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Abstract

Hundreds of immune cell types work in coordination to maintain
tissue homeostasis. Upon infection, dramatic changes occur with
the localization, migration, and proliferation of the immune cells to
first alert the body of the danger, confine it to limit spreading, and
finally extinguish the threat and bring the tissue back to homeo-
stasis. Since current technologies can follow the dynamics of only a
limited number of cell types, we have yet to grasp the full complex-
ity of global in vivo cell dynamics in normal developmental pro-
cesses and disease. Here, we devise a computational method,
digital cell quantification (DCQ), which combines genome-wide
gene expression data with an immune cell compendium to infer
in vivo changes in the quantities of 213 immune cell subpopulations.
DCQ was applied to study global immune cell dynamics in mice
lungs at ten time points during 7 days of flu infection. We find
dramatic changes in quantities of 70 immune cell types, including
various innate, adaptive, and progenitor immune cells. We focus
on the previously unreported dynamics of four immune dendritic
cell subtypes and suggest a specific role for CD103+ CD11b� DCs in
early stages of disease and CD8+ pDC in late stages of flu infection.
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Introduction

An effective immune response requires the coordination and bal-

ance of hundreds of specialized immune cell subsets in the

milieu of specific tissue content (Damjanovic et al, 2012). The

holistic immune response is primarily determined by the dynamic

physiological changes in each of the cell subsets, including prolif-

eration, migration, differentiation, and transitions in cell activity.

While it is clear that such physiological changes are essential for

establishing appropriate immunological outcome, how these

dynamic processes are orchestrated in vivo and what are the

dynamics of each cell type during infection are still not fully

understood.

Multiple studies have demonstrated the power of monitoring

changes in the quantities of various immune cells to reveal their

physiological changes and distinct functionality in health and dis-

ease (Newell et al, 2012; Brandes et al, 2013). A number of meth-

ods, such as fluorescence-activated cell sorting (FACS; Ibrahim &

van den Engh, 2007), cytometry by time-of-flight (CyTOF; e.g.

Bendall et al, 2011), and confocal/two-photon imaging (e.g., Stoll et al,

2002) have been developed and perfected along the years to address

this important challenge. These are potent tools for immunology

research and for monitoring changes in immune cell quantities, but

are limited to a small number of cell subsets (Ho et al, 2011; Moltedo

et al, 2011; Newell et al, 2012; Tate et al, 2012; Brandes et al, 2013)

and require tissue destruction, thereby affecting cellular integrity

and accuracy. Recent computational algorithms offer a parallel and

powerful approach to infer the changes in cell quantities from gene

expression data of a complex tissue. Most methods model each of

the cell types independently (Nakaya et al, 2011; Josset et al, 2012;

Parnell et al, 2012), but they fail when cell type cannot be easily dis-

tinguished—such as in the case of many related immune cell types.

Complementary deconvolution approaches overcome this problem

using a detailed model to resolve all cell types simultaneously (Lu

et al, 2003; Wang et al, 2006; Abbas et al, 2009). However, such

models contain many parameters (one for each cell type) and are

therefore not scalable to a large number of cell types. Hence, current

technologies are unsuitable for a holistic view of the dynamical
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changes occurring in hundreds of immune cells during normal phys-

iology and disease.

Here, we present a novel algorithm called digital cell quantifier

(DCQ), to infer global dynamic changes in immune cell quantities

within a complex tissue (Fig 1). DCQ takes as input genome-wide

transcription profiles of organs that were measured in two or more

conditions (e.g., time points, perturbations). DCQ infers changes in

cell quantities between the two conditions based on a cell surface

markers motivated model. The outputs are interpretable hypotheses

about changes in quantities of specific immune cell types between

the two conditions. We employ three novel strategies to enable an

accurate analysis for a large number of cell types. First, we modified

the deconvolution approach into a regularized regression model to

reduce the number of model parameters. Second, we based our

analysis on a gold standard set of cell surface marker genes, used

for over a decade in separating specific immune cells using FACS

analysis. Finally, we learn an ensemble of models and use them to

build a unified, robust solution.

We applied DCQ to follow the in vivo dynamics of 213 candidate

immune cell types upon flu infection. Given detailed time series of

RNA-Seq profiles from the lung tissue of influenza-infected mice,

our analysis reveals significant changes in 70 immune cells, from

progenitors (e.g., GMP, CMP, MEP) to various effector cells of both

the innate and adaptive immune system. DCQ predicts known

changes in cell type quantities with high accuracy, outperforming

extant methods. Importantly, DCQ discerns closely related immune

subtypes that have distinct changes in cell quantities, such as the

differential dynamics of NKTs from different origins in the body. We

validate our predictions of previously unreported changes in the

quantities of four dendritic cell (DC) subtypes during influenza

infection. We show that CD8+ plasmacytoid DCs (pDCs) are

recruited during the later phases of infection compared to CD103+

CD11b� classical DCs (cDCs), suggesting a function for pDC as a

cavalry to maintain long-lasting defense against influenza infection.

Our method opens the way to routine mapping of high-resolution

temporal changes in each of hundreds of immune cell types within a

tissue. We provide DCQ as a web-based software tool (http://

www.DCQ.tau.ac.il), offering testable hypotheses about the dynam-

ics and function of specific immune cells in normal physiological

responses and disease.

Results

DCQ: an algorithm to infer global dynamics of immune cells from
a complex tissue

To systematically decipher the in vivo cellular dynamics of the entire

immune system during influenza infection, we devised a general

and holistic computational approach to study the changes in quanti-

ties of immune cell subpopulations during the course of physiologi-

cal response or disease (Fig 1). First, we extract the RNA from a

complex tissue during the course of disease or physiological

response (here, lung tissue during influenza infection) to “freeze”

the tissue state and measure genome-wide gene expression profiles

from each time point. We then load the genome-wide gene expres-

sion profiles into a novel algorithm we developed, called digital cell

quantifier (DCQ), to computationally infer the global dynamics of

immune cell subsets during the course of disease (Methods; Fig 1).

Finally, with a holistic view of immune cells dynamics, we use DCQ

predictions to study critical immune cell subtypes that change in

quantity during the course of the disease and dissect their activity

during disease pathogenesis.

