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Abstract  
 
Cell signaling plays a critical role in regulating cellular behavior and fate. While multimodal single-
cell sequencing technologies are rapidly advancing, scalable and flexible profiling of cell signaling 
states alongside other molecular modalities remains challenging. Here we present Phospho-seq, 
an integrated approach that aims to quantify phosphorylated intracellular and intranuclear 
proteins, and to connect their activity with cis-regulatory elements and transcriptional targets. We 
utilize a simplified benchtop antibody conjugation method to create large custom antibody panels 
for simultaneous protein and scATAC-seq profiling on whole cells, and integrate this information 
with scRNA-seq datasets via bridge integration. We apply our workflow to cell lines, induced 
pluripotent stem cells, and 3-month-old brain organoids to demonstrate its broad applicability. We 
demonstrate that Phospho-seq can define cellular states and trajectories, reconstruct gene 
regulatory relationships, and characterize the causes and consequences of heterogeneous cell 
signaling in neurodevelopment.  
 
Introduction 
 
 The ability to carefully regulate responses to external and internal signals is essential for 
proper cellular function. Maintaining precise control of signaling networks enables cells to achieve 
homeostasis in response to environmental changes and to progress through key developmental 
and functional transitions 1. Signal transduction links the activation of signaling pathways to 
downstream changes in cellular chromatin 2, transcription 3, and translation 4, and is primarily 
regulated by changes in post-translational modifications (PTMs) 5. For example, changes in 
phosphorylation can significantly alter receptor kinetics 6, enzymatic function 7, and transcription 
factor localization and activity 8 via conformational changes 9.  
 

Cell signaling pathway activity is known to vary throughout neurodevelopment, and when 
disrupted, it can have significant effects on cell fate decisions. For instance, uncontrolled mTOR 
pathway activity caused by the loss of the upstream regulator TSC2 leads to a significant increase 
in astrogliosis, which is a hallmark of the neurodevelopmental disorder, tuberous sclerosis 10. 
Additionally, changes in Wnt signaling have been associated with autism spectrum disorder 11. In 
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order to gain a deeper understanding of the causes and consequences of aberrant signaling, a 
crucial challenge is to connect heterogeneity in the activation of signaling pathways with broader 
changes in molecular state. Therefore, methods that can accurately measure and quantify 
phosphorylation states at single-cell resolution alongside additional molecular modalities offer 
substantial promise to improve our understanding of cellular activity and function.  
 

Phospho-proteins are typically quantified in single-cells using antibody-based methods 
including immunocytochemistry , flow cytometry 12, or CyTOF 13, which can be multiplexed to 
detect dozens of targets. Single-cell sequencing technologies offer an exciting opportunity to build 
upon these approaches, particularly with the recent introduction of “multiomic” technologies that 
enable the quantification of multiple modalities of information within the same cell 14–21. For 
example, CITE-seq 15, REAP-seq 19, DOGMA-seq 18, and TEA-seq 20 all stain cells with large 
panels of oligonucleotide-tagged antibodies against cell surface proteins in order to quantify 
cellular immunophenotypes alongside cellular transcriptomes, chromatin accessibility profiles, or 
both. While powerful, these technologies focus exclusively on the profiling of cell surface proteins. 
They are therefore widely applied to analyze hematopoietic samples, where well-characterized 
panels of cell surface proteins are associated with distinct cell states, but have limited utility in 
other contexts, including neurodevelopment. 
 
 Multiple pioneering approaches have built upon these methods, aiming to utilize single-
cell multimodal technologies to profile intracellular and intranuclear proteins in diverse biological 
contexts. These include ASAP-seq 18, which introduces a set of fixation and permeabilization 
conditions that are compatible with chromatin accessibility profiling in whole cells. Additionally, 
inCITE-seq 21 and NEAT-seq 16 utilize specialized approaches for intranuclear protein profiling, 
which significantly reduce background signal originating from non-specific electrostatic 
interactions between oligonucleotide-conjugated antibodies and charged cellular components. 
While each of these methods addresses key challenges, they perform profiling of small (3-7) 
intracellular panels due to a reliance on commercially conjugated antibodies. QuRIE-seq aims to 
profile larger panels, but requires custom instrumentation and is not compatible with primary cell 
samples 17. Lastly, while NEAT-seq utilizes the 10x Multiome kit for trimodal nuclear profiling, no 
existing approaches can quantify intracellular proteins (including phosphorylation states), 
transcriptional output, and chromatin profiling in the same biological system. 
 
 Here we present Phospho-seq, a multi-modal single-cell workflow for quantifying cell 
signaling via phosphorylated cytoplasmic and nuclear proteins in conjunction with chromatin 
accessibility and, through bridge integration 22, gene expression levels. By optimizing a broadly 
accessible antibody conjugation strategy 23, we designed a custom panel to profile 64 intracellular 
proteins (including 20 phospho-states), and applied this workflow to 3-month old brain organoids. 
We used the trimodal chromatin, RNA and protein data to discover novel transcription factor-cis-
regulatory element-gene associations including telencephalic and diencephalic lineage specific 
relationships. We further used the phosphorylated protein data to identify lineage-specific patterns 
of WNT and MAPK/ERK signaling, and to link these differences to upstream and downstream 
molecular networks. Overall, we demonstrate the utility of Phospho-seq for the high throughput 
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discovery of interactions between cell signaling, gene regulation and gene expression in neural 
tissue, opening the door for future discoveries in other cell types and tissues.   
 
