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Abstract

Alzheimer’s disease (AD), apparently the most widespread reason behind dementia, is delineated by a continuous cognitive
weakening in the aged. During its progression, N-methyl-D-aspartate receptor (NMDAR) antagonists are known to play a
pivotal part in the mechanisms of learning and memory. Since there is an unmet medical need for the treatment of AD, we
aim to identify possible chemical compounds targeted toward N-methyl-D-aspartate receptors. Three-dimensional models
are developed to unveil some of the essential characteristics of the N-methyl-D-aspartate receptors by using a collection of
already discovered N-methyl-D-aspartate receptor inhibitors. This is followed by virtual screening, which results in novel
chemical compounds having the potential to inhibit N-methyl-D-aspartate receptors. Molecular docking studies and analy-
sis promulgated two lead compounds with a high LibDock score. The compounds are shortlisted based on high estimated
activity, fit values, LibDock score, no violation of Lipinski’s, and availability for procuring. Finally, the shortlisted com-
pounds are tested by employing in vivo studies, which we further propose as potential NMDA inhibitors for treating AD.
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Introduction

Alzheimer’s disease (AD) is a continuously developing neuro-
logical disorder represented by a decline in reasoning and
thinking along with a tremendous neuronal impairment. The
main characteristic features of this disorder include neurofi-
brillary tangles, amyloid plaques, and the degraded neurons in
the incapacitated areas of the brain, for instance, the hippo-
campus. Although fundamental mechanisms of AD neuropa-
thology are not well understood, upcoming pieces of evidence
imply that altered NMDA receptor function and enhanced

NMDA receptor-mediated excitotoxicity might add to both
functional and pathological irregularity of AD. The N-Methyl-
D-Aspartate receptor antagonists perform a central part in the
mechanisms of learning and memory that are the most funda-
mental brain activities to be altered throughout the typical ag-
ing process [1]. The NMDA receptors are ligand-gated [2] ion
channels in the central nervous system and are present pre-
synaptically albeit at a high density postsynaptically [3, 4].
Recent literature evidence suggests that NMDA receptors ex-
hibit tetrameric assemblies. Every subunit includes a large
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extracellular amino-terminal domain [5]. In general, several lo-
calities covering the NMDA receptor can vigorously repress,
initiate, or intensify its functioning. These NMDA receptors are
attached to cation channels that are perforable to Kþ, Naþ,
and Ca2þ and high permeability to Ca2þ makes them suitable
in mediating synaptic plasticity [6–8]. Furthermore, these fea-
tures are essential and accountable for the development and
various learning processes [9]. Literature evidence suggests
that N,N0-diarylguanidine derivatives, the known NMDA recep-
tor antagonists [10] possess essential characteristics such as
high binding affinity and selectivity which makes them poten-
tial therapeutic chemical agents.

It is also a widely accepted fact that excessive NMDAR ac-
tivity results in various neurological disorders, and many such
inhibitors have not been successful in human clinical trials
due to poor tolerance or are not as effective as expected.
Therefore, in the present work, our goal is to identify novel
and structurally diverse NMDA receptor antagonists through a
well-defined sequential in silico virtual screening protocol fol-
lowed by the biological evaluation of the lead compound. In
this study, we compare our lead compound (HTS 00987) with a
well-known drug “Memantine” which itself is an NMDA recep-
tor antagonist that works by blocking increased levels of activ-
ity while saving normal activity. However, previous studies
suggest that memantine has less efficacy in improving neuro-
psychiatric symptoms and it does not improve the functional
ability of the patients. Moreover, a meta-analysis by Blanco et
al. of memantine shows that its effect is indistinguishable
from the placebo effect, which calls for an immediate search to
find an alternate candidate with high efficacy for treating
AD [11].