Since current deconvolution algorithms are not optimized to fol-

low accurately the dynamics of dozens of immune cell types (Lu

et al, 2003; Wang et al, 2006; Abbas et al, 2009), we developed a

global digital cell quantifier (DCQ). DCQ takes as input (1) differen-

tial expression data—the observed change in expression of each

gene i among two samples of a whole tissue (denoted mi); and (2)

an immune cell compendium—a collection of the prior knowledge

about the mRNA concentration of each gene i in a cell type

j (denoted bij), where many of the expressed genes are shared

among different cell types. As an output, DCQ provides (predicted)

relative cell quantities of cell types, namely the change in the

amount of each cell type j before and after infection (denoted cj).

Current deconvolution approaches (Lu et al, 2003; Wang et al,

2006; Abbas et al, 2009) model the change in the amount of a gene

mi as the sum of relative quantities of many different cell types,

each of which contributes a corresponding change in the total

expression of the gene: mi ¼
P

j¼1...p cj � bij, where all genes are

affected by the same changes in cell quantities. The inferred param-

eters are the predicted relative cell quantities for each of the cell

types (Supplementary Fig S1). A major weakness in such detailed

deconvolution approaches is that they are limited to analysis of a

small number of cell types, mainly because the number of cell types

scales with the amount of parameters, which commonly leads to

overfitting and strong biases due to the set of genes on which the

analysis is applied.

To tackle these problems, DCQ combines three novel strategies

that allow scaling up to hundreds of cell types that are needed for

global view of immune dynamics. First, we modified the above de-

convolution equation into a regularized regression called “elastic

net” (Zou & Hastie, 2005), which combines both l1 and l2 penalties

to penalize the model for a large number of parameters. This lowers

the dimensionality of the search space, making DCQ more robust

and scalable for a large number of cell types. Using simulated data

demonstrates that elastic net regularization provides more robust

results compared to alternative approaches (Supplementary Fig S2;

Methods).

Second, we apply the approach to a pre-defined set of immune

cell surface markers spanning all cell types under study. The gene

set is comprised of the gold standard cell surface markers, used in

immunology research to specifically separate (by FACS) all immune

cells that are included in the DCQ immune cell compendium (Sup-

plementary Tables S1 and S2; Supplementary Fig S1 and Materials

and Methods). Our semi-supervised approach builds on extensive

immunological knowledge and differs from previous approaches

(Wang et al, 2006; Abbas et al, 2009), which selected genes that

best discriminate between cell types regardless of their biological

relevance. For each of these markers, we validated that its pattern

of gene expression across cell types resembles its established

intensity in FACS analysis on the cell surface of the various immune

cell types (qualitative protein abundance is from Benoist et al, 2012;

Kindt et al, 2007; Murphy, 2012; Supplementary Fig S3). Correspon-

dence between gene expression and cell surface protein across cell

types is calculated by a t-test score (Supplementary Table S2).
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Finally, we devised an approach for evaluating the robustness of

DCQ predictions. Rather than learning a single DCQ model, we infer

an ensemble of models, each of which is based on a sample of 50%

of the immune cell types. This allows us to calculate the significance

(and standard deviation) of predicted relative cell quantities,

referred to as a robustness score (Methods).

DCQ performance in an in vitro-defined cell mixture

Before applying DCQ in complex in vivo settings, we first confirmed

its performance on a small number of cell types in a pre-defined

controlled setting. To that end, we generated an in vitro complex

cell mixture where the amount of each cell type is known. We iso-

lated B cells, CD4+ T cells, CD8+ T cells, NK cells, and CD11c+

DCs from mouse spleen. We mixed the isolated subsets of immune

cells in various concentrations (from 1% to 10%, altogether ten dif-

ferent “tissue” samples) with a fixed high percentage of non-

immune cells, generating pre-defined samples that closely resemble

the immune dynamics in a complex tissue (Methods). In addition,

we constructed an immune cell compendium for these samples by

sequencing the RNA of each of the five cell subsets in isolation. As

DCQ is designed for differential gene expression data, we further
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Figure 1. Overview of the digital cell quantifier (DCQ) algorithm.
Our DCQ method takes two gene expression datasets as input: First (top left), differential genome-wide expression data from a complex tissue (here, lung), where rows are
gene and columns are samples (here, time points during infection), high and low transcript level is color-coded in red and blue, respectively. Second (top right), a precompiled
compendium of prior information about the abundance of each cell surface marker in each immune cell type (rows—markers; columns—cell types). Immune cell types are
illustrated together with their hierarchical hematopoietic cell lineages. DCQ provides as output a matrix (bottom) of predicted relative cell quantities for each immune cell
type (row) in each sample (column). Increase or decrease in cell quantity is color-coded in purple and green, respectively. Scatter plots (bottom right) exemplify the inferred
amount of dendritic cells (y-axis) during the time course of infection (x-axis), where DC’s quantity is reduced during the initial few time points and then elevated during latter
time points. Standard deviations are calculated by DCQ based on an ensemble of alternative solutions (see Materials and Methods).
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created a reference sample of equal immune cell quantities and used

it to calculate differential gene expression for these samples. Using

these differential data, for each sample we compared (i) DCQ’s pre-

dicted relative cell quantities and (ii) the input relative cell quanti-

ties, that is, the known input cell quantities versus the reference

samples. We found high correlation between the known and pre-

dicted relative cell quantities (Pearson’s r = 0.90, Fig 2A, B and Sup-

plementary Table S3). In particular, high correlations are observed

in each of the cell types separately (r = 0.98, 0.66, 0.86, 0.92, and

0.72 for B cells, CD4+ T cells, CD8+ T cells, NK cells, and CD11c+

DCs, respectively), corroborating DCQ ability to accurately predict

dynamic changes in quantities of a small percentage of immune cell

types within a complex cell mixture.

To further explore the optimal coverage of sequencing data on

cell quantity output, we tested different depths of 30-end RNA-Seq

on our in vitro mix of several cell types (Methods). We observe that

the accuracy increases with additional sequencing data, and satu-

rated at a moderate depth of 2.5 million reads per sample (Fig 2C).

Global immune cell dynamics during influenza infection

We next examined in vivo gene expression dynamics of influenza

pathogenesis. To that end, C57BL/6 female mice were infected intra-

nasally with 4 × 103 PFU of influenza PR8 virus. We measured,

using RNA-Seq, the global gene expression dynamics in lung tissue

at ten time points during a 7-day time course of infection, two

infected individuals in each time point and four uninfected individu-

als as control (Supplementary Fig S4A; Methods). The gene expres-

sion is highly reproducible between two independent mice at the

same time point (average Pearson’s r = 0.89). Using quantitative

PCR (qPCR), we confirmed the temporal profiles for representative

genes (Supplementary Fig S4B; Methods). We also measured two

indicators of disease progression for all animals, virus concentration

in the lungs, and body weight loss (Supplementary Fig S5; Methods),

which were reproducible across individuals and show only little

variation between two independent mice at the same time points

(Supplementary Fig S5).
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Figure 2. Digital cell quantification (DCQ) reconstruction of an in vitro-defined complex cell mixture.