Results 
 
Benchtop conjugation enables antibody panel customization in Phospho-seq 
  
            In developing Phospho-seq, we aimed to create a user-friendly, single-cell method to 
quantify proteins from the cell surface, cytoplasm and the nucleus alongside additional molecular 
modalities. To maximize Phospho-seq’s utility, we aimed for the assay to 1) allow for maximum 
customizability by the user for which proteins to quantify, 2) rely only upon commercially available 
reagents and equipment, and 3) maintain the sensitivity and specificity of single-modality assays. 
Towards these goals, Phospho-seq combines aspects of previously established single-cell 
protein and chromatin accessibility quantification methods 16,18. In brief, cells are dissociated into 
single-cells, fixed, permeabilized, hashed, stained for intracellular proteins with self-conjugated 
DNA-bound antibodies, and run through the 10X Genomics single-cell ATAC-seq protocol (Fig 
1A and Methods). 
 
 A major limitation of large-scale sequencing-based intracellular profiling is the lack of 
commercially available oligonucleotide-tagged antibodies. Premade antibody panels are specific 
for hematopoietic surface antigens 24, while custom commercial antibody conjugation is often 
prohibitively expensive, especially for larger panels. To overcome this issue, we optimized a 
simple benchtop click-chemistry-based conjugation protocol 23 (Fig 1B) to generate panels of 
uniquely-indexed DNA-bound antibodies. This approach is scalable, cost-effective 
(~$8/conjugation), and compatible with unconjugated commercial antibodies that are routinely 
used for immunofluorescence or flow cytometry, even those with carrier proteins (Fig 1C). 
Phospho-seq is compatible with antibodies conjugated to different oligonucleotide sequences, 
including the widely used TotalSeq-A and TotalSeq-B sequences,  through the use of a “bridge 
oligonucleotide” for capture on the gel beads 18.   
 

During the optimization of our conjugation protocol, we found that the ratio of antibody to 
oligonucleotide and post-conjugation purification steps were crucial for minimizing nonspecific 
binding while maintaining a high recovery yield. Through titration experiments, we determined 
that adding 15 pmol of oligonucleotide per μg of antibody (equivalent to 2-4 copies of 
oligonucleotide per antibody molecule) was optimal (Fig 1D). For post-conjugation purification, 
we found that two steps: an initial precipitation step using 40% ammonium sulfate 25, followed by 
5-7 washes through a 50 kDa molecular weight cut-off (MWCO) filter, were necessary to reduce 
unbound oligonucleotide while preserving antibody yield (Fig S1A). 
          

We utilized flow cytometry experiments on whole cells to optimize and confirm that our 
Phospho-seq procedure was capable of retaining cell-to-cell differences in intracellular antibody 
levels. We first confirmed that light fixation (1% formaldehyde) and gentle detergent-based 
permeabilization (0.1% NP-40), as suggested by ASAP-seq 18, achieved the necessary balance 
between maintaining the structural integrity of the cell membrane while allowing the flow of 
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antibodies into the nucleus and cytoplasm. We also found that the addition of single-stranded 
DNA binding protein (SSB) to our antibody pool before staining, as pioneered for nuclear profiling 
with NEAT-seq 16, was essential to reduce background signal for oligonucleotide-conjugated 
antibodies. We therefore combined these approaches, and utilized flow cytometry for an 
oligonucleotide-conjugated antibody against SOX2 to successfully quantify clear expression 
differences in heterogeneous mixtures of whole cells (Fig 1E).             
 
Phospho-seq simultaneously quantifies phosphorylated, cytoplasmic and nuclear proteins 
              
            To evaluate the full Phospho-seq workflow on whole cells, we first tested a small panel of 
both nuclear and cytoplasmic proteins on a heterogeneous cell line mixture. Our panel included 
antibodies against the transcription factors OCT4, SOX2, and GATA1, which are expected to be 
differentially expressed between K562 cells and induced pluripotent stem cells (iPSCs). We also 
aimed to quantify phosphorylated ribosomal protein S6 (pRPS6) expression, a readout of 
PI3K/AKT/mTOR pathway activation, along with antibodies quantifying total RPS6 levels. We 
exposed cells to either epidermal growth factor for 1 hour (EGF, activating) or PX-866 for 4 hours 
(inhibiting) to modulate pathway activation, and utilized cell surface ‘hashing’ antibodies to 
perform multiplexed profiling of cells in resting, activated, or inhibited conditions. 
 
 We found that Phospho-seq was able to accurately quantify intranuclear, intracellular 
(including phosphorylated), and cell surface proteins alongside chromatin accessibility. 
Dimensional reduction of scATAC-seq profiles successfully discriminated the two cell lines and 
was concordant with the cell hashing-based demultiplexing. (Fig 1F and S1B,C). Antibody-derived 
tags (ADTs) for the defining canonical transcription factors OCT4, SOX2 (iPSCs) and GATA1 
(K562) showed strong, significant differences between the two cell types (Fig 1G,H and Fig S1D). 
These profiles were also concordant with the chromatin accessibility landscape at each protein’s 
genomic locus (Fig 1I,K and S1E) and genome-wide transcription factor motif activity estimates 
as quantified by chromVAR 26 (Fig 1J,L and S1F).  
 

Moreover, while changes in PI3K/AKT/mTOR pathway (Fig 1M) activity did not drive 
genome-wide changes in chromatin accessibility (Fig 1N), we observed a clear increase in pRPS6 
levels within stimulated cells compared to inhibited cells (Fig 1O). These results were not echoed 
in total RPS6 levels (Fig 1P), and reflect a biological context where phosphorylation 
measurements are highly informative for distinguishing cellular states even when genome-wide 
modalities cannot. We also observed higher phosphorylation of the nuclear transcription factor 
STAT3 in iPSCs compared to K562 cells, and found that only pSTAT3 levels (as opposed to total 
protein levels) correlated with STAT3 transcription factor activities (Fig S1G). We conclude that 
we can therefore measure phosphorylation states for both intracellular and intranuclear activities, 
and that phosphorylated protein levels can more accurately reflect cellular state and transcription 
factor activities compared to total protein levels. 

