
Subgroup-Enriched Pathways and Kinase Signatures in
Medulloblastoma Patient-Derived Xenografts
Kristin L. Leskoske, Krystine Garcia-Mansfield, Ritin Sharma, Aparna Krishnan, Jessica M. Rusert,
Jill P. Mesirov, Robert J. Wechsler-Reya, and Patrick Pirrotte*

Cite This: J. Proteome Res. 2022, 21, 2124−2136 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Medulloblastoma (MB) is the most common malignant pediatric
brain tumor. MB is classified into four primary molecular subgroups: wingless
(WNT), sonic hedgehog (SHH), Group 3 (G3), and Group 4 (G4), and further
genomic and proteomic subtypes have been reported. Subgroup heterogeneity and
few actionable mutations have hindered the development of targeted therapies,
especially for G3 MB, which has a particularly poor prognosis. To identify novel
therapeutic targets for MB, we performed mass spectrometry-based deep
expression proteomics and phosphoproteomics in 20 orthotopic patient-derived
xenograft (PDX) models of MB comprising SHH, G3, and G4 subgroups. We
found that the proteomic profiles of MB PDX tumors are closely aligned with
those of primary human MB tumors illustrating the utility of PDX models. SHH PDXs were enriched for NFκB and p38 MAPK
signaling, while G3 PDXs were characterized by MYC activity. Additionally, we found a significant association between actinomycin
D sensitivity and increased abundance of MYC and MYC target genes. Our results highlight several candidate pathways that may
serve as targets for new MB therapies. Mass spectrometry data are available via ProteomeXchange with identifier PXD035070.
KEYWORDS: medulloblastoma, pediatric, brain tumor, proteomics, kinase activity, patient-derived xenograft (PDX), actinomycin D,
MYC

■ INTRODUCTION
Medulloblastoma (MB) comprises a heterogeneous group of
malignant brain tumors that most commonly occur in children.
Genomic and transcriptomic analyses have identified four
major subgroups of MB that differ in molecular features and
patient outcomes: wingless (WNT), sonic hedgehog (SHH),
Group 3 (G3), and Group 4 (G4).1 WNT MB has the best
prognosis, with 5 year survival rates >90%.2 Most WNT
tumors contain activating mutations in CTNNB1, which codes
for β-catenin.3 Likewise, many SHH tumors carry mutations in
genes encoding key members of the SHH signaling pathway.3

SHH MB has an intermediate prognosis, and genomic events
such as loss of function mutations in TP53 are associated with
poor outcome.4 While WNT and SHH MB are characterized
by aberrant activation of their namesake developmental
pathways, less is known about the signaling pathways driving
G3 and G4 MB. G3 tumors are frequently metastatic and have
a poor prognosis with 5 year survival rates of approximately
50%.5 The most common molecular alteration in G3 MB is
amplification of MYC, which occurs in approximately 20% of
G3 tumors3 and is associated with poor clinical outcomes.6 G4
MB is the most common type of MB and has an intermediate
prognosis.5 While recurrent mutations have been identified in
G4 MB, they occur at relatively low frequencies.3 Recently,
ERBB4-SRC signaling was identified as a potential driver of G4
MB.7

Proteomic and phosphoproteomic analyses have shown that
WNT, SHH, G3, and G4 MB display distinct proteomic
features.7,8 Two proteomic subtypes of SHH and G3 MB,
termed SHHa and SHHb, and G3a and G3b, have been
reported.8 Compared to SHHb MB, SHHa MB is enriched for
proteins involved in RNA processing, MYC pathway, and
chromatin modification. In contrast, SHHb tumors are
enriched for proteins involved in neuronal and glutamatergic
synapse signaling. G3a MB is characterized by MYC activation
via amplification or post-translational modification. The
primary pathways driving G3b MB are unknown.
Current treatment strategies for MB include surgical

resection, craniospinal radiation, and multi-agent chemo-
therapy. However, patient outcomes vary depending on clinical
and molecular features. Additionally, many MB survivors
experience lifelong side effects from their treatment, emphasiz-
ing the need for more effective and less toxic therapies.9 Pre-
clinical drug development requires well-characterized disease
models that closely resemble primary human tumors. We
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recently performed high-throughput drug screening on 20
orthotopic patient-derived xenograft (PDX) models of MB
comprising SHH, G3, and G4 subgroups and identified
subgroup-specific drug sensitivities including actinomycin D
as a potential targeted therapy for G3 MB.10 In this study, we
sought to characterize the proteomic features and phospho-
signaling pathways enriched in these 20 PDX models as well as
identify proteomic signatures associated with drug sensitivity.

■ EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale
The proteomes and phosphoproteomes of 20 orthotopic
patient-derived xenograft (PDX) models of medulloblastoma
(MB) were analyzed by LC−MS/MS. Our cohort (Table S1)
contains multiple PDXs representing the three most prevalent
subgroups of medulloblastoma: SHH (n = 6), G3 (n = 10),
and G4 (n = 4). MYC-amplified G3 lines are overrepresented
in our cohort because this subtype is known to have poor
clinical outcomes. Due to limited sample material, technical
replicates were not performed. The 20 PDX samples were
randomly assigned to one of two TMT 11-plexes (Table S2)
each comprising 10 PDX cell lines and an internal reference
consisting of equal amounts of peptide from all 20 PDX lines.
Med-1911FH was determined to be an outlier and excluded
from statistical calculations. Due to small and uneven sample
group sizes, differences in protein abundance, phosphosite
abundance, and kinase activity between subgroups were
calculated using one-way ANOVA (aov function in the R
stats package coupled with the ANOVA function within car
3.0−8)11 with Tukey post-hoc and Benjamini−Hochberg
correction for multiple hypothesis testing (TukeyHSD function
from the stats package). An adjusted p-value q < 0.05 was
considered significant unless stated otherwise. The significance
of differences in actinomycin D IC50 values between cell lines
was determined by Student’s t-test using the t.test function in
R.
Animals
NOD-SCID IL2R-gamma null (NSG) mice used for intra-
cranial tumor transplantation were purchased from Jackson
Labs (Bar Harbor, ME). Mice were maintained in the animal
facilities at the Sanford Consortium for Regenerative Medicine.
All experiments were performed in accordance with national
guidelines and regulations and with the approval of the animal
care and use committees at the Sanford Burnham-Prebys
Medical Discovery Institute and University of California San
Diego (UCSD).
Establishment and Maintenance of PDXs
PDX lines were generated by implanting 0.5−1 × 106
dissociated patient cells directly into the cerebellum of NSG
mice and propagated from mouse to mouse without in vitro
passaging. The identity and subgroup of each line were
validated by DNA methylation analysis. For proteomic studies,
cells were isolated from tumor-bearing mice, washed at least
twice with PBS, pelleted, and snap frozen in liquid nitrogen.
Protein Digestion
PDX cells were lysed with urea lysis buffer (8 M urea, 75 mM
NaCl, 50 mM Tris pH 8, 1 mM EDTA, and 1× HALT
Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher
Scientific)) and sonicated. Lysates were clarified by centrifu-
gation at 20,000g for 10 min. Protein concentration was
quantitated using a Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific). Equal amounts of protein (296 μg) from
each sample were reduced with 5 mM dithiothreitol for 45 min
and alkylated with 10 mM iodoacetamide for 45 min in the
dark prior to digestion with lysyl-endopeptidase (1:100
enzyme:protein) (FUJIFILM Wako Pure Chemical Corpo-
ration) for 4 h followed by overnight digestion with Trypsin
Gold (1:50 enzyme:protein) (Promega). Digests were acidified
with formic acid and centrifuged at 2000g for 5 min to remove
the precipitate. Peptides were desalted with 100 mg C18
cartridges (Waters).
Isobaric Labeling

150 μg of peptide from each sample was labeled with an 11-
plex tandem mass tag (Thermo Fisher Scientific) according to
the manufacturer’s protocol. 1 μg of peptide from each TMT
labeling was analyzed by mass spectrometry to ensure >99%
labeling efficiency. TMT labeling reactions were quenched
with hydroxylamine, pooled, and desalted with 200 mg C18
cartridges (Waters).
Phosphoenrichment
Phosphopeptides were enriched by sequential metal oxide
affinity chromatography.12 Briefly, phosphopeptides were
enriched using a High-Select TiO2 Phosphopeptide Enrich-
ment Kit (Thermo Fisher Scientific). TiO2 flow-through and
wash fractions were combined and further enriched using a
High-Select Fe-NTA Phosphopeptide Enrichment Kit (Ther-
mo Fisher Scientific). TiO2 and IMAC elutions were combined
and fractionated into nine fractions using a Pierce High pH
Reversed-Phase Peptide Fractionation Kit (Thermo Fisher
Scientific) according to the manufacturer’s protocol with the
addition of a ninth fraction at 100% acetonitrile. IMAC flow-
through was used for global deep expression proteomics.
Offline Fractionation