A Performance analysis on ten samples generated using an in vitro-defined complex cell mixture (see Materials and Methods). The two matrices indicate the
agreement among relative quantities that were inferred by DCQ (right) and the input relative cell quantities (left) for ten different experimental samples (rows), each
of which involves five immune cell subsets (columns). Increase or decrease in cell quantity is color-coded in purple and green, respectively.

B A summary of DCQ’s predicted relative cell quantities (y-axis) and input relative cell quantities (x-axis) across all ten samples from a. The plot indicates the high
correlation in each of the cell types (color-coded: black—B cells; brown—CD4+ T cells; green—CD8+ T cells; yellow—NK cells; cyan—CD11c+ DCs).

C The effect of RNA sequencing depth on DCQ performance, tested on the dataset from a. Accuracy of DCQ predictions (y-axis) are presented for various RNA
sequencing depths (x-axis). Accuracy is evaluated as correlation between predicted and input (“true”) relative cell quantities. Depicted are average of correlation and
standard deviation over ten samples of each sequencing depth. The evident saturation with increasing depths implies that a sequencing depth of 2.5 million reads or
higher is sufficient to provide high DCQ accuracy.
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In agreement with previous reports (Rowe et al, 2010; Parnell

et al, 2012; Pommerenke et al, 2012), we find that both our disease

progression symptoms and gene expression data successfully

capture the three main phases during influenza infection (Supple-

mentary Figs S4–S6): First, the incubation phase (up to 26 h

postinfection), characterized by an increase in virus particles in the

lung, no sign of diseases in any of the animals, and a drastic repres-

sion of respiration and protein translation (P < 10�8 and 10�9,

respectively; Supplementary Fig S6A). Second, the disease progres-

sion phase (26–122 h), manifesting the onset of physiological

phenotypes, high amount of virus particles, and a sustained increase

in innate and adaptive immune responses, anti-viral and cell

death genes (P < 10�9, 10�8, 10�9 and 10�15, respectively). Third,

the diseases outcome phase (122–148 h), characterized by either

elimination of viral load and decrease in disease symptoms or

continued reduction in body weight and death. The second and

third phases show a significant over-representation of immune cell

quantity and cell surface marker genes (P < 10�15 and 10�9; 32 h

postinfection, respectively; Supplementary Fig S6), suggesting

dynamical changes in quantities of certain immune cells.

We sought to use DCQ to identify changes in immune cell types

using the influenza-infected profiles. To that end, we compiled the

prior compendium, consisting of 213 innate and adaptive immune

cell types and their corresponding cell surface markers (Supplemen-

tary Tables S1 and S2; Materials and Methods). The compendium

consists of both na€ıve and effector immune cell subsets that were

isolated from 22 different tissues (e.g., spleen, liver, intestine) in

both resting and activated immune states. Using this compendium

and the influenza differential gene expression, we constructed a

comprehensive map of the dynamic changes in quantities of 213

immune cell types during the course of influenza infection (Fig 3;

Supplementary Table S4). Taking into account significant robustness

scores in two consecutive time points, we identify a total of 69

significantly changing cell types (see Materials and Methods), 39

increasing and 31 decreasing, one cell type is both increasing and

decreasing in different time points (Supplementary Table S5). In

comparison, no significantly changing cell types were found in a

permutation test (reshuffling the expression values of the cell

surface markers among time points; Methods).

DCQ correctly predicts many known changes in immune cell

quantities during infection. For example, DCQ infers a significant

increase in the quantity of stimulated macrophages (MFs), but not

resident MFs. Specifically, there is substantial increase of activated

MFs: MHCII-F4/80hi CD115+ and MHCII-F4/80intCD115+ MFs that

were monitored at 5 days poststimulation with thioglycollate

(denoted “MF.MHCII-F4/80hi Thio-5d” and “MF.MHCII-480int Thio-

5d,” respectively), and CD11c�/loSer MFs at 3 days poststimulation

with Salmonella (“MF.11cloSer, Salm-3d,” carrying CD45+ MHCII+

CD11clo CD11b+ CD103� markers; Supplementary Fig S7A). Either

no change or decrease is predicted for various subsets of steady-state

MFs, including MF.CD103�CD11b+, MF.CD115int and MF.Siglec-5+

(PI- CD45+ MHCII+ CD11chi CD103� CD11b+, B220� CD3� Ly�6C�

CD115int F4/80+ and CD11c+ MHCII� CD11b� CD103� SiglecF+,

respectively; Supplementary Fig S7A and Supplementary Table S1).

Monocytes, T cells, B cells, and NKTs provide additional exam-

ples for the ability of DCQ to identify previously known increase or

decrease in quantities of immune cell types: The amount of various

subsets of resident Ly�6c� monocytes is decreasing during the

incubation phase, but inflammatory Ly�6c+ monocytes show a

marked increase during the progression and outcome phase, in

agreement with previous literature (Gordon & Taylor, 2005)

(Supplementary Fig S7B). As previously reported (Pommerenke

et al, 2012), a drastic increase is inferred for the effectors and mem-

ory CD8+ T cells but not for na€ıve subsets of CD8+ T cells (Fig 3;

Supplementary Fig S7C). Many pre-B, pro-B, germinal center, and

na€ıve B cells remain stable or reduced during infection, whereas the

amount of effector B cells, such as plasma and follicular-stimulated

B cells, is increasing (denoted “B.Plasma_cells ST-7d” and “B.FO

ST-6 h” in Fig 3, respectively). Notably, not only DCQ distinguishes

cell types with distinct expression profiles, it also discerns between

cell types with similar expression profiles (Supplementary Fig S8).

This demonstrates that DCQ’s predictions fit well with current

knowledge of immune cell dynamics during infection.

