (52.42% + 3.443 and 62.33% + 5.809, respec-
tively). When the inhibitory effect of EGCG was further characterized, it significantly inhibited the release
of MMP-9 from the FMLP-stimulated human neutrophils in a dose-dependent manner.

The effects of GTX and EGCG on MMPs could be extrapolated to clinical/in vivo studies for the
development of oral care products to prevent or treat chronic inflammatory diseases including peri-
odontal diseases.

Copyright © 2016, Center for Food and Biomolecules, National Taiwan University. Production and hosting
by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bacterial invasion stimulates infiltrated neutrophils to produce
reactive oxygen species (ROS). These ROS modulate various enzyme
activities including protein kinases, ion channels, membrane re-
ceptors and transcriptional factors like nuclear factor kappa B
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(NFkB). In turn, these stimulate the production of cytokines and
host matrix metalloproteinases (MMPs).!

MMPs are a family of at least 27 zinc-containing endopeptidases
that are classified as collagenases, gelatinases, stromelysins,
membrane-type MMPs and others.”> MMP-9 (gelatinase-B) is
believed to be involved in many inflammatory diseases including
periodontal diseases, tumor growth and metastasis, arthritis and
cardiovascular diseases.> ® MMP-9 is expressed in neutrophils
constitutively before they are released from the bone marrow to the
circulation as part of the innate defense armory.” The expression of
the MMPs also occurs at the tissue level after neutrophil migration
upon infection in an inductive manner. MMP-9 is stored in neu-
trophils’ granules and released upon activation.”
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Periodontal diseases involve inflammation of the supporting
connective tissues with subsequent loss of alveolar bone.*> Over-
production and/or activation of the host derived MMPs eventually
lead to the destruction of the periodontal extracellular matrix.®
MMP-9 can be activated by hypochlorous acid (HOCI) generated
by neutrophil myeloperoxidase (MPO) utilizing H>0, as a sub-
strate.” This suggests that ROS production and MMP-mediated
periodontal diseases are directly related.?

The main polyphenols in Green tea (#% 1ii chd) extract (GTX)
are derivatives of catechin (flavanols) that include epigallocatechin
gallate (EGCG), epigallocatechin, gallocatechin, gallocatechin
gallate, epicatechin and epicatechin gallate. GTX has anti-oxidant
activities. GTX and its catechins have been shown to inhibit ROS
production including superoxide (03) and nitric oxide (NO) in vitro
in a dose-dependent manner.’ Green tea catechins have also been
shown to be effective in the prevention and treatment of peri-
odontal disease and dental caries due to their anti-microbial ac-
tivity.'“!" Their inhibition of bacterial amylase activity and the
growth of oral microorganisms have been documented.'”'> GTX
has also been shown to have anti-inflammatory and anti-
proliferative properties.'!>

Since the activation and release of MMP-9 from stimulated
neutrophils upon infection play a part in inducing periodontal
diseases and other chronic inflammatory diseases, any agent that
could inhibit the production of ROS and also inhibit the activity or
release of MMP-9 from stimulated neutrophils would be a novel
“multi-pronged” mechanism for the prevention and treatment of
various inflammatory diseases including periodontal disease. In the
present study, the ability of GTX and its major catechin, EGCG, to
inhibit the activity of MMP-9 and its release from stimulated neu-
trophils were examined in vitro.

2. Materials and methods
2.1. Reagents

Green tea (Camellia sinensis; #%< 14 cha) was cultivated in the
Chonnam province in Korea. The green tea were then stored and
processed at the Department of Food and Technology, Chonnam
University, Gwangju, Korea. After being air-dried under a fume
hood at room temperature, the aerial parts of the plants were
crushed using a super mixer (model SM2000, Retch, Germany). The
dried materials were extracted in 80% methanol (MeOH) for
24 h and filtered through Whatman No. 2 filter paper. The MeOH
extract was then concentrated using a vacuum evaporator (Type N-
2N, Eyela, Tokyo, Japan) attached to a cooling aspirator. The
concentrated MeOH GTX was then lyophilized (FDU-540, Eyela,
Tokyo, Japan). The GTX was then dissolved in 10 mM dimethyl
sulphoxide (DMSO) before being diluted in phosphate buffered
saline (PBS). The EGCG (95 % purity) was purchased from Calbio-
chem (La]Jolla, CA). EGCG was diluted in PBS prior to conducting the
experiments. Human MMP-9 was purified by gelatin sepharose
from conditioned media as previously described.®