Pooled TMT labeled peptides were fractionated by high pH
reverse phase chromatography performed using a Dionex
U3000 HPLC system (Thermo Fisher Scientific). Peptides
were loaded on a Waters XBridge C18 column (4.6 mm × 250
mm, 3.5 μm), and chromatographic separation was performed
using a gradient of 96 min using a ternary solvent system A
(water), B (acetonitrile), and C (50 mM ammonium
hydroxide, pH 10) at a flow rate of 0.5 mL/min. Eluted
peptides were collected every 60 s in a serpentine fashion on a
96 deep-well plate.13 The 96 fractions were condensed into
final 24 fractions for global proteomics analysis by pooling
every 24th fraction into a single fraction starting from the first
fraction.14

Data Acquisition and Protein Identification
Data acquisition was performed on an Orbitrap Fusion Lumos
(ThermoFisher) mass spectrometer connected to a U3000
RSLCnano UHPLC system (ThermoFisher) utilizing water,
0.1% formic acid as Solvent A and acetonitrile, 0.1% formic
acid as Solvent B. Dried peptides were reconstituted in 5 μL of
LC−MS grade water with 2% acetonitrile and 0.1% formic acid
and directly loaded on a 25 cm C18 column (2 μm particle
size, 75 μm ID, EASY-Spray column, ThermoFisher)
maintained at 45 °C. Peptides were eluted over 120 min by
increasing the concentration of B as described: 2−19% in 80
min, 19−30% B in 20 min, 30−98% B in 5 min, maintaining
98% B for 2 min, 98% to 2% B in 1 min, and column
equilibration for 11 min. Spectra were acquired in top-speed
SPS-MS3 mode with MS1 in the Orbitrap (120 K resolution,
375−1500 m/z scan range, max injection time of 50 ms), MS2
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of most abundant precursors in an ion trap (0.7 Da isolation
window, CID fragmentation with 35% collision energy,
activation time of 10 ms), and MS3 on MS2 fragments in
the Orbitrap (2 Da isolation window, HCD fragmentation with
65% collision energy, 50 K resolution, max injection time of 50
ms, scan range of 100−500 m/z).15 A dynamic exclusion filter
of 60 s was applied to prevent resampling of the same
precursors.
A combined human and mouse protein database was

generated by combining the UniProt16 human protein
database downloaded on 03-29-2017 (42,150 entries) with
the UniProt mouse protein database downloaded on 03-29-
2017 (59,066 entries). Spectra were searched against the
combined human and mouse protein database using Proteome
Discoverer 2.2 software (Thermo Fisher Scientific) and the
Mascot search engine (version 2.6) for global proteome
fractions and the Byonic search engine (version 2.12) for
phospho-enriched fractions. Up to two missed cleavages were
allowed. Precursor mass tolerance was set to 10 ppm, and
fragment mass tolerance was set to 0.6 Da. Carbamidomethy-
lation of cysteine and TMT modification of lysine and any N-
terminus were specified as fixed modifications. Methionine
oxidation and N-terminal acetylation were set as dynamic
modifications. Phosphopeptide searches also included serine,
threonine or tyrosine phosphorylation as dynamic modifica-
tions with a maximum of four dynamic modifications. MS3
reporter ion peaks were integrated using the most confident
centroid and an integration tolerance of 20 ppm. Peptide
abundance was calculated using reporter ion peak intensity
with a co-isolation threshold of 75 and average reporter S/N
threshold of 10. Reporter ion isotopic impurities were
corrected for using the correction factors provided in the
TMT product data sheet. FDR was calculated by target decoy
database search using the Percolator algorithm for global
proteomics data and as part of the Byonic search algorithm for
phosphoproteomics data. A target FDR of 0.01 was used to
filter PSMs and peptides. Proteoclade17 was utilized to
annotate peptides belonging to human, mouse, or shared;
filter for Homo sapiens specific peptides; and recalculate protein
abundances from the sum of only human-unique peptides.
Mass spectrometry data have been deposited to the
ProteomeXchange Consortium via the PRIDE18 partner
repository with the dataset identifier PXD035070.
Data Normalization

For deep expression proteomics, proteins with abundances
missing in ≥50% of samples were removed. Protein
abundances were normalized using sample-loading (SL)
followed by internal reference standard (IRS) normalization
coupled with trimmed mean of m samples (TMM).19