Here, the reported lead compound (HTS 00987), is, therefore,
thoroughly validated by computational tools and tested by
in vivo studies for the treatment of AD. We propose that this
compound can further be subjected to clinical trials for its de-
velopment as a novel drug to treat AD. To achieve that, we use a
four-phase approach which includes ligand-based drug design-
ing, structure-based virtual screening, molecular docking stud-
ies, and biological evaluation. In the first phase, we use the
ligand-based drug designing methods, which utilize 3D proper-
ties of the ligands to estimate the biological activities. The se-
lected pharmacophore model with a higher correlation value
and a reasonable RMS fit are then subjected to pharmacophore
mapping and various validation studies. In the second phase,
we apply the validated models for the database search to re-
trieve the most potent compound. The lead compounds with
good fit values, estimated activity, drug-likeness, and docking
score are checked for novelty by employing pairwise Tanimoto
similarity indices using “Find Similar Molecules by Fingerprint”
in Discovery Studio (DS). In this study, all the lead compounds
show low Tanimoto similarity indices to all the structures of
known NMDA receptors antagonists validating their uniqueness
[12]. The third phase entails molecular docking studies that suc-
ceeded by evaluating the retrieved potent lead compounds for
neuroprotective activity. With the aim of combating AD, in vivo
studies for the lead compounds are performed by using a radial
arm maze model. Finally, by using a rigorous computational ap-
proach supported by experiments, we show that HTS 00987
exhibits a significant increase in the parameters like duration in
the baited arm, reference/working memory error (WME), and
percent age choice than memantine. We, therefore, propose
HTS 00987 as a promising drug candidate that needs more de-
tailed experiments for further assessment (see details in
“Materials and methods” section).

Materials and methods
Pharmacophore modeling

Pharmacophore modeling is a robust and efficient approach for
identifying a novel framework by using known ligands.
Pharmacophore model was generated with an endeavor to rep-
resent the collection of key features that are vital for biological
activity [13]. The HypoGen method was used for modeling phar-
macophores [14]. This method utilizes the biological activities
of the shortlisted chemical compounds to produce the system
using DS V2.0 software. The “BEST” algorithm was employed to
create conformers (�255) for every molecule together with an
energy threshold of 20 kcal/mol [15].

Test and training set preparation

Generation of hypothesis entails sorting of chemical com-
pounds in two different sets viz. training and test sets and
requires specific rules. The chemical compounds selected in the
training set should involve structurally diverse compounds
(minimum 16) with co-occurring most active compounds.
Preferentially, the activity range of this set must lie between
three to five orders of magnitude. For this study, a set of 40 dif-
ferent chemical compounds was carefully chosen in the
“training set” to produce the hypotheses. The biological activity
values (IC50) of these compounds were in the range of 8–
3000 nM. For the verification of the generated hypothesis, a test
set was used in a related manner to the training set that in-
cluded 19 chemical compounds with reasonable structural vari-
ance and biological activities [16]. Chem Draw 8.0 was used for
illustrating the structures of all compounds. As previously men-
tioned, the “BEST” algorithm was applied to produce energy-
minimized conformers (a maximum of 255) for every molecule
including an energy threshold of 20 kcal/mol. These conforma-
tions were used for hypothesis generation using DS [17, 18].

Pharmacophore generation using HypoGen

A 3D pharmacophore model was generated after assessing the
biological activities of chemical compounds present in the
training set. Vital chemical features were selected for producing
the hypothesis by applying “feature mapping module” of DS
[19]. During the hypotheses generation, hydrogen bond donor
(HBD) and hydrophobic (HY) were chosen depending on the
compounds present in the training set [20]. The pharmacophore
models were predicted by implementing the “3D QSAR
Pharmacophore module” of DS and hypotheses with reasonable
scores were picked for additional validation [21, 22]. The hy-
potheses with the highest scores were shortlisted on the basis
of correlation, RMS, weight, configuration, cost values viz. fixed,
null, and total [23, 24].

Assessment of pharmacophore quality and database
screening

The quality of shortlisted pharmacophore models was esti-
mated by using three distinct approaches. Primarily, the data
were rearranged for validation using Fischer’s randomization
test. The findings confirmed that the hypotheses produced are
reasonable [23, 25]. A correlation value of 0.65 was observed
amidst the experimental and predicted activities of the test set
compounds. Finally, an external test set was used along with
a well-known marketed drug namely memantine for the
validation [26].
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Methods for validating pharmacophores:

Fisher’s cross-validation test
Fisher’s randomization test was employed to estimate the sta-
tistical significance of the models generated by using the train-
ing set. The datasets generated by Fischer’s randomized tests
yield pharmacophoric models and reasonable values of cost,
RMS, and correlation of the models recommend remodeling of
the pharmacophores. With the help of the cat scramble pro-
gram (available in the Catalyst HypoGen module), the biological
activities of the chemical compounds in the training set were
reviewed and employed for generating hypotheses. Therefore,
every parameter was used in a similar fashion to the initial
HypoGen calculation. It was observed that, at a 99% confidence
level, cat scramble created 99 spreadsheets [27, 28].