2.2. EGCG analysis

High-performance liquid chromatography (HPLC) equipped with
a UV-Vis detector was used to determine the ECGC content using
maximal absorption peaks at 280 nm. HPLC analysis was performed
on Agilent 1100 system (Palo Alto, CA) using an Eclipse XDB-C18
chromatography column (3.5 um, 4.6 x 150 mm) with a 20 pL in-
jection volume. A binary mobile phase consisting of solvent systems
A and B were used in an isocratic elution with 90:10 A:B. Mobile
phase A and B was 2% formic acid (v/v) in ddH,0 and 100% aceto-
nitrile, respectively. The mobile phase flow rate was 1.0 mL/min and

the run time was 15 min. The retention time for EGCG was 6.07 min.
The amount of ECGC was calculated from a standard curve equation.

2.3. (-Casein cleavage assay

The ability of GTX or EGCG to inhibit the activity of MMP-9 was
examined using a B-Casein cleavage assay. Briefly, activated puri-
fied samples (3.0 pg/ml) of human MMP-9 were incubated with
1.25 mg/ml B-casein (Mr 21,000) at 37 °C.”7 Samples with or
without GTX or EGCG were periodically (0—60 min) removed and
the reactions stopped by addition of 1, 10-phenanthroline to a final
concentration of 10 mM. The samples were analyzed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
stained with Coomassie blue and analyzed by densitometry. Serial
dilution of GTX was utilized to determine the dose-response.

2.4. Human neutrophils

Buffy coats separated from healthy human donor blood were
obtained from the Central Indiana Regional Blood Center (Indian-
apolis, IN) with Institutional Review Board approval. A double-
sucrose gradient, Histopaque-1119 (3 ml) and Histopaque-1077
(3 ml), was used to separate the neutrophils by centrifugation at
20 °C for 35 min. The lower band containing the granulocytes was
drawn off. After washing with 10 ml PBS, the cells were centrifuged
at 950 rpm for 10 min and the supernatant was discarded. The
washing procedure was repeated twice and the cells were resus-
pended in 10 ml of Roswell Park Memorial Institute (RPMI) 1640
(Sigma Co. St. Louis, MO) media.'® After counting, the cells were
adjusted to 2.2 x 107 cells/ml. Trypan Blue staining was utilized to
determine the viability of the harvested cells.

2.5. Gelatin zymography

To determine if GTX or EGCG could inhibit the release of MMP-9
from the neutrophils, gelatin zymography was utilized. Human
neutrophils (10%/ml) were stimulated with 10~® M N-formyl-Met-
Leu-Phe (FMLP) for 30 min at 37 °C with or without GTX or EGCG.
After incubation, the cells were pelleted by centrifugation at
14,000 rpm for 5 min and the collected supernatant was analyzed
for MMP-9 release. The supernatant samples were resolved in 10%
SDS-PAGE gels co-polymerized with 1 mg/ml gelatin. After elec-
trophoresis, the gels were washed with solution 1 (50 mM Tris, pH.
7.5,3 mM NaNj3, 2.5 % Triton X-100), solution 2 (50 mM Tris, pH 7.5,
3 mM NaN3 5 mM CaClp, 1 uM ZnCly, 2.5 % Triton X-100) and so-
lution 3 (50 mM Tris, pH 7.5, 3 mM NaN3 5 mM CaCl,, 1 uM ZnCly)
for 20 min each. The gels were then incubated in fresh solution 3
overnight at 37 °C. The gels were later stained with Coomassie blue
to visualize the lytic bands. The density of the bands was analyzed
by NIH 1.62 Image.