Human-unique peptides from the phospho-enriched dataset
were filtered to retain those that included a phosphorylation
site, were unambiguous and high confidence, and had a Byonic
PSM confidence score > 200 in at least one TMT-plex.
Phosphopeptides with ≥50% missing data were removed, and
phosphopeptides abundances were then normalized by SL/
IRS/TMM as described above.19 Phosphopeptides were not
normalized to global protein abundance to allow for the
inclusion of phosphoproteins observed in the phospho-
enriched fractions and not in the global deep expression
proteomics data. Phosphopeptides with multiple Master
Proteins that were unable to be unambiguously assigned to a
single protein were removed. Global modification positions

were extracted for all phosphosites with an unambiguous
phosphosite position using the peptide localized modification
position and the amino-acid sequence “Position in Master
Protein”. The phosphopeptides were then condensed to
phosphosites by averaging the normalized abundances of all
peptides containing a given phosphosite.20

Sample Classification
Unsupervised clustering was performed using the pheatmap
1.0.1221 and stats packages in R version 4.2.022 using Euclidean
distancing and Ward’s clustering method. Principal component
analysis was performed using the prcomp function from the
stats package in R, with variable centering and scaling. Partial
least squares discriminant analysis was performed using the
plsda function from the MixOmics package v6.10.9 (www.
mixomics.org),23 in R v4.2.0. The algorithm was set to
regression analysis with four clusters, and all other parameters
were left at the default value.
NMF and Metagene Projection
To verify our classification model, we compared our
proteomics data to previously published proteomics data on
primary MB tumors (Archer dataset).8 WNT samples were
removed and robust z-scores of significant proteins in the
Archer dataset were input into NMFConsensus, a module in
GenePattern,24 testing k = 2 through k = 10, to determine the
optimal number of unsupervised clusters. All other values were
left at the default values. Robust z-scores from all proteins in
the Archer dataset and from our deep expression proteomics
dataset were then input into the MetageneProjection module
in GenePattern as the model and test sets, respectively. Based
on the results from NMFConsensus, we set k = 5, and no
model set refinement was performed. All other parameters
were left at the default values.
Gene Set Enrichment Analysis

Gene Set Enrichment Analysis25 was performed with
ssGSEA2.0 in R (https://github.com/broadinstitute/
ssGSEA2.0) using the Hallmark and C2 Canonical Pathways
gene set collections from version 6.2 of the MSigDB.26,27

Proteins were ranked by taking the negative log10 of their p-
value and multiplying by the sign of the log2 fold-change
between the two groups being compared. Significantly
enriched gene sets (q < 0.05) that were upregulated in a
given subgroup for all comparisons were visualized using the
Enrichment Map app in Cytoscape v3.8.228 with an edge cutoff
(similarity) of 0.375 to maximize the overlap between gene
sets.
Kinase-Substrate Prediction and Kinase Activity Scoring
The human PhosphoSitePlus (PSP) database29 downloaded
01-29-2018 was used to match observed phosphosites with
their modifying kinase. The kinase-substrate prediction tool
NetworKIN30 was used to predict new kinase-substrate
interactions. NetworKIN confidence scores ranged from 0 to
228 for our dataset with higher scores indicating higher
confidence. To determine an optimal score cutoff for
NetworKIN predictions, NetworKIN was run against all
phosphosites with a known modifying kinase in the human
PSP database. PSP annotated kinase-substrate predictions
above a given threshold were considered true positives, while
PSP annotated predictions below the threshold were
considered false negatives. Kinase-substrate predictions not in
the PSP database were considered true negatives if the
NetworKIN score was below the given threshold and false
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positives if the NetworKIN score was above the given
threshold. Matthew’s correlation coefficient was then calcu-
lated to determine the optimal NetworKIN confidence score
cutoff of 5.88. Only kinase-substrate predictions with a
NetworKIN confidence score greater than 5.88 were
considered for analysis. Kinases not identified in either the
proteomic or phosphoproteomic datasets were removed.
Kinase activity was then scored for all 20 PDXs with IKAP31

using PSP annotated and NetworKIN predicted kinase-
substrate interactions and the following parameters: 100
iterations; lower bound = 0; upper bound = 24. Kinase
substrate interaction networks were generated in Cytoscape.28

Drug Correlation Analysis

Drug sensitivity scores identified from our prior screen10 were
correlated with protein abundance and phosphosite abundance
using matched pairs and the Spearman correlation coefficient.
Drug sensitivity scores represent the average percent viability
of cells after drug treatment compared to control as measured
in triplicate experiments. Med-1911FH was excluded from
correlation calculations due to being a proteomic outlier. For
drugs represented multiple times in the drug screen,
correlations were calculated separately for each screen entry
and the median correlation value was taken for each protein.