The internal test set validation
The generated model was validated by employing a test set
comprising 19 distinct chemical compounds. The estimated
value of the test set compounds was assessed by considering
the r2 values (squared correlation coefficient). The estimated ac-
tivities were calculated by mapping molecules in the test set
over the pharmacophore model and assessing their correspond-
ing fit values. The fit value depends on the number of pharma-
cophore features that superimpose on to the relevant chemical
groups. Furthermore, the compound with full feature mapping
was compared with others in the dataset [29, 30].

An external test set validation
For rigorous validation of the pharmacophore, an external data-
set of NMDAR inhibitors was used with the actual activity rang-
ing from 8 to 3000 nM. The compounds in this dataset were
mapped over the derived pharmacophore model. It was also
validated by mapping a well-known marketed drug
“memantine” which is an NMDAR-based inhibitor as an addi-
tional quality check method. The fit values and the range of the
estimated and actual activities of the dataset were thoroughly
examined [31].

Virtual screening

Virtual screening, a broadly used tool for identification of leads
in silico has helped the pharmaceutical industry to increase the
chances of designing medicines in lesser time [32]. Though a
thoroughly examined pharmacophore model contains vital
chemical features accountable for biological activities of poten-
tial drugs, it can be used as an input for a database search. As
mentioned before, the hypothesis with the considerable score
was utilized as an input for obtaining effective molecules from
the databases such as National Cancer Institute (NCI) and
Maybridge [33]. The “best conformer generation method” was
used for retrieving the conformers of every molecule with an
energy threshold of 20 kcal/mol. To begin with, the compounds
were sorted based on Lipinski’s “Rule of five” that introduces
the foundations for drug-like properties [34]. Lipinski’s rule of
five suggests that “a compound is suitable for further studies
only if Molecular weight > 500, log P> 5, hydrogen bond donors
> 5, and hydrogen bond acceptors > 10”. Furthermore, the mole-
cules which showed a complete feature mapping over the query
pharmacophore model was selected as a hit [35]. The selected
pharmacophore model was used as an input for the databases
to retrieve the compounds that mapped over all the chemical
features of the selected pharmacophore. Compounds were

further sorted based on higher fit values and full feature map-
ping. A higher fit value indicates good matches. The compounds
qualifying all these requirements were further shortlisted for
carrying out molecular docking studies [36].

Molecular docking studies

To understand the nature of molecular interactions of the lead
compounds, we carried out molecular docking studies using DS
[37, 38]. LibDocker, a molecular dynamics annealing-based algo-
rithm, which is accessible as an extension of DS V.2.0, was used
for the docking studies [39, 40]. The crystal structures to be used
for docking studies were obtained from PDB. The receptor pro-
tein was assessed for the missing valencies, hydrogens, and
was checked for any structural refinement if needed. The se-
lected protein was divided into two segments: the protein and
the ligand. The protein segment was designated as a receptor
molecule while the ligand was used to describe the binding site
of approximately nine angstroms on the receptor molecule. The
chemical structure of the test compound was sketched and sub-
jected to energy minimization to get the highly stable structure
for molecular docking studies [37, 41, 42]. Based on present coor-
dinates, marketed drug and test compounds were employed to
molecular docking studies. The analysis was run by retaining
the parameters to their preselected values. In the end, all possi-
ble interaction modes were analyzed based on LibDock scores.