2.6. Statistical analysis

The significance between the control and test groups was
determined by the Student's t-test. The data was expressed as
mean + SEM. A value of p < 0.05 was considered statistically

significant.
3. Results
3.1. EGCG analysis

The amount of ECGC was calculated from the standard curve
equation (r? = 0.99917) and the concentration of ECGC in the 1%
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Fig. 1. GTX and EGCG Inhibition of MMP-9 Activity. Activated purified samples (3.0 pg/ml) of human MMP-9 were incubated with 1.25 mg/ml B-casein (Mr 21,000) at 37 °C with or
without 0.1% GTX or 0.1% EGCG. Samples were periodically (0—60 min) removed and the reactions stopped by addition of 1, 10-phenanthroline (10 mM). The samples were analyzed
by SDS-PAGE and stained with Coomasie blue. (A) control, (B) Green tea extract, and (C) EGCG.

green tea (#% 14 chd) extract was 0.94 + 0.01 mg/mL (0.094%
ECGC).

3.2. B-casein cleavage assay

Serial dilutions of GTX were used to determine the dose-
response. Consequently, 0.1% GTX was chosen for the experi-
ments because it effectively inhibited the cleavage of the B-casein
by MMP-9. EGCG at 0.1% (1 mg/ml) also effectively inhibited the
activity of MMP-9 compared to the untreated control (Fig. 1).

3.3. Gelatin zymography

Both GTX (0.1 %) and EGCG (0.1%) significantly (p < 0.001)
inhibited the release of MMP-9 from untreated neutrophils by
51.42 + 3.443 % and 62.33 + 5.809 %, respectively. GTX or EGCG at also
significantly (p < 0.001) inhibited the release of MMP-9 from 10~ M
FMLP-stimulated human neutrophils by 62.01% + 6.717 and
79.63% + 1.308, respectively (Figs. 2 and 3). When the inhibitory ef-
fects of EGCG was further tested in serial dilutions, it significantly
(p <0.001)inhibited the release of MMP-9 from the FMLP-stimulated
neutrophils in a dose-dependent manner (Fig. 4 and Table 1).

4. Discussion

The anti-oxidant properties of plant extracts have been demon-
strated in numerous studies, but little is known about their anti-
inflammatory effects related to human neutrophil functions. The
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Fig. 2. 0.1 % GTX and EGCG Inhibit MMP-9 Release. Human neutrophils (10° cells/ml)
were stimulated with and without 10~® M N-formyl-Met-Leu-Phe (FMLP) for 30 min at
37 °C with or without GTX and EGCG. Samples were analyzed by zymography (1 mg/
ml gelatin). After incubation overnight, the gels were stained with Coomassie blue to
visualize the lytic bands. Lane 1: Untreated (Control), Lane 2: 0.1% GTX, Lane 3: 0.1%
EGCG, Lane 4: 10°® M FMLP, Lane 5: 10"° M FMLP/0.1 %GTX, Lane 6: 10"° M FMLP/0.1%
EGCG.

current study examined whether extracts from green tea (4% 10
chd) and its major catechin, EGCG, could modulate MMP-9 activity
or release from neutrophils. MMP-9 has been suggested to play a
role in many inflammatory diseases including periodontal diseases,
cancer cell migration, arthritis and degeneration of central nervous
systems. Therefore, testing any compound, which inhibits produc-
tion of ROS followed by inhibition of MMP-9 and/or its release from
stimulated neutrophils would be a novel “multi-pronged” approach
to prevent and possibly treat inflammatory conditions.

The current study demonstrated that GTX (0.1%) and EGCG
(0.1%) significantly inhibited the activity of MMP-9 and its release
from stimulated human neutrophils in a dose-dependent manner.
EGCG has been shown to exert the greatest anti-oxidant activity
among the catechins (flavanols) as the most hydroxylated catechin
among the polyphenols from GTX. It is esterified to gallic acid (3, 4,
5-trihydroxy benzoic acid) at the 3-OH group in the C ring.
Although there is no electron delocalization between the A and B
rings (to be stabilized after donating electrons) due to the satura-
tion of the heterocyclic C ring, it can be stable by resonance be-
tween the A and B aromatic ring structures.'” Green tea catechins,
including EGCG, chelate transient metal ions (iron or copper)
involved in Fenton-reaction via the dihydroxy phenolic structure of
the B ring.'” This could explain the inhibitory effects of EGCG on
MMPs. This also prevents further oxidative stress-mediated cell
damage (Fig. 5). The amount of ECGC in 0.1% GTX was 0.094 mg/ml
and 1 mg/ml in the 0.1% ECGC. The level of MMP-9 inhibition by
0.1% ECGC (1 mg/ml) was not significantly different from the MMP-
9 inhibition by 0.1% GTX (0.094% ECGC). This clearly indicates that
other components in the GTX had MMP-9 inhibitory activities.