 
We further observed that Phospho-seq was capable of quantifying more subtle 

differences, even within the same cell type. Epigenetic differences between iPS donor cell lines 
are frequently observed and often lead to biased differentiation tied to cell signaling differences 
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27.  In our dataset, we observe the segregation of the three iPSC donors used in this experiment 
based on chromatin accessibility (Fig S1H) as well as an enrichment of pRPS6 signal in one donor 
in particular (Fig S1I). These types of observations may be highly informative when assessing the 
differentiation capacity of different iPSC lines.  
 
Intracellular protein staining highlights cell type differences in human brain organoids   
   

We next applied Phospho-seq to human iPSC-derived brain organoid models, which have 
provided valuable insights into early neurodevelopmental processes that are otherwise difficult to 
study in humans 28,29. We first designed and conjugated a custom panel of 64 antibodies 
comprising both of neurodevelopmentally relevant transcription factors, as well as an expanded 
set of 40 paired cell-signaling antibodies (Fig 2A and Table S1). While previous studies have 
profiled chromatin and transcriptomic modalities from these models 29,30, we reasoned that our 
Phospho-seq panel could illuminate relationships between cell signaling pathways, transcription 
factors, and gene regulatory elements. We separately generated 3-month-old organoids from four 
iPS donors, using a well-established protocol for unguided brain organoid differentiation (Fig 2B) 
29,31. We performed cell hashing for doublet detection 32 and used genetic profiling 33 for donor 
demultiplexing, subsequently profiling 9,028 cells using Phospho-seq (Fig S2A). 
 

Utilizing dimensionality reduction and unsupervised clustering, we identified 15 clusters 
representing heterogeneity both in neurodevelopmental lineage and donor identity (Fig S2B). 
While we could assign broad cell type labels using gene activity scores calculated from chromatin 
accessibility within gene bodies and promoters 34 (Fig 2C and S2C), more fine-grained annotation 
is challenging for chromatin accessibility measurements in the absence of transcriptomic data. 
We found that ADTs were heterogeneously detected across differently assigned cell types, 
identifying markers of forebrain progenitors (SOX2,GLI3), diencephalic cells (OTX2), progenitors 
and glia (VIM,S100B), and intermediate progenitors (TBR2). We observed that 45 out of 64 
proteins exhibited differential expression between at least one pair of clusters (Fig S2D), and 
found that elevated protein marker expression was further supported by enriched chromatin 
accessibility patterns in the same cell types for both intranuclear and intracellular proteins (Fig 
2D,E). We observed clear concordance between single-cell transcription factor ‘activities’ as 
measured by chromVAR, and transcription factor levels measured by Phospho-seq (Fig 2F and 
S2E). Strikingly, when correlating the measured protein levels of OTX2 with all 633 chromVAR 
motifs, the OTX2 motif itself was the second highest hit (Fig 2G), while the other top hits had the 
same core motif. We observed similar results for SOX2 (Fig 2G), and  concluded that Phospho-
seq data can help to identify and discover bona fide links between cellular protein levels and DNA 
sequences that influence gene expression. 

 
High Quality RNA expression data is  incorporated into Phospho-seq through bridge integration 
 
 Our Phospho-seq protocol utilizes the 10x scATAC-seq kit to generate scalable and high-
quality chromatin accessibility profiles, but lacks transcriptomic measurements which are highly 
valuable for fine-grained cell annotation and gene regulatory network reconstruction. In 
considering how to add these measurements to our analysis, we generated two additional 
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datasets on the same single-cell suspension of 3-month old brain organoids: scRNA-seq (3’ 10x 
Chromium), and scRNA-seq+scATAC-seq (10x Multiome). We followed standard manufacturer’s 
protocols for both experiments, and observed that obtaining simultaneous measurements from 
the multiomic dataset was associated with a significant reduction in data quality compared to 
single-modality assays. Even after controlling for sequencing saturation, multiomic profiles 
exhibited a more than five-fold reduction in sensitivity for detected transcripts (Table S3). We 
conclude that further modifying the 10x Multiome protocol to enable the fixation and 
permeabilization conditions required by Phospho-seq will not generate high-quality trimodal 
datasets. 
 
 We therefore pursued a computational alternative, integrating Phospho-seq and scRNA-
seq datasets using our recently introduced ‘bridge integration’ procedure (Fig 3A) 22. We have 
previously shown that this workflow can successfully integrate distinct modalities collected in 
different experiments by leveraging a separately obtained multi-omic dataset as a ‘bridge’, even 
if the bridge dataset has reduced technical quality. The bridge integration procedure can 
successfully integrate data for both discrete cell types as well as continuous developmental 
trajectories, but requires that the multi-omic dataset is biologically representative (i.e. inclusive of 
all cell types and states) of the single-modality datasets. We emphasize that in our study, our 
bridge dataset was generated from the same set of samples, thereby satisfying this assumption 
and enabling us to integrate any future Phospho-seq datasets (i.e. with additional protein markers) 
without having to generate additional multi-omic data. 
 