Biological evaluation

With no known treatment for AD to date, it has become one of
the biggest challenges in the field of medicine. Based on high
estimated activities, fit values, LibDock score, the violation to
Lipinski’s, and availability for procuring, one compound (HTS
00987) was finally subjected to in vivo studies on mice using an
eight-arm radial maze [43, 44]. This study was carried out into
two distinct cliques to measure the impact of extended therapy
of diazepam-effected amnesia [45, 46]. All experimental studies
were conducted in the animal laboratory at the Department of
Pharmacy, Banasthali University. The mice were grouped and
caged in plastic cages with regular water and diet for rodents.
We administered test drug to the mice in the first and second
cliques for 7 and 14 days, respectively. All experiments per-
formed were approved by the Institutional animal ethical com-
mittee of the Banasthali University. Young albino healthy male
mice with 15–20 weeks of age, weighing 25–30 g, provided by the
Chaudhary Charan Singh Haryana Agricultural University -
Hisar were used for behavioral testing. This study was per-
formed according to the OECD 432 guidelines. A group of 36
mice was split into two cliques of three groups (control, stan-
dard and test group) separately. The animals of clique I and II
were treated for 7 and 14 days, respectively. Mice were delivered
two trials: (i) one in the morning through 9:00 a.m. and (ii) one
in the evening through 6:00 p.m. Every trial started with the
careful cleaning of the maze by using 70% ethanol. Two arms
(no. 1 and no. 3) of the arm maize were baited with food. Mice
were carefully placed in the middle of the octagon and were
granted a free choice. All the movements were recorded to ana-
lyze the correct selection of baited arm later. The arms of the
maze were not rebaited, therefore, the earliest admission inside
the baited arm was recorded as the correct choice [47, 48]. After
3 weeks of training, the control group of mice was given car-
boxymethylcellulose (CMC 0.5%), standard group was adminis-
tered with memantine (5 mg/kg), and test group was given HTS
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00987 (5 mg/kg) twice (10:00 a.m. and 7:00 p.m.) at the same time
on each day orally for a period of 7 and 14 days.
The experimental study was designed such that we were able to
assess the impact of CMC, memantine, and HTS 00987 after the
completion of the treatment (Days 7 and 14) against diazepam-
effected amnesia [49–51]. After the completion of 7 and 14 days,
(which marked the end of treatment), we administered diaze-
pam to all the animals (1 mg/kg i.p.) 60 min later the drug ad-
ministration (test drug). Since the first group of every clique
toiled as a control, we excluded this group for diazepam admin-
istration. The cognitive parameters were assessed 30 min later
the administration of the inducing agent (diazepam) using an
eight-arm radial maze, which corresponds to learning [52]. The
lead compound HTS 00987 was evaluated for behavioral studies
using diazepam-induced amnesia in mice model. The mice
were allowed to be at the center of the octagon of radial arm
maze on the Days 8 and 15, respectively [53]. To investigate the
effect of control/CMC, memantine, and HTS 00987 on Wistar al-
bino mice, five parameters were examined: the number of
entries in the baited arm, duration in the baited arm, percent
correct choice, reference memory error (RME), and WME using
Orchids ALL MAZE software version 4.0 (Orchid Scientific,
Maharashtra, India) [54–56]. Percent choice was estimated by
halving the correct number of entries by the complete number
of entries in the baited arm and multiplied by 100. Entrance in
an unbaited arm was counted as a RME, and re-entrance to the
baited arm was marked as a WME [57]. Average values for all
parameters were determined for Week 1 (1–7 days) and Week 2
(8–14 days) and one-way ANOVA was computed for whole data.

Results and discussion
HypoGen model for N,N0-diarylguanidine inhibitors

In this study, we collected a set of 40 diverse compounds with
their corresponding biological activities from the literature. The
training set with extensive diversity includes the N,N0-diary-
lguanidine inhibitors of NMDAR antagonists. Biological activi-
ties and chemical structures of all the presynthesized chemical
compounds are presented in Table 1. A 3D QSAR pharmaco-
phore generation module of the DS is used to produce pharma-
cophore model by utilizing different chemical features such as
hydrogen bond acceptor, HBD, HY, ring aromatic, and positive
ionizable [23]). On the basis of activity values of the training set
molecules, 10 top-scored hypotheses are produced. The best 10
hypotheses are comprised of only two features: HBD and HY.
Hypo1 contains two HBD and three HY, which highlight the big-
gest cost difference (69.23), best correlation coefficient (0.91),
highest fit value (9.296), and lowest root mean square deviation
(RMSD) of 0.88. The fixed and the null cost values are found to
be 146.091 and 231.594, respectively, where “fixed total cost” is
dependent on the sum of the cost components including weight
cost, error cost, and configuration cost. Principally, there are
two essential contents that are practiced for cost analysis:
(i) the difference between null and total cost (cost difference)
and (ii) the difference between the fixed and null costs. The
“fixed cost” corresponds to a cost of the general hypothesis,
which ultimately predicts the strength of chemical compounds
in the training set with the least divergence. However, the “null
cost” signifies the cost of a hypothesis. The difference between
these two costs should be greater than “70 bits” for explaining
the statistical significance of the model. The cost difference
must be larger than “60 bits” to imply actual data. The results
presented here have revealed that all the hypotheses have the

HBD and HY group, implying that chemical features: HBD and
HY impersonate a vital role in N,N0-diarylguanidine inhibition.
We observe that the cost difference within the “null and fixed
cost” is 85.50, which is clearly >70 bits. Every generated hypoth-
esis exhibits a correlation coefficient >0.79, however, the
top-scoring hypothesis (Hypo1) displays the greatest correlation
coefficient value of 0.91, confirming the real prognostic ability
of the top-scoring hypothesis (Hypo1). It also exhibited a high-
cost difference and correlation value with lower RMSD values as
compared to the remaining hypotheses.