Changes in cell quantity of NKT cells illustrate DCQ ability to

relate cell types to their tissue of origin or migration from one tissue

source to another. Overall, the immune cell compendium consists of

213 different immune cell types, 36 of them were isolated from more

than one tissue. Using this compendium, DCQ can predict not only

changes in quantities of a given cell type, but also specify whether

the changing cell subset is typical to a particular body tissue. For

example, the immune cell prior compendium consists of several dif-

ferent subpopulations of NKT cells that were isolated from spleen,

liver, or thymus. DCQ inferred an increase in lung quantities of the

spleen and liver NKT cells, but not the thymic NKT cells (Supple-

mentary Fig S7D). This prediction holds for all subsets of NKTs under

study, regardless of their levels of CD4, CD44, and NK1.1 markers,

in agreement with the known proliferation and immune functional-

ity of peripheral NKT cells (from liver and spleen), but not thymic

NKTs (Godfrey et al, 2010). Notably, we cannot rule out the possi-

bility that the distinct predicted NKT quantities in different tissues

are due to different ways by which the cell types were isolated in our

compendium. Yet, the apparent similarity of NKT expression profiles

across spleen, liver, and thymus supports DCQ’s ability to distin-

guish cell types from different origins (e.g., Supplementary Fig S8D).

As another example, resident Ly�6c� monocytes show early tran-

sient reduction, followed by an increase in inflammatory Ly�6c+

monocytes (Supplementary Fig S7B). This prediction is supported by

previous studies, indicating that resident monocytes migrate at early

time points to periphery lymph nodes (hence the observed reduction

in cell quantity), whereas the inflammatory monocytes are increas-

ing due to differentiation and migration of monocytes from the blood

compartment (Gordon & Taylor, 2005). The same results are pre-

dicted for monocytes that were derived in our compendium from

blood, bone marrow, and lymph nodes, indicating that these subpop-

ulations are closely related, and DCQ cannot split these cells apart

with the current resolution of its input data and cell markers.

The effector CD8+ T cells are a clear example of our approach to

reveal the temporal process of immune cell activation in response to

stimuli. Our prior compendium of immune cells consists of effector

CD8+ T-cell types following stimulations with Listeria at 12, 24, and

48 h, 6, 8, 10, and 15 days postinfection (Supplementary Fig S7C).

As expected, DCQ infers increase in the quantity of 12-, 24-, and

48-h effector CD8+ T cells and also an increase in 6 days postinfection,

but no change is inferred for 8-, 10-, or 15-day effector CD8+ T cells.

This result exemplifies DCQ’s capability to identify not only the

immune cell type, but also its particular timing of activation state.
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The reduction in the quantity of progenitor cells GMP, CMP,

MEP and double positive (DP) CD4+ CD8+ T cells is also notable

(Supplementary Fig S7E). Changes in the quantity of peripheral

progenitors upon immune activation were previously reported

(Massberg et al, 2007; Yeh et al, 2007; Johns et al, 2009), although

not in the context of influenza infection. Although double positive

(DP) undifferentiated T cells have been characterized in the periph-

eral blood and secondary lymphoid tissues (Zuckermann, 1999; Kenny

et al, 2000; Nascimbeni et al, 2004; Bismarck et al, 2012), the

decreased quantity of double positive (DP) undifferentiated T cells

is previously unreported. In particular, DCQ predict the reduction in

CD4+ CD8+ TCR�/lo CD69�, CD4+ CD8+ TCR�/lo FSChi and CD4+

CD8+ TCR�/lo FSClo (referred to as T.DP, T.DPBl and T.DPsm in

Supplementary Fig S7E, respectively). There is no clear explanation

for this observation, but these reduced quantities provide a potential

mechanism by which peripheral progenitors collect information in

the infected tissue before they differentiate or lead to the activation

of other specific cells.

Evaluation of DCQ accuracy using previously annotated cell types

Next we focus on how well our learnt model of changes in cell

quantities recapitulates established changes in cell quantities during

infection. To that end, we constructed a literature-based list of 59

cell types, which are part of the prior compendium and also were

previously reported as increasing in quantity during infection. This
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Figure 3. Digital cell quantification (DCQ) reconstruction of global immune cell dynamics during in vivo influenza infection.
The immune dynamics map: Global dynamics in cell quantities (green/decrease, purple/increase in relative cell quantities) following influenza infection, predicted by DCQ at
different time points (columns) for 213 different immune cell types (rows). Previously reported increase in cell types is marked in red (left, color bar). Each cell type heading is
followed by the code of the tissue from which the cell type was isolated in the compendium. The box at the bottom right contains details for these abbreviations. Dendritic
cells are shown at the top right panel and accompanied with four colored circles, indicating those subsets that were subject to FACS validations (see also Fig 5).
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list consists of various activated, effector and memory cell types and

termed here “known increasing cell types during infection” or in

short “known increasing” cell types (Fig 3; Supplementary Table S1).

The remaining cell types are either progenitors and na€ıve cells, cell

whose state is yet poorly characterized, and cells whose quantity

likely decreases during infection. Of 39 significantly increasing cell

types based on DCQ’s prediction, 24 (61%) are known increasing

cell types (hyper-geometric P < 10�6). Principle component analysis

of DCQ’s predictions further illustrates the distinct distribution of

known increasing cell types compared to the remaining cell types

(P < 10�9, Kolmogorov–Smirnov test; Fig 4A). To determine the

performance of DCQ, we used this classification of known increas-

ing versus remaining cell types as a gold standard, and evaluated

the tradeoff between the true- and false-positive rate across various

DCQ robustness cutoffs (Methods).

Using these criteria, we investigated the performance of five

alternative marker selection methods. These are referred to as “All,”

“Max,” “Max ratio,” “Random,” and our own “FACS-based”

approach (Methods) and consist of 276, 696, 366, 61, and 61 marker

genes, respectively. We find that using the elastic net algorithm, the

FACS-based markers outperform alternative strategies (Fig 4C). For

example, in a false-positive rate of 0.2, the FACS-based subset of

markers attains a true-positive rate of 0.64, whereas the true-posi-

tive rate of alternative subsets ranges between 0.29 and 0.51.

We next aimed to test various regression methods, including a

non-regularized linear regression and regularized regression with l1

penalty (lasso; Tibshirani, 1996) or a combination of l1 and l2 pen-

alties (elastic net; Zou & Hastie, 2005; Supplementary Text 1). Each

of the (regularized or non-regularized) regression methods is tested,

if possible, across the five marker selection methods. We find that

using any of the above five methods for marker selection, elastic net

outperforms lasso and non-regularized regression (Supplementary

Fig S9). For example, using FACS-based selection of markers and

given a false-positive rate of 0.15, DCQ and lasso provide a true-

positive rate of 0.57 and 0.3, respectively.