 Applying this workflow, we first identified 27 cell clusters from the scRNA-seq data and 
performed high-resolution manual annotation using canonical gene expression markers  (Fig 
S3A-C). We next used bridge integration to annotate each Phospho-seq profile based on these 
labels (Fig 3B). We found that these transferred annotations were fully consistent with those 
originally derived from gene activity scores, but increased the granularity of annotation and 
interpretability. For example, Phospho-seq cells that were annotated as ‘Diencephalon’ fell into 
three categories after bridge integration: “Diencephalic PCs (Progenitor Cells), Choroid PCs, and 
Uncommitted PCs” (Fig 3C). After we performed bridge integration, we retrospectively identified 
differences in the chromatin accessibility profiles across high-resolution subsets that supported 
our transferred annotations. For instance, there were previously unobserved accessibility 
differences at canonical markers between progenitors and differentiated cells in both the choroid 
and astrocyte lineages (Fig S3D). Moreover, we obtained high prediction scores (70% > 0.75) for 
all cell types with the exception of astrocytes, which are one of the most rare cell populations in 
this system and were not sufficiently represented in the bridge data (Fig S3E). We therefore 
utilized our integrated manifold to ‘impute’ transcriptome-wide expression profiles for each 
Phospho-seq cell. We confirmed that these imputed profiles maintained high rank-correlation for 
TF motif accessibility, as well as measured ADT levels for the same gene (Fig S3F,G). These 
results confirm the applicability of bridge integration to obtain a high-quality RNA modality with 
Phospho-seq.  
 
  We leveraged our integrated dataset to explore the relationship between chromatin 
accessibility, gene transcription, and protein levels across a developmental trajectory of forebrain 
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development. We subset our integrated Phospho-seq scRNA-seq dataset to include 1,578 cells 
that spanned a continuum of cell states from progenitor cells to neurons, and constructed a 
developmental trajectory based on diffusion maps (Fig 3D) 35,36. While SOX2 gene expression 
sharply decreased at initial stages of differentiation, we observed a developmental ‘lag’ in the 
decrease of downstream modalities including SOX2 ADT levels , and SOX2 transcription factor 
activity as estimated by chromVAR (Fig 3E). We identified a specific stage of the developmental 
trajectory where protein and RNA levels were discordant, and confirmed that in these cells, only 
SOX2 protein levels (and not RNA levels) were correlated with chromVAR scores (Fig 3F). While 
SOX2 is a well-established negative regulator of neuronal development 37, this analysis enabled 
us to identify genes whose downregulation preceded SOX2 protein downregulation, and are 
therefore unlikely to be direct or downstream targets of SOX2 itself, and vice-versa (Fig 3G and 
S3H,I). We conclude that integrated Phospho-seq data can perform multimodal characterization 
of the  distinct temporal patterns and gene regulatory relationships that drive cellular dynamics. 
  
Using Phospho-seq data to identify gene regulatory networks in early neurodevelopment 

 
By exploring relationships across modalities, multiomic datasets can help to reconstruct 

gene regulatory networks. While multiple groups have demonstrated how to leverage co-variation 
between chromatin accessibility and gene expression to link scATAC-seq peaks to the genes they 
regulate 14,38,39, our Phospho-seq data also allows us to link these peaks to transcription factors 
(TF) that regulate their accessibility. Recently, Argelaguet et al. 40 proposed ‘in-silco’ ChIP-seq, a 
computational approach to predict TF binding events from multiomic data, based on co-variation 
between the gene expression of a transcriptional regulator and an scATAC-seq peak. While this 
method assumes that RNA expression is a good proxy for protein levels, we reasoned that we 
could extend this analysis using protein measurements from our Phospho-seq panel.  

 
For each TF, we performed a genome-wide search for peaks whose accessibility was 

highly correlated with TF protein abundance, and also harbored the TF binding motif (Fig 4A). As 
previously suggested 40, we used a high-resolution pseudo-bulking approach (‘SEAcells’) to 
reduce the sparsity of scATAC-seq data and identify more robust correlations 41 (Fig S4A). 
Furthermore, we identified a subset of these peaks whose accessibility was correlated (or anti-
correlated) with the expression of the proximal gene, as inferred from our integrated dataset. This 
procedure enabled us to identify downstream activating and repressive targets for individual TFs, 
as well as specific enhancer elements that are likely to mediate these relationships.  

 
We explored the performance of this procedure using OTX2 and SOX2, two transcription 

factors that are well-established regulators of neurodevelopment, and identified 5,033 and 2,562 
linked peaks respectively. We first performed footprinting analysis, which aggregates the 
accessibility profiles across a collection of peaks. When performing this analysis in cells with high 
expression of the TF we observed a relative depletion of accessibility centered exactly at the TF 
binding site, which is strongly indicative of TF binding (Fig 4B and S4B,C). We did not observe 
evidence of binding when repeating this analysis in cells that did not exhibit TF protein expression, 
or when considering peaks whose accessibility was uncorrelated with TF levels. Moreover, when 
considering a previously published bulk ChIP-seq dataset 42 profiling SOX2 binding in in vitro 
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differentiated human neural progenitors (hNPCs) and hESCs, we observed a clear elevation in 
SOX2 binding levels in our candidate peak set in the most analogous celltype, Forebrain PCs (Fig 
S4D). Finally, we observed that ADT-peak correlations for bona fide SOX2 peaks were 
substantially higher than RNA-peak correlations, reflecting both the higher quality and tighter 
biological associations with chromatin accessibility for protein measurements (Fig 4C and S4E).  