Thus, the top-scoring hypothesis (Hypo1) is considered as
the “soundest hypothesis” and employed to other analysis.
Figure 1 displays the chemical features of “Hypo1”. In an at-
tempt to test the prognostic precision of “Hypo1”, the com-
pounds in the training set are employed and regression analysis
is carried out to estimate the activities of every compound in
the training set. It is observed that “Hypo1” is proficient to as-
sess the activities of compounds. The experimental and esti-
mated activities for compounds in the training set are
presented in Table 2. A graph plotted between the observed ac-
tivity and estimated activity exhibits a substantial correlation
coefficient (r2 ¼ 0.83) for training set compounds, indicating a
high predictive ability of the pharmacophore as shown in Fig. 2.

Validation of hypothesis

Validating the hypothesis for further studies is a vital step in
drug development. There are several known methods such as
(i) selecting chemical compounds for validating pharmacophore
model and its features, (ii) Fischer’s randomization method, and
(iii) an external set of compounds that can assess the quality of
pharmacophore. These methods are explained below.

Fischer randomization method
The foremost reason for this assessment is to confirm the ro-
bust correlation amid the structures and biological activities of
compounds [58]. The Fischer’s validation method is imple-
mented at a confidence level of 99% to the generated HypoGen
model, where 99 random hypotheses were produced (Fig. 3).
Various pharmacophore hypotheses are generated by randomly
creating the hypotheses and matching the activity data of the
compounds in the training set with the characteristic features
and criterion used for producing the new hypothesis. We ob-
serve that all the hypotheses exhibited a higher cost score than
the primary hypothesis thus supporting that the top-scoring hy-
pothesis was not obtained randomly. This validation suggests
that hypotheses generated using this method did not show ac-
tivity values comparable to that of the top-scoring hypotheses
(Hypo1) as shown in Fig. 3. On analyzing the 99 runs, the value
of correlation coefficients is found to be relatively low as shown
in Fig. 4. Additionally, the RMS values and other important val-
ues such as total costs and the null cost are found to be ele-
vated. Hence, this procedure assured the credibility of the
chosen pharmacophore model (Hypo1).

Internal test set validation
In order to strengthen the validity of the generated hypothesis,
a set of 19 chemical compounds was selected for additional con-
firmation. The selected chemical compounds are employed
to pharmacophore feature mapping. Figure 5 represents a
plot between actual and estimated activities of the test set with
r2 ¼ 0.65. This simply confirms the authenticity of the selected
pharmacophore model.
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Table 1: Structures and biological activity of N,N0-diarylguanidine derivatives as NMDA receptor antagonists

N,N0-diarylguanidine derivatives

Name X R IC50 nM (SEM)*

5 2-CH3 H 31 (63)
6 H H 397 (621)
7 2-C2H5 H 14 (61)
8 2-CH(CH3)2 H 88 (13)
9 2-C(CH3)3 H 356 (663)
10 2-I H 13 (61)
11 2-OCH3 H 1990 (6270)
12 2-C6H5 H 8110 (640)
13 3-CH3 H 43 (65)
14 3-C2H5 H 8 (62)
15 3-CH(CH3)2 H 96 (618)
16 3-(CH2)2CH3 H 42 (64)
17 3-I H 125 (61)
18 3-OCH3 H 351 (639)
19 4-CH3 H 535 (62)
20 4-C2H5 H 245 (638)
21 4-CH(CH3)2 H 242 (627)
22 4-Br H 33 (63)
23 2-CH3 CH3 6280 (360)
24 3-CH3 CH3 247 (617)
25 3-C2H5 CH3 82 (610)

Name R R1 IC50 nM (SEM)
26 H H 165 (628)
27 H CH3 4800 (6130)
28 H C2H5 6130 (470)
29 H C6H5 7930 (61490)
30 CH3 CH3 10 700 (61400)
31 CH3 C2H5 8480 (6890)
32 CH3 C6H5 11 000 (6700)
33 59 (63)