Finally, we compared DCQ to recent advanced cell quantification

methods, which use different combinations of computational predic-

tion and marker selection methods, including (i) a non-regularized

linear model with the “Max” group of 696 markers [as in Lu et al

(2003)], (ii) a non-regularized linear model with the “Max ratio”

group of 366 markers [as in Abbas et al (2009)], and (iii) an hyper-

geometric enrichment tests, using a list of 20 genes that are charac-

teristic of each cell type [as in Nakaya et al (2011)]. Compared to

these robust methods, the DCQ algorithm shows a better true- to

false-positive rate tradeoff (Fig 4B). For example, for a false-positive

rate of 0.3, DCQ attained a true-positive rate of 0.75, whereas true-

positive rate of alternative methods ranges between 0.33 and 0.42

(Fig 4B). Similar results were obtained when only a fraction of the

selected markers were used (Supplementary Fig S10).

Taken together, these results provide strong support for the accu-

racy of DCQ in predicting a global map of changes in immune cell

types during the course of infection.

Heterogeneity in DC dynamics highlights the role of DC subtypes
in influenza infection

One particular interesting prediction of DCQ is heterogeneity in

quantity changes in DCs [Fig 3, bottom right panel; Supplementary

Table S5; (Geissmann et al, 2010)]: Two subtypes of plasmacytoid

dendritic cells (pDCs) undergo robust early increase during infection

(CD8+ and CD8� pDCs); the quantity of one conventional/classical

DC (cDC) is slightly increased and then reduced (CD103+ CD11b�);
and one cDC subset (CD103� CD11b+) manifests a late increase in

cell quantity. To validate these predictions, mice were infected for

0, 24, 72, and 120 h (two mice per time point), and individual cells

from all four DCs populations (CD8a+ or CD8a� pDC and CD103�

CD11b+ or CD103+ CD11b� cDC) were FACS-sorted (Methods) to

measure their dynamics during the infection process. Consistently

with DCQ predictions, both pDC subtypes show a substantial

increase in cell quantities. For example, only 62 � 10 CD8a� pDCs

reside in lung prior to infection. This number increases to 348 � 8

cells at 24 h postinfection and further increases to 9513 � 5002 at

72 h postinfection and to 14,303 � 1251 at 120 h postinfection

(Materials and Methods, Fig 5A and Supplementary Table S6).

Furthermore, our analysis correctly quantified the complex changes

in CD103� CD11b+ whose amount also increases, but at a later

time points (Fig 5A). Unlike the pDCs, the quantity of CD103�

CD11b+ at 24 h is still similar to the quantity prior to infection

(448 � 178 cells and 338 � 70 cells before and at 24 h postinfec-

tion, respectively). At 72 and 120 h, we observe a substantial

increase in cell quantity (7563 � 2329 and 17,907 � 512 cells), in

agreement with our predictions.

To better understand the physiological role of these differential

dynamic changes in the DCs, we measured the genome-wide RNA

expression of all four DC subpopulations from the lung of influenza-

infected mice at four time points following infections (two mice per

time point). As expected, we observe a marked difference in the

genes that are expressed in each DC subtype compared to other cell

types and compared to the entire lung tissue (Fig 5B). Analyzing the

data closely, we observe a large difference in specific chemokines

expressed by the DC subtypes. For example, the two cDC subtypes

express high levels of CCL22 and CCL17 (Fig 5C, Supplementary Fig

S11), ligands of the chemokine receptor CCR4 and potent chemo-

attractants for B and T cells (Luster et al, 2005), suggesting that

each DC subtype interacts with a different immune niche and has a

different role in the response.

In agreement, there is a substantial difference in the anti-viral

response of the various DC subtypes (Fig 5D). CD103+ CD11b�

cDCs respond early (within the first 24 h of infection), but then

enter an exhaustion-like state, characterized by the reduction in the

intracellular anti-viral responses and cytokine production at 3 days

postinfection. CD8a+ pDCs, on the other hand, respond slower but

maintain a long-lasting anti-viral response, even 5 days after infec-

tion, possibly because they do not enter an exhaustion-like state or

constantly are replaced by new incoming pDC from other tissues.

Taken together, the combined action of pDC and cDC subsets main-

tain together a rapid, prolonged anti-viral response of DCs in lung.

Discussion

The main characteristics of the immune response and various

immune-related disease are increased vascular permeability, cellular

infiltration by chemotaxis, and other form of cell homing. The mobi-

lization of immune cells from one organ to another, in addition to

their differentiation and proliferation under specific cues, lies at the
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heart of the ability of the immune system to detect and mount a pre-

cise counter response to different pathological conditions (Murphy,

2012). Discovering the dynamics of the immune system is a difficult

problem, requiring reliable resolution and simultaneous quantifica-

tion of hundreds of immune cell types. Current studies, however,

are typically limited to the investigation of only a few cell types

simultaneously with limited characterization of the synchronization

among cell types (Brandes et al, 2013; Pang et al, 2013). Here, we

designed a digital cell quantifier that offers unique systematic quan-

tification of immune dynamics in a global manner. Notably, DCQ

allows simultaneous prediction of over 200 immune cell types and

can discriminate between closely related immune subtypes (e.g.

NKTs from different origins in the body) and different levels of

activity.

A key advantage of our method is its ability to generate detailed

testable hypotheses concerning the role of specific immune cells

under particular conditions. We offer experimental results support-

ing four of our computationally generated hypotheses, including

two cDCs and two pDCs subpopulations. Transcriptome analysis

suggests that different DC subsets acquire different immunological

roles during the influenza infection, such as (i) different immuno-

logical niches, via expression of specific chemokines by the cDC
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Figure 4. Digital cell quantification (DCQ) correctly predicts changes in most known increasing cell types during influenza infection.

A Principle component analysis (PCA) of DCQ’s predicted relative cell quantities. The PCA was applied on the profiles of predicted relative cell quantities for each cell
type, at ten time points during influenza infection. Shown is a scatter plot of each cell type for the first two principle components PC1 and PC2. Red, cell types that
were previously reported as increasing in quantity during infection; gray, the remaining cell types.

B, C Comparison of performance. False- (x-axis) and true-positive (y-axis) rates of DCQ predictions. Rates are calculated for comparing predicted increase in cell
quantities versus the known increasing cell types. In (B), we compare five alternative methods for selecting gene markers. In (C), we compare DCQ to several
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the superiority of DCQ, and in particular its FACS-based selection of markers, over extant methods.
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Figure 5. Heterogeneity in DC dynamics highlights the distinct role of DC subtypes in influenza infection.