Gene ontology (GO) enrichment was performed using
ToppFun.32 Protein interaction network was generated using
the String app in Cytoscape33 and the default confidence score
cutoff of 0.4. Normalized enrichment scores were calculated for
the identified ActD Sensitivity Signature using ssGSEA 2.0 in
R.25

Quantitative proteomics data on Cancer Cell Line
Encyclopedia (CCLE) cell lines were downloaded from
elsewhere.34 Single sample GSEA (ssGSEA) was performed
using ssGSEA 2.0 in R to calculate a normalized enrichment
score (NES) for proteins found in the HALLMARK_MYC_-
Targets_v1 and HALLMARK_MYC_Targets_v2 gene sets
(version 6.2)27 for each cell line. Actinomycin D (ActD) IC50
values on the CCLE cell lines were obtained from the
Genomics of Drug Sensitivity in Cancer Project35,36 via the
depmap portal. ActD was represented twice in the screen as
Drug IDs 1811 and 1911. ActD IC50 values were compared
between high (top 50 NES) and low (bottom 50 NES)
signature expressing cell lines as well as between cell lines with
high (top 50) and low (bottom 50) MYC protein abundance.
Significance was determined by Student’s t-test using the t.test
function in R.

Figure 1. Sample overview and subgroup classification. (A) Common molecular alterations and subgroup classifications of 20 MB PDX models.
(B) Partial least squares discriminant analysis on differentially abundant proteins (ANOVA q < 0.05) between subgroups. Ellipses indicate 95%
confidence interval. (C) Partial least squares discriminant analysis on differentially abundant phosphosites (ANOVA q < 0.05) between subgroups.
Ellipses indicate 95% confidence interval.
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■ RESULTS

Proteomic Classification of 20 MB PDXs

We acquired proteomic and phosphoproteomic data by liquid
chromatography−tandem mass spectrometry on 20 PDX
models of MB that were previously characterized and subtyped
by DNA methylation and gene expression10 (Figure 1A). To
minimize the influence of mouse stromal cell infiltration in our
global deep expression proteomics and phosphoproteomics
datasets, only peptides unique to human were used for analysis
(Figure S1). This resulted in quantitative information on 6180
unique proteins and 4036 unique phosphosites (88.2% Ser,
11.8% Thr, 0.05% Tyr). Unsupervised clustering of proteomic
and phosphoproteomic data showed that most PDXs clustered
with their genomic subgroups (Figure S2). Med-2312FH,
which has features of both G3 and G4 MB, consistently
clustered with other G3 PDXs and was thus considered G3. G3

PDX Med-1911FH showed large variance by principal
component analysis as well as more missing data (Figures S3
and S4). Thus, Med-1911FH was excluded from statistical
calculations. RCMB32, which contains a PTCH1 mutation and
was designated as SHH based on DNA methylation,
consistently clustered with G3 and was included with G3
samples for statistical calculations. The remaining two p53
wildtype SHH PDXs (Med-1712FH and RCMB24) clustered
separately from the p53 mutant SHH PDXs in the proteomics
data but not in the phosphoproteomics data. Thus, p53
wildtype and p53 mutant SHH PDXs were not considered
distinct proteomic subtypes. Partial least squares discriminant
analysis showed that SHH, G3, and G4 PDXs contain distinct
proteomic features (Figure 1B) and differential phosphosignal-
ing activity (Figure 1C).
Next, we wanted to examine how the proteomic features of

our MB PDXs compare to primary human MB tumors. We

Figure 2. Metagene projection of PDX proteomic signatures onto the Archer proteomics dataset. Unsupervised clustering of metagene expression
levels in PDX and primary human MB tumors. PDX proteomics data (test dataset) were projected onto the Archer proteomics dataset (model
dataset) using the Metagene Projection module in GenePattern.
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used metagene projection37 to project our MB PDX
proteomics data on to the Archer et al.8 proteomics dataset,
which includes SHHa, SHHb, G3a, G3b, and G4 primary
human MB tumors. The number of metagenes was set to 5 as
non-negative matrix factorization (NMF) on the Archer

dataset confirmed that k = 5 provided optimal clustering
(Figure S5). Metagene projection of our proteomics data onto
the Archer dataset confirmed that the proteomic features of
primary MB tumors, including proteomic signatures that
distinguish different MB subgroups, are maintained in MB