34 29 (68)

35 92 (69)
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Table 1: . (continued)

N,N0-diarylguanidine derivatives

Name X R IC50 nM (SEM)*

Name X R R1 IC50 nM (SEM)
36 3-C2H5 H H 54 (65)
37 2-CH(CH3)2 H H 91 (69)
38 2-I H H 40 (67)
39 3-CH3 H H 75 (12)
40 3-C2H5 H CH3 2540 (6670)
41 3-C2H5 H C2H5 2190 (6360)
42 3-C2H5 CH3 H 1000 (660)
43 2-CH(CH3)2 CH3 H 7250 (6640)
44 3-CH3 H CH3 1860 (6180)
45 3-NO2 H CH3 6260 (6700)
46 3-NH2 H CH3 2700
47 3-N3 H CH3 3020 (620)
48 3-NO2 CH3 H 2640 (6370)
49 3-NH2 CH3 H 13 000 (6300)
50 3-N3 CH3 H 2740 (6220)
51 H H CH3 2900
52 3-C2H5 CH3 CH3 1210 (660)
53 3-C2H5 C2H5 CH3 2290 (6160)

Name Structure IC50 nM (SEM)
54 1370 (40)

55 7180 (6310)

56 341 (73)

57 1070 (6260)

58 1410 (6100)

59 343 (632)

60 60 (68)
61 240 (15)
62 2100 (160)
63 140 (13)

*IC50 values are mean 6 standard error of measurement (SEM) and are the results of a minimum two determinations. No SEM indicates a single determination.
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External test set validation
The major aim of generating pharmacophore models is their use
for identifying and optimizing leads/hits that leads to the para-
digm of drug discovery and development. However, for further
studies, there is a need to assess the characteristics of the gener-
ated model(s). To validate the model, a set of chemical com-
pounds is used to evaluate the features of the generated model.
Here, we validate the generated pharmacophore by employing an
external set of structurally diverse NMDAR inhibitors with an ac-
tual activity ranging between 0.068 and 2.1 nM. The compounds in
this set are later subjected to pharmacophore mapping. All the
important parameters such as fit values and the variation in the
estimated and actual activities of all the compounds are reviewed
extensively. The pharmacophore feature mapping of the best-fit
molecule in the external test set is shown in Fig. 6. The predicted
and the actual activity for external test set compounds (Fig. 7 with
r2¼ 0.87) testifies the universality of the Hypo1.

Database screening

Thoroughly verified top-scoring hypothesis (Hypo1) is employed
as an input for obtaining appropriate chemical compounds
from biochemical databases such as NCI (238 819 compounds)
and Maybridge (59 652 compounds). Consequently, the first

screening resulted in 171 and 299 compounds from NCI and
Maybridge, respectively [58]. The obtained chemical compounds
are refined based on Lipinski’s violation and the calculated ac-
tivity values calculated by top-scoring hypothesis (Hypo1). Ten
potential compounds are selected after refining a total of 470
hits which display a complete feature mapping with a consider-
able fit value varying from 10.18 to 7.775, respectively, and zero
Lipinski’s violation as shown in Table 3.

Molecular docking studies

Molecular docking is a robust computative method that marks
the possible conformations of chemical compounds in the bind-
ing sites of the protein. The hallmark to determine the quality
of this method is preciseness that identifies the accurate bind-
ing modes of the ligand to the targeted protein. The center of
the active site of N-methyl-D-aspartate receptor antagonists
comprised Tyr214, Thr174, Ser173, Thr116, Arg121, Ser114,
Gly172, and His88 which are the significant residues surrounded
in this region. Ten (five Maybridge and five NCI) hits acquired
from the databases satisfying drug-like properties, as well as
one marketed drug (memantine), are docked in the binding site
of 3OEK (using LibDock module executed in DS). A number of
300 different confirmations (otherwise known as poses) are pro-
duced for every compound. Of these 300, first 10 confirmations
(poses) are assessed for every molecule by examining their
LibDock score ranging between 95.214 and 114.714. We notice
that HTS 00987 (Maybridge) exhibits a high LibDock score of
114.714 whereas memantine (marketed drug) shows the score
of 70.16.