A Validation of cell quantity dynamics of four dendritic cell subtypes. Dendritic cell quantities (y-axis) as predicted by digital cell quantification (DCQ) (blue diamonds)
and measured by FACS (red diamonds) for two mice at each time point (x-axis). The plot indicates the high correlation between DCQ predictions and FACS
validations.

B PCA analysis of the genome-wide transcriptional responses to influenza infection. The PCA was applied on RNA-Seq expression values that were profiled on isolated
DCs (normalized by the respective values before infection). Shown are three time points (1, 3, and 5 days) for each of the DC subsets (blue, CD8+ pDC; green, CD8�

pDC; red, CD103� CD11b+ cDCs; brown, CD103+ CD11b� cDCs; black, lung tissue).
C Expression of CCL17 (y-axis) at four time points during influenza infection (x-axis) for four DC subsets (color-coded as in B).
D Gene expression profiles of four DCs populations during influenza infection in lung. Left: Shown are the (log2 ratio) expression levels of selected genes (rows) at three

time points (columns) for four isolated subsets of DCs relative to control subsets before infection; Z-normalized per row. Previously reported inflammatory and anti-
viral genes in dendritic cells are marked in left (blue, Amit et al, 2009; Gat-Viks et al, 2013). Cluster C–I is highlighted. Right: average expression (y-axis) at each time
point (x-axis) of genes in clusters C-I, for the four isolated DC subsets (color-coded as in B).
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versus pDC (e.g., CCL17, CCL22); (ii) different temporal timing of

activation allowing to mount rapid yet long-lasting anti-viral

response rather than an untimely exestuation; and (3) differential

expression of cell subset-specific anti-viral proteins, via the activa-

tion of different pathways. Our other hypotheses of immune cell

dynamics during influenza infection have not yet been tested and

merit further investigation.

Our method opens the way to many different directions of future

research. One exciting possibility is that DCQ’s prediction of cell

dynamics, based on early gene expression in the blood or tissue of

patients, can be used for disease prognosis and individual classifica-

tion. For this to happen, it will be important to adjust the method

for human samples and construct a prior compendium of immune

cell types and surface markers in humans. Second, our method,

with some modifications, will be applicable for other cell types and

niches, such as different cancers and brain regions. Third, character-

izing coordinated changes in cell quantities of several immune cell

types might reflect a common underlying mechanism, thus provid-

ing important information of clinical relevance. For example, a few

such “co-increasing” cell types might migrate together due to the

same chemotaxis agent or proliferate in an orchestrated way in

response to a similar combination of cytokines. While our method

substantially outperforms extant methods for the case of many cell

types, it can potentially be even further improved with alternative

sets of markers that are specifically tailored for a given sample

(rather than using a common pre-defined set of markers for all sam-

ples). Notably, DCQ cannot discern different immunological mecha-

nisms (e.g., differentiation, migration); instead, its predicted relative

quantities provide promising hypotheses for further mechanistic

investigations.

Overall, our method provides a clear global view of the dynamics

of immune system in a complex tissue and suggests hypotheses con-

cerning the roles of these cells within organs in the body. It is our

belief that applying DCQ to dynamics of both normal and pathologi-

cal conditions may lead to important new insights toward under-

standing the complex roles of various immune cell types and

suggest novel targets for clinical intervention.

Materials and Methods

Ethics statement

All animal work has been conducted according to relevant national

and international guidelines.

Virus

Mouse-adapted PR8 virus, influenza A/Puerto Rico/8/34 (A/PR/8/

34, H1N1), was persistently grown in hen egg amnion, and influ-

enza effective titer was quantified.

Viral infection of mice

Female mice C57BL/6J (5 weeks of age) were anesthetized with

isoflurane and were inoculated intranasally with 50 ll of diluted

virus. The infected animals were observed for reduction in

weight and were sacrificed on 3, 7, 11, 26, 32, 49, 74, 98, 122, 148 h

postinfection, two animals at each time point, together with a group

of four uninfected mice. The lung organ was removed and trans-

ferred immediately into RNAlater solution (Invitrogen).

RNA isolation

For RNA isolation, each organ was cut into small pieces in the

presence of QIAzol and homogenized using SPEX CertiPrep

homogenizer, and total RNA was extracted using miRNeasy Mini

Kit (Qiagen). The RNA integrity number (RIN) was determined

using the TapeStation System (Agilent Technologies). Quantity

was determined by Qubit Fluorometric Quantitation (Life

Technologies).

Quantitative PCR

Total RNA was reverse-transcribed to cDNA using high capacity

cDNA reverse transcription kit (Applied Biosystems). qPCR was per-

formed with LightCycler480 SYBR Green I Master Mix (Roche) in

triplicate using either GAPDH or Actb genes for normalization.

Primers used for DNA amplification in the PCR assays are presented

in Supplementary Table S7.

Preparation of RNA sequencing libraries

For the preparation of RNA-Seq libraries, total RNA was fragmented

into average size of 300 nucleotides by chemical heat (95°C) treat-

ment for 4:30 min (NEBNext Magnesium RNA Fragmentation Mod-

ule). The 30 polyadenylated fragments were enriched by selection on

poly dT beads (Dynabeads Invitrogen). Strand-specific cDNA was

synthesized using a poly T-VN oligo (18 T) and Affinity Script RT

enzyme (Agilent). Double-strand DNA was obtained using Second

strand synthesis kit (NEB). DNA ends were repaired using T4 poly-

nucleotide kinase and T4 polymerase (NEB-Next). After the addition

of an adenine base residue to the 50 end using Klenow enzyme

(NEB-Next), a barcode Illumina compatible adaptor (IDT) was

ligated to each fragment. The washed DNA fragment was amplified

by PCR (12 cycles) using specific primers (IDT) to the ligated

adaptors. The quality of each library was analyzed by TapeStation

(Agilent).