Figure 3. Subgroup-enriched processes and pathways. (A) Hallmark 50 and C2 canonical pathways gene sets with significant (q < 0.05) and
positive enrichment in a given subgroup for all Gene Set Enrichment Analysis comparisons against the other two subgroups. Significant gene sets
are visualized with the EnrichmentMap app in Cytoscape. Each node represents an enriched gene set, and lines connect gene sets with shared
members. Nodes are colored by enriched subgroup. Node size corresponds to gene set size. (B−E) Protein abundance of NFKB1 and RELA (B),
MAP2K3 and MAPKAPK2 (C), ENO2 and MAPT (D), and PDPK1 (E) in MB subgroups. *ANOVA q < 0.05, **ANOVA q < 0.01.
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PDX models (Figure 2 and Table S3). Of the SHH PDXs,
RCMB18, Med-1712FH, RCMB24, and BT084 most closely
resembled primary SHHa tumors while ICb-984MB presented
features of both SHHa and SHHb MB. RCMB32 strongly

resembled G3a MB, confirming divergence of this PDX line.
Of the G3 PDXs, MB002, Med-211FH, Med-411FH,
RCMB28, and RCMB40 most closely resembled primary
G3a MB tumors while JCMB009, Med-1911FH, Med-

Figure 4. Subgroup-specific kinase activity. (A) Kinase activity of kinases with significant differential activity between subgroups (ANOVA q <
0.05). (B,C) Known (solid line) and predicted (dashed line) substrates of MAPKAPK2 (B) and CDK4 (C) in our dataset. Line color indicates the
functional consequence of phosphorylation: green − activating; purple − regulatory; black − unknown. Phosphosites that are significantly
differentially abundant between subgroups (ANOVA q < 0.05) are indicated with a thicker line.
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2312FH, ICb-1299MB, ICb-1572MB, and RCMB20 more
closely resembled primary G3b tumors. Differential analysis of
G3a and G3b PDXs did not identify specific pathways unique
to G3b MB but rather showed that G3b PDXs displayed
features also found in SHH and G4 PDXs (Figure S6). This
finding is consistent with our metagene projection results that
showed that G3b MB is enriched for proteomic signatures that

are also found in G4 MB. Overall, our results demonstrate that
the proteomic features of primary MB tumors are conserved in
MB PDX models.
Subgroup Enriched Processes and Pathways
To identify pathways and cellular processes specifically
enriched in each subgroup, we performed Gene Set Enrich-
ment Analysis (GSEA) (Figure 3A and Table S4). SHH PDXs

Figure 5. Proteomic signatures associated with actinomycin D sensitivity. (A) Protein abundances from global proteomics data were correlated
with actinomycin D (ActD) sensitivity across MB PDX lines. The top 100 proteins with the strongest positive correlation to ActD sensitivity
(“ActD Sensitivity Signature”) were analyzed by gene ontology (GO). The top 10 most significant GO terms are shown. (B) String network of the
ActD Sensitivity Signature. (C) Relative median abundance of the TCA cycle and electron transport chain proteins in MB PDXs by subgroup. (D)
Normalized enrichment scores for ActD Sensitivity Signature in MB PDXs. ***ANOVA p < 0.001. (E) Normalized enrichment scores for ActD
Sensitivity Signature in primary human MB tumors from the Archer dataset. ***ANOVA p < 0.001. (F) ActD IC50 values from two independent
screens (1811 and 1911) for the top 50 and bottom 50 CCLE cell lines with the highest and lowest, respectively, MYC protein abundance.
*Student’s t-test p < 0.05. (G) Average ActD IC50 values for the top 50 and bottom 50 CCLE cell lines with the highest and lowest, respectively,
normalized enrichment scores (NES) for the Hallmark MYC Targets v1 and Hallmark MYC Targets v2 gene sets. **Student’s t-test p < 0.01,
***Student’s t-test p < 0.001.
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were enriched for pro-inflammatory signaling pathways
including the NFκB and p38 MAPK signaling pathways.
NFκB subunits NFKB1/p105 and RELA/p65 were signifi-
cantly more abundant in SHH PDXs (Figure 3B). The p38
MAPK kinase MAP2K3/MKK3 and the p38 MAPK effector
MAPKAPK2/MK2 were also significantly upregulated in SHH
PDXs (Figure 3C). p38 MAPK has been shown to regulate the
transcriptional activity of NFκB.38 Notably, SHH PDXs were
also enriched for the extracellular matrix (ECM) and ECM-
interacting proteins, suggesting that the tumor microenviron-
ment plays an important role in SHH MB.
G3 PDXs were enriched for MYC target genes as well as