The interaction analysis of HTS 00987 reveals that hydrogen
present on second and fifth positions of benzodioxol ring is in-
volved in Van der Waals interactions with Tyr214 and Thr174.
Amine and hydrogen present on 1-ethylamino-3-methoxy-2-
methylpropan-2-ol show hydrogen bond and Van der Waals
interactions with Pro170, His88, and Lys87, respectively, as
shown in Fig. 8A. Interaction analysis of reference drug meman-
tine reveals that the amine group present on the adamantan-1-
amine ring is involved in hydrogen bond interactions with
Ser131, Tyr282, Gly264, and Ser260. Methyl present on the third
and fifth position of amine ring showed Van der Waals interac-
tions with Asp283, His127, and Arg292 as shown in Fig. 8B.
Another carbon present at the second and third positions of the

Figure 1: Pharmacophoric features identified from best hypothesis 1.

Table 2: Results of the top 10 pharmacophore hypotheses generated
by the HypoGen algorithm

Hypotheses Total cost Cost
difference

RMSD Correlation Feature

1 162.357 69.24 0.888 0.91 2HBD, 3HY
2 172.697 58.90 1.16 0.85 2HBD, 2HY
3 173.557 58.04 1.23 0.84 2HBD, 2HY
4 177.246 54.35 1.31 0.82 2HBD, 3HY
5 181.839 49.75 1.32 0.80 2HBD, 2HY
6 182.56 49.03 1.35 0.79 2HBD, 3HY
7 182.96 48.63 1.394 0.78 2HBD, 2HY
8 186.94 44.65 1.414 0.78 2HBD, 3HY
9 186.98 44.61 1.382 0.77 2HBD, 3HY
10 185.03 43.24 1.341 0.76 2HBD, 3HY

Figure 2: A plot of actual versus estimated biological activity for training set

compounds.
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Figure 4: Graph of 99% cat-scrambled cost data. None of the outcome hypotheses has a higher correlation score than the initial (best) hypothesis.

Figure 3: Graph of 99% cat-scrambled correlation data. None of the outcome hypotheses has a higher correlation score than the initial (best) hypothesis.

Figure 6: Pharmacophore mapping of most active compound of an external test

set onto the chosen pharmacophore model (Hypo1).
Figure 5: A plot of actual versus estimated biological activity for test set

compounds.
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methoxyphenyl amino group is interacting with Tyr214 with an
interfeature distance of 1.031. The interaction analysis of mem-
antine shows hydrogen bond interactions with amino acid resi-
dues His88, Tyr214, and Gly13 (Fig. 8B). Considering the fit

values, estimated activity, drug-likeness, docking score, and
availability for procuring, HTS 00987 is checked for novelty by
employing pairwise Tanimoto similarity indices using “Find
Similar Molecules by Fingerprint” in DS. HTS 00987 shows low
Tanimoto similarity indices of 0.014 to all the structures of
known NMDAR inhibitors proving their novelty. Hence, during
this research attempt, we discover one druggable potent N-
methyl-D-aspartate receptor antagonist, which can be further
explored in clinical trials.

Analysis of the in vivo studies

After rigorous validation, HTS 00987 is subjected to in vivo stud-
ies. The experimental study is framed in a way that the impact
of all the standard and test drugs can be assessed after 7 and
14 days against diazepam-induced amnesia. The cognitive
parameters are evaluated 30 min after the administration of in-
ducing agent (diazepam) using an eight-arm radial maze as
shown in Fig. 9. On Days 7 and 14, the lead compound (HTS
00987) demonstrates a significant increase in number of entries
and duration in baited arms (Day 7: M¼ 17.25, SD¼ 1.5; Day 14:
M¼ 21.5, SD¼ 2.3, P< 0.05) as compared to memantine (Day 7:
M¼ 14.75, SD¼ 2.38; Day 14: M¼ 16.85, SD¼ 2.21) as shown in
Fig. 10A. Similarly, we observe an increase in duration in baited
arms (Day 7: M¼ 364.37, SD¼ 5; Day 14: M¼ 386.72, SD¼ 4.1,
P< 0.05) when compared to memantine (Day 7: M¼ 234.45,
SD¼ 4.01; Day 14: M¼ 369.19, SD¼ 5, P< 0.05) (Fig. 10B). The
results also show a significant decrease in RME (Day 7:
M¼ 15.75, SD¼ 3.61; Day 14: M¼ 7.25, SD¼ 1.88, P< 0.05), and
WME (Day 7: M¼ 4, SD¼ 0.62; Day 14: M¼ 3.5, SD¼ 0.86, P< 0.05)
when compared with memantine [RME (Day 7: M¼ 16, SD¼ 5.23;
Day 14: M¼ 13.25, SD¼ 4.12), WME (Day 7: M¼ 6, SD¼ 1.12; Day
14: M¼ 5.25, SD¼ 2.93)] which is clearly seen in Fig. 10C. Another
major cognitive parameter, percent choice is also calculated
and it is observed that HTS 00987 demonstrates a high percent
choice (Day 7: M¼ 54.14, SD¼ 1.05; Day 14: M¼ 55.98, SD¼ 2.01,
P< 0.05) when compared with memantine (Day 7: M¼ 47.5,
SD¼ 1.11; Day 14: M¼ 52.5, SD¼ 1.89, P< 0.05) as shown in
Fig. 10D.