The soybean isoflavone (genistein) and pine needle extract
(contains a flavonol, quercetin) have been shown to inhibit the
neutrophil respiratory burst activation either alone or together in a
synergistic manner.’’ Compared to the flavanols such as EGCG,
these flavonols have structural advantages with 4- oxo and 2, 3-
unsaturated double bonds in C ring enabling them delocalize
electrons more efficiently. However, EGCG has been shown to have
the same degree of anti-oxidant capacity due to its highly hy-
droxylated aromatic ring structures.' In addition, genistein, quer-
cetin and EGCG, are all known inhibitors of protein tyrosine kinases
owing to the similarity of their B ring structure to tyrosine
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Fig. 3. Inhibition of MMP-9 release. MMP-9 released from the untreated or treated neutrophils calculated from the zymogram utilizing NIH 1.62 Image. 0.1% (w/v) GTX and EGCG
significantly (p < 0.05) inhibited MMP-9 release from untreated neutrophils (Panel A) or FMLP-stimulated neutrophils (Panel B). Data were expressed as mean of 5
determinants + SEM. The zymograams were standardized to each other utilizing the untreated control and FMLP-treated control within each group. * Statistically significant at

p < 0.001.
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Fig. 4. Dose-dependant inhibition of MMP-9 Release by EGCG. Human neutrophils
(108 cells/ml) were stimulated with 10~ M FMLP for 30 min at 37 °C with and without
EGCG. The samples were analyzed by zymography (1 mg/ml gelatin). After incubation
overnight, the gels were stained with Coomassie blue to visualize the lytic bands. Lane
1: Control, Lane 2: 10°° M FMLP, Lane 3: 10~ M FMLP/0.2 % EGCG, Lane 4: 107 M
FMLP/0.1 % EGCG, Lane 5: 10-% M FMLP/0.05 % EGCG, Lane 6: 10-® M FMLP/0.025 %
EGCG.

Table 1
Dose-dependent Inhibition of FMLP-stimulated Neutrophil MMP-9
Release by EGCG.

Treatments % Inhibition
FMLP-stimulated 0.00
FMLP/0.2 % EGCG 87.86 + 1.65°
FMLP/0.1 % EGCG 82.56 + 2.36"
FMLP/0.05 % EGCG 77.20 + 3.37¢
FMLP/0.0025 % EGCG 60.27 + 5.61°

The inhibition of the release of MMP-9 from FMLP-stimulated
neutrophils was calculated from the gelatin zymographs using
NIH image 1.62. Data are expressed as mean + SEM.

2 Statistically significant at p < 0.001.

HO_ 7 0
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Fig. 5. Structure of epi-gallocatechin-gallate (EGCG).

residue.'® The ability to inhibit protein tyrosine kinase results in the
inhibition of NFkB followed by inhibition of pro-inflammatory gene
expressions such as the MMPs and COX-2.?! Previous studies have
demonstrated that both genistein and pine needle extract
completely inhibited the release of MMP-9 from phorbol myristate
acetate (PMA)-activated neutrophils.?? The current data with EGCG
is consistent with these findings. Others also have shown that the
kinase-mediated expression of pro-inflammatory genes (i.e., MMPs
and cytokines) is inhibited by genistein.>*

5. Conclusion

Plant polyphenols modify free radical generation and signaling
pathways to regulate pro-inflammatory gene expressions.’'
Furthermore, the bioavailability of plant polyphenols has been
assessed in humans?*%*> and EGCG is considered as to be GRAS
(generally recognized as safe) by the Food and Drug Administration
(FDA). The inhibitory ability of the GTX on the activity or release of
MMP-9 could be, in part, caused by EGCG. Therefore, the findings
from this study with GTX and EGCG could be extrapolated to

clinical/in vivo studies for the development of oral care products to
prevent or treat chronic inflammatory diseases including peri-
odontal diseases.
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