 
Linking our candidate peaks to genes, we identified 1994 candidate targets (1287 

activating, 707 repressive) for SOX2, and 3200 candidate targets (1772 activating, 1428 
repressive) for OTX2 (Fig 4D,E; Table S2). Interestingly, we observed numerous cases where 
individual genes were regulated by multiple CREs, which were associated with different TFs. This 
included cases where putatively activating and repressive peaks were adjacently located within 
the same locus. We extended our analyses to consider additional TFs (TBR2, NFIB and GLI3; 
Fig S5A-F), and quantified the overlap between activated and repressed gene lists for different 
factors. This revealed synergistic relationships between some pairs of TFs, including SOX2 and 
GLI3, as well as antagonistic relationships between others (OTX2 and SOX2)(Fig 4F and S4F-
H). 
 

We found that Gene Ontology (GO) enrichments for predicted target genes were 
consistent with each TF’s known functional properties, including an enrichment for ‘axon 
guidance’ amongst targets of TBR2 (which is a positive regulator of late-stage neuronal 
differentiation 43), and an enrichment among SOX2 targets (radial glial cell regulator 44) for ‘glial 
cell differentiation’ genes (Fig S6A-J). For multiple TFs, we also observed an enrichment for 
genes associated with Wnt signaling, which is essential for brain patterning along the anterior-
posterior axis. The pathway is known to increase activity in the posterior portion of the neural tube 
45,46, supporting our observation of increased Wnt-related gene expression and increased 
chromVAR activities of WNT-responsive TFs in diencephalic cells compared to forebrain (Fig 
S6K,L). Lastly, we observed an enrichment for genes associated with ‘regulation of MAP kinase 
activity’ in OTX2 targets, which was supported not only by previous observations from mouse 
embryos where conditional deletion of OTX2 leads to decreases in phospho-MAPK/ERK signaling 
47, but also by our Phospho-seq data which revealed a marked increase in phosphorylation of 
members of the MAPK/ERK cascade in OTX2+ PCs over OTX2- PCs (Fig 5A-D). We conclude 
that our integrated Phospho-seq dataset can effectively identify relationships across modalities 
and reconstruct gene regulatory relationships. 

  
Reconstructing signaling networks with Phospho-seq 
 

While our initial analyses focused on TFs, our goal in developing Phospho-seq was to 
better characterize differences in signaling pathway activation across cell states, and to connect 
these changes to gene regulatory networks. For example, we found that pRPS6 was 
heterogeneously expressed across cell types. However, pRPS6 does not directly bind DNA, and 
instead works in concert with TFs to regulate gene expression through translation 48. Moreover, 
while pRPS6 is often utilized as an indicator for mTOR pathway activity, RPS6 can be 
phosphorylated by multiple kinases from different pathways - the ERK pathway via RPS6KA1 or 
the mTOR pathway via RPS6KB1 49.  
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We found that our Phospho-seq data could help us better understand both upstream and 

downstream determinants of RPS6 phosphorylation. We found that the chromatin accessibility at 
the RPS6KA1 gene correlated with pRPS6 levels, as well as contained an OTX2 binding motif, 
while accessibility at RPS6KB1 was not correlated with pRPS6 levels (Fig 5E,F). While the kinase 
activity of these proteins are determined by upstream phosphorylation, the variability of pRPS6 
levels appears to be in part driven by variation at the RPS6KA1 locus, indicating a more prominent 
role for ERK signaling over mTOR signaling in driving variable phosphorylation of pRPS6 in the 
diencephalic lineage. 

 
When applying our ADT/motif rank correlation analysis, we identified a clear association 

between pRPS6 levels with multiple TEA/ATTS domain (TEAD) motifs (Fig 5G). TEAD 
transcription factors are the effectors of YAP-TAZ/Hippo signaling pathway, which is known to 
work in concert with MAPK/ERK signaling to regulate cell size 50, in cancer cells. Our findings link 
these pathways in neurodevelopment as well, and enabled us to identify 481 putative TEAD-
regulated CREs (Fig 5H and Table S2). GO analysis of activating gene links revealed a strong 
enrichment for genes associated with cell division, growth, and morphogenesis, as would be 
expected for targets of both pathways (Fig 5I). Similarly, we found that pERK and pMAPK ADT 
levels were associated with the accessibility of NR2F1 and NR2F2 motifs (Fig 5J), representing 
an important neurodevelopmental regulator whose RNA expression was also highly elevated in 
cells with higher activation of MAPK/ERK signaling 51,52 (Fig S7A). These results again extend 
previously identified links between signaling pathways and TFs, originally identified in cancer 
cells, to cell state specification in neurodevelopment 53. 

 
Finally, Phospho-seq can be used to measure phosphorylation among nuclear proteins, 

including transcription factors. Increased phosphorylation of the TF STAT3, which enhances its 
DNA-binding activity, is a characteristic feature of astrogliogenesis 54. In our dataset, we 
confirmed a high rank correlation of pSTAT3 with STAT3 motif accessibility, performing better 
than just STAT3 Protein or RNA alone (Fig S7B-D). We also saw an increase in pSTAT3 levels 
and STAT3 motif accessibility amongst glial cells in our dataset compared to progenitors or non-
glial cells (Fig S7E,F), confirming previous biological observations 55. We then found 582 peak-
gene links of CREs that harbored a STAT3 motif and whose proximal gene expression correlated 
with pSTAT3 levels. The expression of this gene set was specifically enriched in glial cells (Fig 
S7G), and included canonical astrocyte markers such as AQP4 (Table S2). We conclude that by 
exploring relationships across multiple molecular modalities, Phospho-seq can highlight the role 
of cell signaling pathways in neurodevelopmental fate specification. 