Pre-processing of RNA-Seq data

All reads were aligned to the mouse reference genome (NCBI 37,

MM9) using the TopHat aligner (Trapnell et al, 2009). The raw

expression levels of the genes were calculated using Scripture

(Guttman et al, 2010), an ab-initio software which reconstruct

transcriptomes. Normalization was done using DESeq (Anders &

Huber, 2010) based on the negative binomial distribution and a

local regression model. For the complex lung tissue data, we

next applied a log2 transformation and normalized each entry by

the gene’s average (across the four steady-state values) and stan-

dard deviation during infection. No additional data transforma-

tion was applied to integrate this data with the compendium of

cell types. Various sequencing depths were generated by sam-

pling a fraction f of reads at random (f = 0.01–0.95, Fig 2C) and

then re-applying the above pre-processing pipeline on this sample

of reads.
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Enrichment analysis of biological functions and pathways

For pathways and functional analysis (Supplementary Fig S6A), we

collected cellular pathways from REACTOME (Croft et al, 2011) and

augmented it with immune-related categories from the IPA (Sys-

tems, Mountain View, CA, USA) database. Function and pathway

enrichments in a profile of a certain time point were calculated

using a Wilcoxon test P-value. To map the regulatory entities acting

during influenza infection (Supplementary Fig S6B-D), we used a

previously assembled network of 1550 regulators and 409,000

regulator-target gene connections (Yosef et al, 2013). The control of

a regulator at a given time point is determined by the enrichment of

its set of putative targets in the up- or down-regulated genes at the

relevant time point (a Wilcoxon test). All Wilcoxon P-values were

adjusted for multiple testing with an FDR correction (P < 0.001).

The DCQ algorithm

The DCQ method takes as input (i) an immune cell compendium,

consisting of transcriptional profiles of isolated immune cell subsets,

taken from various tissues, stimulations, and time points; (ii) a col-

lection of immune cell surface markers designed to discriminate

between the immune cell types included in the compendium; and

(iii) differential gene expression profiles (e.g., from RNA-Seq data)

of a test versus reference samples. DCQ predicts, for each cell type

and time point, a “relative cell quantity” measure, namely the

change in cell quantity between a sample at the relevant time point

and a sample at steady state. DCQ applies elastic net regularization

(Zou & Hastie, 2005), which relies on two model parameters (lamb-

da.min.ratio and a; Supplementary Text 1). In this work, we used

the glmnet R package (Friedman et al, 2010) with the parameters

a = 0.05, lambda.min.ratio = 0.2. The source code is provided in

Supplementary Text 2 and in http://www.DCQ.tau.ac.il.

To evaluate the robustness of the predicted relative cell quanti-

ties, we generated 100 modified versions of the prior compendium,

each of which includes a random collection of only 50% of the cell

types, and apply DCQ on them. This way, we collected an ensemble

of 100 relative quantity solutions, indicating how modification of

the prior compendium can affect the model. Standard deviations

were calculated across this ensemble of relative quantities. The sig-

nificance of a predicted change in quantity, called robustness score,

is assessed by evaluating whether the sample of relative quantities

is significantly different from zero (a P-value score). Here, signifi-

cantly changing cell types are those whose �log10 t-test P-value

score is higher than a certain robustness cutoff during at least two

consecutive time points (Supplementary Table S5). The application

of t-test rather than an a-parametric test such as Wilcoxon is not the-

oretically justified, but provides a better performance in practice.

The immune cell compendium

The immune cell compendium is collected from two complementary

datasets (Benoist et al, 2012; Kaji et al, 2012) and includes 14 stem

cells, 30 B cells, 89 T cells (51 ab T cells, 22 cd T cells, and 16 acti-

vated (effector and memory) T cells), 12 NK cells, 8 monocytes, 18

macrophages, 36 DCs, 6 granulocytes, and additional 10 stromal

cells, resulting in a total of 223 cells, 213 of them are immune cell

types (Supplementary Table S1). This study is focused on these 213

immune cell types, 45 of them were profiled under pathogen-like

stimulation (22 T cells, 4 NK cells, 6 macrophages, 4 DCs, 3 granulo-

cytes, and 6 B cells; Supplementary Table S1). The transcriptional

profiles were processed as follows: First, we applied RMA normali-

zation (Irizarry et al, 2003). Next, log2-transformed profiles of the

same cell type were averaged. Finally, for each given gene, all its

values were normalized by its median and standard deviation.

In silico simulation

To investigate DCQ on simulated data, we constructed pairs of refer-

ence and test samples, generated at random as follows: The cell

types were a-priori divided into 58 different groups according to the

known structure of the hematopoietic lineage tree (Jojic et al,

2013). Each reference sample consists of twenty groups of cell types

that were randomly selected out of the 58 groups of cell types. As a

first step, each group was assigned a starting fraction (0.05). The

test sample is then generated by modifying its respective reference

sample: increasing the fractions of ten groups of cell types while

decreasing fractions of ten other cell types. To simulate noise

effects, we added an error component that is sampled from a gauss-

ian distribution whose standard deviation is the average of the

standard deviation among the replicates of cell types in the

compendium. The gene expression of a simulated sample is calcu-

lated by averaging across the profiles of the selected cell types

(using the prior compendium with noise effect), weighting profiles

by their simulated fractions. In order to compare DCQ and lasso per-

formance with the non-regularized regression, we used a collection

of 276 known cell surface markers that are commonly used to char-

acterize the specific cell types in our analysis, and not the regular

FACS-based markers. This list was obtained using the FACS-based

61 genes and additional genes that characterize these immune cell

types (Kindt et al, 2007; Murphy, 2012).

An in vitro-defined complex cell mixture

To investigate the performance of DCQ in a controlled setting, we

mimicked the tissue complexity by generating an in vitro complex

cell mixture, where the amount of each cell type is known.

Spleens from C57BL/6J female mice were placed inside 70-lm cell

strainers (BD Falcon) on petri dishes. Ice-cold RPMI with 10% FBS

was added and the spleens were ground with the cap of a 3-ml

syringe. The isolated cells were transferred to a 15-ml tube and

centrifuged, and their red blood cells were lysed using ammonium

chloride solution. Cells were filtered through 70-lm strainers and

resuspended in FACS buffer. FC receptors were blocked with

anti-mouse CD16/CD32, washed with FACS buffer, and stained for

sorting. Before sorting, cells were filtered again through 70-lm cell

strainers. Cells were stained with a subset of the following antibodies

depending on sorting needs: PE/Cy7-conjugated anti-CD19 (clone

1D3), APC/Cy7-conjugated anti-CD45R (clone RA3-6B2), APC-

conjugated anti-CD11c (clone N418), FITC-conjugated anti-TCRb
(clone H57-597), efluor 405-conjugated anti-NK1.1 (clone PK136),

APC-conjugated anti-CD8a (clone 53-6.7), PE-conjugated anti-CD4

(clone RM4-5). Cells were gated for size, singlets and then by posi-

tive and negative markers: B cells were CD45R+, CD19+, TCRb�,
CD11c�; CD4 T cells were TCRb+, CD4+, CD45R�, CD8�; CD8 T

cells were TCRb+, CD8+, CD45R�, CD4�; NK cells were NK1.1+,
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TCRb�, CD19�, CD45R�, CD11c�; DCs were CD11C+, CD45R�,
CD19�, TCRb�. All antibodies were purchased from Biolegend and

eBioscience. Isolated B cells, CD4+ T cells, CD8+ T cells, NK cells,

and CD11c+ DCs were mixed in various concentrations (from 1% to

10%, altogether 10 different “tissue” samples) or in isolation with a

fixed 50% concentration of mouse fibroblast cells (representing tis-

sue mass). RNA was extracted from these mixed tissues and RNA-

Seq libraries were generated, sequenced, and quantified (Methods).