We also compared the results of the Days 8 and 14 of the
treatment group with the control group by using the multivari-
ate analysis of variance statistical test [59]. We observed that

Table 3: A list of the top 10 virtual hits with their ranking values in
terms of fit value, estimated value, and LibDock score

S. No. Maybridge Fit value Estimated value LibDock score

1 HTS 00987 10.18 0.01 114.714
2 RJC 02639 9.64 0.05 112.358
3 SEW 03147 9.53 0.06 110.186
4 HTS 05292 9.33 0.1 109.006
5 RJC 01732 9.15 0.11 99.425
6 BTB 06769 9.05 0.12 98.869
7 BTB 14180 9 0.38 96.52
8 AW 00785 8.64 0.39 96.009
9 JFD 02217 8.37 0.44 95.103
10 BTB 13600 8.19 1.56 95.214

Figure 7: A plot of actual versus estimated biological activity for external test set

compounds.

Figure 8: (A) Interaction of HTS 00987 with Tyr214, Thr174, Pro170, His88, and Lys87 in the active site (Green dotted lines represent hydrogen bond interactions; pink

dotted lines represent Van der Waals interaction). (B) Interaction of memantine with Ser131, Tyr282, Gly264, Ser260, Asp283, His127, and Arg292 in the active site (green

dotted lines representing hydrogen bond interactions; pink dotted lines representing Van der Waals interaction).
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important parameters such as the number of entries, duration
in the baited arm, WME, RME, and percent choice showed signif-
icant P-values, consequently, validating our experimental
results. The P-values for the parameters are presented in the
supplementary information (Supplementary Table S1). In

summary, HTS 00987 shows a remarkable increase in the num-
ber of entries in the baited arm, duration in baited arms, percent
correct choice, and a significant decrease in RME and WME in
diazepam-induced amnesia in mice as compared to memantine
during Week 1 and surprisingly its repeated administration also

Figure 10: The effects of control (CMC), standard (memantine), and test (HTS 00987) on an eight-arm radial maze in diazepam-induced amnesia in mice: (A) Number of

entries in the baited arm. (B) Duration in baited arms (in seconds). (C) Reference/WMEs. (D) Percentage of correct choices. The error bars correspond to the SD of the

measurements.

Figure 9: The schematic diagram of the eight-arm radial maze. The animals were tested in the RAM 30 min after the administration of inducing agent (diazepam).
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showed a noteworthy increase in memory. In view of the
results, it can be concluded that HTS 00987 has shown good
neuroprotection properties and the lead compound can be sub-
jected to clinical trials for their development as novel drugs.

Conclusion

In this study, we have used a four-phase approach to identify drug-
gable compounds to treat AD. A thoroughly validated pharmaco-
phore model was used for the identification of lead compounds for
treating AD. Of the shortlisted leads, HTS 00987, exhibited good
in vivo potency, which is evident by a higher percent choice and du-
ration of mice staying in the baited arm. Our attempt to compare
the test drug (HTS 00987) with memantine (a well-known drug for
treating AD) gives us confidence that HTS 00987 is another emerg-
ing, equally effective therapy for treating AD. This preliminary re-
sult lays a solid foundation for carrying out further experimental
studies to find a novel drug candidate to treat AD. Furthermore,
the identified compounds can also serve as a template for design-
ing new NMDA receptor antagonists. Therefore, we propose that
ligand-based pharmacophore modeling coupled with experiments
can prove to be an adequate reservoir for identifying novel leads/
hits from the chemical compound databases.
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