 
  

Discussion 
       

 Here we present Phospho-seq, a scalable approach to detect intracellular and intranuclear 
proteins, including phosphospecific states, alongside additional molecular modalities. We 
confirmed the sensitivity and specificity of our approach in cell lines, and subsequently applied 
Phospho-seq to profile three-month-old brain organoids. We added transcriptomic information to 
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these data using ‘bridge integration’, allowing us to maximize the data quality obtained from each 
modality. With this integrated dataset we linked protein expression levels to the accessibility of 
cis-regulatory elements and the expression of proximal genes. We demonstrate how these 
connections can reconstruct gene regulatory relationships and reveal the causes and 
consequences of heterogeneous signaling during neurodevelopment. 
 

We demonstrate that Phospho-seq is compatible with custom panels of user-conjugated 
antibodies, which can be easily and cost-effectively generated. While oligonucleotide-conjugated 
panels against cell surface proteins are readily available in both individual and pooled formats, 
these reagents are not widely available for intracellular targets. Moreover, Phospho-seq enables 
the user to perform multiplexed evaluation of the sensitivity and specificity for large panels of 
phospho-specific antibodies, by identifying correlations between ADT levels and 
chromatin/transcription states. We therefore expect that sequencing-based intracellular protein 
technologies will enable the identification and optimization of large intracellular panels, and that 
combining information across studies and biological systems will increase the generalizability of 
these results. 

  
While pioneering technologies enable trimodal measurements of RNA, ATAC and surface 

protein or intranuclear abundance 16,18,20, in this study, we utilized ‘bridge integration’ 22 to 
harmonize molecular modalities collected in separate scRNA-seq and Phospho-seq datasets. 
Although this approach requires running additional experiments, we and others have found that 
simultaneous profiling of ATAC and RNA in cells or nuclei reduces the data quality associated 
with each modality 38. Improved fixation-compatible scATAC+scRNA methods may be helpful for 
addressing this issue in the future, but we note that a bridge-based experimental design may 
represent a flexible alternative for multimodal analysis where only a subset of samples need to 
be profiled with multiomic technologies. Importantly, we have previously shown that even small 
(<5,000 cell) 10x Multiome datasets can serve as effective bridges for large unimodal datasets, 
as long as they are biologically representative 22. Moreover, users of Phospho-seq may benefit 
from increasingly available reference atlases of either scRNA-seq or Multiome data 56,57, which 
would reduce the need for additional experimentation.   

 
We anticipate that future studies will extend Phospho-seq to capture additional modalities 

related to chromatin state, and may shed additional light towards our understanding of how 
transcription factors regulate cellular chromatin. For example, combining Phospho-seq with 
scCUT&Tag 58 or NTT-seq 59 would identify TFs whose abundance correlated not only with 
chromatin accessibility, but with the presence of either activating or repressive chromatin marks. 
Further extensions that enable guide RNA capture (i.e. Perturb-ATAC 60, Spear-ATAC 61) would 
enable multiplexed genetic screens to utilize Phospho-seq to perform massively parallel 
identification and characterization of signaling regulators. Finally, applying Phospho-seq in 
concert with spatially-resolved profiling technologies 62 may shed light on both intercellular and 
intracellular signaling networks. We hope that the broad applicability of Phospho-seq will facilitate 
its adoption in diverse biological contexts, including development, immunology, neuroscience, 
and cancer, to discover how cell signaling determines cellular behavior and fate. 
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Data availability: 

Seurat and Signac are freely available as open-source software packages at: 

https://github.com/satijalab/seurat 

https://github.com/stuart-lab/signac 

Phospho-seq datasets generated for this manuscript are available at: 
https://zenodo.org/record/7754315  
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Figure 1 

 
  Figure 1: Phospho-seq procedure and pilot experiment. a) Schematic of Phospho-seq workflow. b) Schematic of 

antibody conjugation procedure. c) Protein gel results of two antibody purification methods using the Abcam BSA 
Removal Kit (left panel) and Promega Magne Protein G beads (right panel). d) Protein gel of mTz-PEG4-NHS labeled 
antibodies incubated with different quantities of TCO-PEG4-NHS labeled ssDNA tags. e) Flow cytometry plots of K562 
and iPS cells stained with unconjugated and conjugated SOX2 antibodies (left panel) and unconjugated and conjugated 
+ single-stranded DNA binding protein SOX2 antibodies (right panel) with unstained controls. f) UMAP representation 
from scATAC-Seq of K562 and iPS cells colored by demultiplexed HTOs assigned to each cell. g) UMAP representation 
of K562 and iPS cells colored by normalized ADT values for OCT4. h) UMAP representation of K562 and iPS cells 
colored by normalized ADT values for GATA1. i) Coverage plot of chromatin accessibility of K562 and iPS cells at the 
POU5F1 (OCT4) genomic locus. j) Violin plot of chromVAR scores for the OCT4 TF binding motif (MA1115.1) in K562 
and iPS cells. k) Coverage plot of chromatin accessibility of K562 and iPS cells at the GATA1 genomic locus. l) Violin 
plot of chromVAR scores for the GATA1 TF binding motif (MA0140.2) in K562 and iPS cells m) Schematic of 
PI3K/AKT/mTORC1 pathway activation and repression paradigm used in this experiment. n) Scatter plot of 
pseudobulked chromatin accessibility data in 5 kb windows across the genome comparing inhibited K562 cells with 
stimulated K562 cells. Red line indicates perfect correlation between the two conditions. o) Violin plot of normalized 
pRPS6 values in stimulated (Stim) and inhibited (Inhib) K562 cells. p) Violin plot of normalized RPS6 values in 
stimulated (Stim) and inhibited (Inhib) K562 cells.  
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Figure 2 