Influenza infection analysis

DCQ is designed to imitate the standard experimental procedure for

quantifying immune cell subsets. It therefore exploits the set of 59

cell surface markers that were used to isolate each of the cell types

included in the compendium. Twelve of these markers do not

appear either in the compendium or in our influenza lung RNA-Seq

data and are therefore excluded from the analysis and substituted

with alternative thirteen markers. In total, 61 different cell surface

markers were utilized to isolate at least one of the cell types. These

are called the “FACS-based markers” (Supplementary Table S2).

We compared the FACS-based markers to five alternative marker

selection methods: (i) All cell surface markers—a collection of all

276 well-established cell surface markers that are commonly used to

characterize the cell types in this study. The list is constructed based

on two general literature references (Kindt et al, 2007; Murphy,

2012) and includes the 61 FACS-based markers. (ii) Following Lu

et al (2003), choosing a set of 696 genes with the highest expression

variability among cell types. (iii) Following Abbas et al (2009),

choosing the set of genes that best distinguish between cell types.

Selected genes are those with highest expression ratio. Ratios are

calculated between each two neighboring cell types that are ranked

based on the expression of a candidate gene (366 markers). Finally,

(iv) random markers—a random set of 61 genes, selected among

the collection of different genes that were profiled in the immune

cell compendium dataset. We called these groups “All,” “Max,”

“Max ratio,” and “Random,” respectively.

True- and false-positive rates are evaluated by comparing the

group of significantly increasing cell types to a gold standard set of

59 cell types with a documented increase in quantity during infection

(Supplementary Table S1). The gold standard set consists of (i) all

cell types that were stimulated before profiling (45 cell types), (ii)

cell types that are referred to as “inflammatory” or “effectors” by

either the Immgen consortium (Benoist et al, 2012) or by a general

immunological reviews (Godfrey et al, 2004; Gordon & Taylor, 2005;

20 cell types). To avoid biases, we do not include extant knowledge

from specific (possibly contradicting) publications and therefore do

not construct a similar gold standard set of decreasing cell types.

Curves of true- and false-positive rates were generated across

varying robustness cutoffs. The area under this curve is an estimator

of the quality of a cell quantity prediction. In contrast, the quality of

a marker prediction is evaluated by a leave-one-out cross-validation

while summing the mean squared prediction error over all the time

points. Based on the clear tradeoff between the quality of marker

prediction and quality of cell type prediction, we used the parame-

ters lambda.min.ratio = 0.2 and a = 0.05 that balance between

those objective functions (Supplementary Fig S12A). Thus,

our selected parameters do not provide the best TPR and FPR that

can be attained. In principle, similar or even better results and

performance could be obtained for lambda.min.ratio = 0.08–0.5 and

a = 0.01–0.1 (Supplementary Fig S12B) and when applying an

additive or multiplicative scaling of the differential RNA-Seq data

(Supplementary Fig S13).

DCQ was applied on the lung data with robustness cutoff = 20.

Permutation tests were performed by running DCQ on 10 permuted

gene expression datasets and identifying significant cell types (with

robustness cutoff = 20) in each of these permuted datasets. Per-

muted datasets were generated by reshuffling the expression values

of the cell surface markers among time points. This way we main-

tained the markers and the correlations between the cell types in the

compendium, while disrupting the correlation between markers and

the order of time points.

Fluorescence-activated cell sorting

For sorting dendritic cells from lungs, the lungs from infected and

control uninfected C57BL/6J mice were immersed in cold PBS, cut

into small pieces in 5 ml DMEM containing 10% bovine fetal serum,

the cell suspensions were grinded using 1-ml syringe cup on a 70-

lm cell strainers (BD Falcon). The cells were washed with ice-cold

PBS. Remaining red blood cells were lysed using ammonium chlo-

ride solution (Sigma). Cells were harvested and immersed 1 ml

FACS buffer [PBS+2% FBS, 1 mM EDTA]; Fc receptors were

blocked with anti-mouse CD16/CD32, washed with FACS buffer,

and divided into two tubes for sorting cDCs and pDCs.

For sorting cDC, the cells were stained with antibodies against

multiple surface antigens: Percp cy5.5-conjugated anti-CD45 (clone –

F11), APC-conjugated anti-CD11c (clone N418), PB-conjugated

anti-I-A/IE (clone M5/114.15.2), PE-conjugated anti-CD103 (clone

2E7), and FITC-conjugated anti-CD11b (clone M1/70). The cDCs

were identified as CD45+, CD11chigh and MHC-II+ and were gated

as CD103� CD11b+ and CD103+ CD11b�.
For pDC sorting, the cells were stained with the following anti-

bodies: Percp cy5.5-conjugated anti-CD45 (clone –F11), APC-conju-

gated anti-CD11C (clone N418), APC CY7-conjugated anti-CD45R/

B220 (clone RA3-6B2), PE-conjugated anti-PDCA-1 (clone 129c1),

and PE CY7-conjugated anti-CD8a (clone 53-6.7). The pDCs were

identified as CD45+, CD11Cintermediate, B220+, PDCA-1+ and gated

as CD8a+ and CD8a�.
Flow cytometry was performed using SORP FACSAriaII Flow Cy-

tometer (Becton Dickinson), and data were analyzed using WinMDI

2.8 software. Sorted dendritic cells were subject to RNA-Seq profiling.

Accession codes

The complete RNA-Seq datasets are available from the Gene Expres-

sion Omnibus (GSE49934).

Supplementary information for this article is available online:

http://msb.embopress
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