proteins involved in transcription, RNA processing, and
translation. Mitochondrial energy metabolism including the
TCA cycle and oxidative phosphorylation were also upregu-
lated in G3 PDXs.
G4 PDXs were enriched for features of differentiated

neurons including vesicular transport and membrane traffick-
ing and expressed the highest levels of neuronal differentiation
markers (Figure 3D). PI3K and receptor tyrosine kinase
(RTK) signaling were also enriched in G4 PDXs, which
contained significantly higher levels of PDPK1 (Figure 3E). G4
PDXs were also enriched for cell cycle and DNA repair
proteins. The ubiquitin proteasome system was also upregu-
lated in G4, consistent with previous observations that
proteostasis is altered in G4 MB.7

Subgroup Specific Kinase Signatures

To quantify kinase activity in each MB PDX, we used the
human PhosphoSitePlus database29 and the kinase-substrate
prediction tool NetworKIN30 to match experimentally
observed and high confidence (Figure S7) predicted kinases
to phosphosites in our dataset. The activity of 47 identified
kinases was then scored using the machine learning algorithm
IKAP31 (Table S5). Fourteen kinases had significant differ-
ential kinase activity between subgroups (Figure 4A).
Consistent with our GSEA analysis, SHH PDXs had

significantly higher activity of the p38 MAPK effector
MAPKAPK2 (Figure 4B). Notable substrates of MAPKAPK2
observed in our dataset include the heat shock protein
HSPB1/HSP27 and the mTOR Complex 1 (mTORC1)
regulator TSC2. MAPKAPK2 phosphorylation of HSPB1 has
been shown to promote cancer cell survival in response to
genotoxic stress.39 TSC2 is a negative regulator of mTORC1.
Phosphorylation of TSC2 by MAPKAPK2 promotes 14-3-3
protein binding and negatively modulates TSC2 function.40,41

mTOR kinase activity was significantly upregulated in SHH
PDXs, consistent with downregulation of TSC2.
CDK4 activity was also significantly elevated in SHH PDXs

(Figure 4C). CDK4 is an important driver in many cancer
types including medulloblastoma.42 In addition to observing
well-known substrates of CDK4 such as RB1, we also identified
high-confidence predicted substrates of CDK4. MYCN, which
was amplified in three SHH PDXs, was predicted to be
phosphorylated by CDK4. Other predicted substrates of
CDK4 included Cyclin-L1 (CCNL1) and Myelin transcription
factor 1 (MYT1).
G3 PDXs had significantly higher activity of Polo-like kinase

1 (PLK1). Inhibition of PLK1 has been shown to slow the
progression of MYC-amplified medulloblastoma by promoting
MYC protein degradation.43 GSK3B and CDK5 were
specifically upregulated in G4 PDXs.

Actinomycin D Sensitivity

We previously identified actinomycin D (ActD) as a candidate
therapeutic for G3 MB.10 To better understand the molecular
basis for drug sensitivity, we correlated basal protein and
phosphosite abundance with average cell viability after ActD
treatment. Many of the top 100 proteins most positively
associated with sensitivity to ActD (“ActD Sensitivity
Signature”) were mitochondrial proteins (Figure 5A and
Table S6) including members of the NADH dehydrogenase
complex I of the electron transport chain (ETC). Mitochon-
drial ribosome proteins that synthesize core components of the
ETC were also strongly correlated with ActD sensitivity
(Figure 5B). ETC proteins were more highly expressed in
G3PDXs compared to SHH and G4 PDXs (Figure 5C),
suggesting that mitochondrial energy metabolism is upregu-
lated in G3 MB. Notably, many of the mitochondrial proteins
in the ActD Sensitivity Signature are known downstream
targets of MYC.44 Our identified ActD Sensitivity Signature
was significantly enriched in G3 PDXs as well as in G3a
primary tumors from the Archer dataset8 (Figure 5D,E). Thus,
we hypothesized that MYC-driven cancers would be more
sensitive to ActD. Using previously published quantitative
proteomics data34 and ActD IC50 values35,36 on Cancer Cell
Line Encyclopedia (CCLE) cell lines, we found that cell lines
with high MYC protein abundance were significantly
(Student’s t-test p < 0.05) more sensitive to ActD than cell
lines with low MYC protein abundance (Figure 5F).
Additionally, CCLE cell lines with high protein abundance of
known MYC target genes were also significantly more sensitive
to ActD than cell lines with low MYC target protein
abundance (Figure 5G). These results suggest that ActD
may also be efficacious against other MYC-driven cancers.