 
Figure 2: Phospho-seq on brain organoids. a) Schematic of antibody panel used in brain organoid Phospho-seq 
experiment and the cellular compartment of the target protein. b) Schematic of brain organoid differentiation. c) UMAP 
representation of cells and cell type assignments based on the ATAC-seq modality in Phospho-seq. d) Coverage and 
violin plots of the gene promoters and protein levels respectively of four nuclear proteins included in the Phospho-seq 
panel (SOX2,GLI3,OTX2 and TBR2), color and order are same as in (c). e) Coverage and violin plots of the gene 
promoters and protein levels respectively of two cytoplasmic proteins included in the Phospho-seq panel (Vimentin and 
S100B), color and order are same as in (c). f) UMAP representation of cells colored by normalized ADT values for 
OTX2 (left panel), UMAP representation of cells colored by chromVAR scores for OTX2 motif accessibility. g) Rank-
correlation plots for transcription factor motifs vs. SOX2 (left panel) and OTX2 (right panel) with the TF motif of interest 
indicated in red.  
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Figure 3 

 
Figure 3: Bridge integration. a) Schematic of bridge integration. b) UMAP representation of cells based on ATAC-
seq modality with cell type assignments from bridge integration. c) Alluvial plot demonstrating cell label transfer when 
using bridge integration. d) Diffusion map of cells differentiating from Forebrain PCs to Neurons colored by cell type 
(top panel) and pseudotime as determined by monocle (bottom panel). Dashed lines indicate pseudotime cut-offs 
determined by SOX2 expression and activity. e) Scatter plot showing scaled values of SOX2 RNA, protein and motif 
chromVAR score across pseudotime as determined in (d). Dashed lines indicate the same SOX2-based pseudotime 
cut-offs as in (d). f) Rank-correlation plots of the correlation of transcription factor motif accessibility vs. SOX2 Protein 
(top panel) and SOX2 RNA (bottom panel) for each of the pseudotime cut-off group. g) Heatmap of a subset of genes 
not regulated by SOX2 and regulated by SOX2 across pseudotime bins. 
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Figure 4 

 
Figure 4: Transcription factor-specific cis-regulatory element discovery. a) Schematic of approach to use 
metacelling to discover cis-regulatory elements associated with individual proteins. b) Tn5 cut-site footprinting between 
cells with high OTX2 expression and low OTX2 expression in peaks that are highly correlated with OTX2 (top panel) 
and uncorrelated with OTX2 (bottom panel). c) Density of the correlations of top 1000 SOX2 correlated peaks when 
using SOX2 RNA from the multiome vs. SOX2 ADT. d) Examples of inferred transcription activating peaks associated 
with indicated proximal gene expression for SOX2 (left panel) and OTX2 (right panel). Coverage plots and violin plots 
are ordered by quantile ADT expression for each protein. Red lines indicated the location of a binding motif for each 
respective protein. e) Examples of inferred transcription repressing peaks associated with indicated proximal gene 
expression for SOX2 (left panel) and OTX2 (right panel). Coverage plots and violin plots are ordered by quantile ADT 
expression for each protein. f) Jaccard similarity matrix of inferred activating and repressing peaks from each of the 
TFs highlighted   
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Figure 5 

 
Figure 5: Differential signaling pathway activity across development. a) Schematic of SOX2 and OTX2 regulation 
of MAPK/ERK signaling. b) Diffusion MAP plot of diencephalic and telencephalic differentiation trajectories. Cell type 
colors correspond to legend in (c). c) Heatmap of ADT expression of proteins and phospho-proteins associated with 
MAPK/ERK and mTOR signaling. d) Heatmap of chromVAR scores for TF motifs enriched in diencephalic 
differentiation. e) Coverage plot of RPS6KA1 split into quantiles of pRPS6 levels across telencephalic and diencephalic 
differentiation trajectories with OTX2 binding motifs indicated. f) Coverage plot of RPS6KB1 split into quantiles of 
pRPS6 levels across telencephalic and diencephalic differentiation trajectories. g) Rank-correlation plot showing 
correlation between pRPS6 levels and motif accessibility across the whole Phospho-seq dataset. The top hits are 
indicated in red. h) Coverage and violin plots of GAS7 split by quantiles of pRPS6 levels across the whole dataset with 
TEAD1 motifs indicated by red lines. i) Bar plot of the top 5 most significant gene ontology categories associated with 
the top TEAD1 activated peak-gene links that are associated with pRPS6. j) Rank-correlation plot showing correlation 
between pMAPK levels and motif accessibility across the whole Phospho-seq dataset.  
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Figure S1 

 
a) DNA electrophoresis gel of antibody pool at different indicated stages of clean-up showing the degree of remaining 
free oligo after filtration steps. b) Violin plot of HTO expression for each HTO in K562 and iPS cells. c) Violin plot of 
HTO expression for each HTO in K562 cells classified from stimulated or inhibited conditions. d) UMAP representation 
of K562 and iPS cells colored by normalized ADT values for SOX2. e) Coverage plot of chromatin accessibility of K562 
and iPS cells at the SOX2 genomic locus. f) Violin plot of chromVAR scores for the SOX2 binding motif (MA0143.4) in 
K562 and iPS cells. g) Violin plots of normalized ADT values for STAT3 (left panel) pSTAT3 (middle panel) and STAT3 
motif chromVAR scores (right panel) for K562 and iPS cells. h) UMAP representation of iPS cells colored by iPSC 
donor based on scATAC-sequencing data. i) Violin plot of normalized ADT values of pRPS6 split by iPSC donor identity.  
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Figure S2 

 
a) UMAP representation of cells colored by iPSC donor based on scATAC-Seq modality in Phospho-seq. b) UMAP 
representation of cells colored by unsupervised clustering based on scATAC-Seq modality in Phospho-seq. c) Dotplot 
showing the gene activity scores of marker genes and the percentage of cells they are expressed in from each assigned 
cell type identity in the Phospho-seq dataset. d) Heatmap showing scaled ADT expression for all differentially 
expressed ADTs organized by assigned cell type. e) UMAP representation of cells colored by normalized ADT values 
for SOX2 (upper left), chromVAR scores for SOX2 motif accessibility (upper right), normalized ADT values for TBR2 
(lower left), chromVAR scores for TBR2 motif accessibility (lower right). 
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Figure S3 

 
a) UMAP representation of cells colored by unsupervised cluster assignment from scRNA-Seq on whole unfixed cells. 
b) Dotplot showing the gene expression of marker genes and the percentage of cells they are expressed in from each 
cluster identity in whole, unfixed cells. c) UMAP representation of cells colored by cell type assignment from scRNA-
Seq on whole unfixed cells. d) Coverage plots for SULF1 (left) and SLC1A3 (right) with transferred cell labels. e) Violin 
Plot of prediction scores per assigned cell type from bridge integration of whole cell RNA dataset with Phospho-seq 
dataset. f) Rank-correlation plots of imputed RNA vs TF-motif accessibility for each of the indicated genes. g) Rank-
correlation plots of protein vs imputed RNA for each of the indicated proteins. h) Bar plot of the five most significant 
gene ontology categories associated with the top 500 genes decreasing from early to mid pseudotime bins across 
forebrain neuronal development. i) Bar plot of the five most significant gene ontology categories associated with the 
top 500 genes decreasing from mid to late pseudotime bins across forebrain neuronal development.   
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Figure S4 

 
a) Heatmaps of metacelled data showing normalized marker ADT values (top panel), peaks correlated with SOX2 and 
OTX2 ADT expression (middle panel) and differentially accessible peaks for Forebrain and Choroid PCs determined 
from the non-metacelled data. b) Tn5 cut-site footprinting between cells with high SOX2  expression and low SOX2 
expression in peaks that are highly correlated with SOX2 (top panel) and uncorrelated with SOX2 (bottom panel). c) 
Tn5 cut-site footprinting between cells with high TBR2  expression and low TBR2 expression in peaks that are highly 
correlated with TBR2 (top panel) and uncorrelated with TBR2 (bottom panel). d) Coverage plots of Forebrain PCs 
compared to peaks from a publically SOX2 ChIP-seq dataset from human neural precursors and human hESCs. e) 
Density of the correlations of top 1000 SOX2 correlated peaks when using SOX2 imputed RNA vs. SOX2 ADT. f) 
Combined plot of accessibility in peaks proximal to the OTX2 locus and associated gene expression. Plots are 
organized by quantile ADT expression of SOX2 throughout the whole dataset. Red lines on coverage plots are 
indicative of SOX2 binding motifs. g) Diffusion map of cells differentiating from Uncommitted PCs to choroid PCs 
colored by cell type (top panel) and pseudotime as determined by monocle (bottom panel). h) Scatter plot showing 
scaled values of SOX2 and OTX2 Protein across pseudotime as determined in (g).  
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Figure S5 

 
a) Example of an inferred transcription activating peak associated with GLI3. Coverage plots and violin plots are ordered 
by quantile ADT expression for GLI3. Red lines indicate the location of a GLI3 binding motif. b) Same as in (a) but for 
NFIB. c) same as in (a) but for TBR2. d) Example of an inferred transcription repression peak associated with GLI3. 
Coverage plots and violin plots are ordered by quantile ADT expression for GLI3. Red lines indicated the location of a 
GLI3 binding motif. e) Same as in (d) but for NFIB. f) same as in (d) but for TBR2. 
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Figure S6 
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a) Bar plot of the top 5 most significant gene ontology categories associated with the genes in the top 500 peak-gene links that are SOX2 activated or repressed (b). 
c) Bar plot of the top 5 most significant gene ontology categories associated with the genes in the top 500 peak-gene links that are OTX2 activated or repressed (d). 
e) Bar plot of the top 5 most significant gene ontology categories associated with the genes in the top 500 peak-gene links that are GLI3 activated or repressed (f). 
g) Bar plot of the top 5 most significant gene ontology categories associated with the genes in the top 500 peak-gene links that are NFIB activated or repressed (h). 
i) Bar plot of the top 5 most significant gene ontology categories associated with the genes in the top 500 peak-gene links that are TBR2 activated or repressed (j). 
k) Schematic of SOX2,OTX2 and TBR2 regulation of WNT signaling. l) Heatmap of WNT-signaling related gene expression (top panel), SOX2,OTX2 and TBR2 
protein expression (middle panel) and chromVAR scores for WNT-signaling related transcription factors
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Figure S7 

 
a) Rank-correlation plot of pMAPK ADT signal vs. RNA expression with NR2F1 and NR2F2 highlighted b)  Rank-correlation plot of 
pSTAT3 ADT signal vs. TF motif accessibility with the STAT1 and STAT3 motifs highlighted. c) Same as in (a) but STAT3 ADT vs. TF 
motif accessibility. d) Same as in (a) but STAT3 RNA vs. TF motif accessibility. e) Violin plot of normalized pSTAT3 ADT levels in a 
subset of progenitor and glial cells. f) Violin Plot of STAT3 motif chromVAR scores in a subset of progenitor and glial cells. g) Violin plot 
of STAT3 activated gene module scores in a subset of progenitor and glial cells. 
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