■ DISCUSSION
Through proteomic and phosphoproteomic characterization of
orthotopic PDX models of MB, we show that SHH, G3, and
G4 MB PDXs display distinct proteomic features and
exemplify many characteristics of primary human MB tumors.
A major advantage of orthotopic PDX models is that they
allow for functional experiments to study MB tumor biology.
Multiple studies have shown that orthotopic PDX models of
pediatric brain tumors maintain the histological and genomic
features of the primary tumors they are derived from.45,46

However, serial passaging of xenograft tumors may inadver-
tently cause mouse-specific tumor evolution, especially in a
heterologous environment.47 The observed divergence of the
SHH PDX RCMB32 and clustering with G3 PDXs may be due
to the expansion of select subclones from the original tumor
population. Our metagene projection analysis indicated that
the proteomic signatures identified in these MB PDXs are
closely aligned with those of primary human MB tumors,
emphasizing the utility of these models.
Our proteomic analysis showed that the G3 PDXs analyzed

in this study primarily resemble G3a MB. G3a MB is
characterized by activation of MYC,8 and eight G3 PDXs
have amplification of MYC. MYC regulated processes
including transcription, translation, and mitochondrial function
were significantly upregulated in G3 PDXs. While some G3
PDXs did show enrichment for a G3b signature identified in
primary human MB tumors, we were unable to resolve the key
pathways driving G3b MB. This is likely due to the
overrepresentation of MYC-amplified G3 PDXs in our cohort.
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Notably, G3 PDXs with high G3b signature expression also
expressed higher levels of a signature also found in G4 MB
tumors. Single cell sequencing studies have suggested that G3
and G4 MBs differ in differentiation state, with G3 MB existing
primarily as undifferentiated cells and G4 MBs as mostly
differentiated neuronal cells.48 Indeed, our G4 PDXs displayed
proteomic features typical of differentiated neurons including
upregulated vesicular trafficking and endocytosis as well as high
abundance of neuronal differentiation markers. Another
phosphoproteomic study reported two distinct signaling states
of MB, with a subset of G3 tumors displaying a MYC signature
and another subset of G3 tumors displaying a neuronal
signature similar to G4 MB.49 G3b MB may represent an
intermediate state between undifferentiated MYC-driven G3a
and the more differentiated neuronal phenotype of G4.
SHH PDXs were enriched for several signatures that suggest

enhanced interaction with the tumor microenvironment.
Compared to other MB subgroups, SHH MB tumors have
increased stromal cell activity.50 Stromal astrocytes have been
shown to promote SHH MB tumorigenesis by secreting the
sonic hedgehog ligand as well as extracellular matrix,51,52 which
was more abundant in SHH PDXs. Pro-inflammatory signaling
via NFκB and p38 MAPK was also upregulated in SHH PDXs.
NFκB activation has been observed in stem-like cells in SHH
MB,53 and up-regulation of genes in the NFκB pathway has
been linked to poor prognosis in G4 MB.54

We identified a strong correlation between high abundance
of mitochondrial proteins and ActD sensitivity. MYC is a key
regulator of mitochondrial biogenesis.55,56 We found that
CCLE cell lines with high abundance of MYC and MYC target
genes were more sensitive to ActD. Mechanistically, ActD
intercalates into GC-rich regions of DNA and blocks
transcriptional elongation by RNA polymerases.57 ActD has
been shown to bind to regions of the MYC promoter and
repress MYC expression.58,59 MYC target genes as well as
transcription and RNA processing proteins were highly
upregulated in G3 MB PDXs. Additionally, ActD preferentially
inhibits RNA Pol I transcription, which synthesizes key
ribosomal RNAs.60,61 Mitochondrial transcription and trans-
lation are required for the synthesis of large hydrophobic
proteins in the ETC.62 In our prior drug screen,10 the
mitochondrial complex I inhibitor rotenone was efficacious
against most G3 PDXs. Disruption of mitochondrial oxidative
phosphorylation by inhibitors such as rotenone has been
shown to downregulate MYC expression.63 Our results suggest
that the efficacy of ActD in G3 MB stems from its ability to
inhibit global transcription and, possibly, mitochondrial
function. Mitochondrial function may be a potential
therapeutic vulnerability in G3 MB.

■ CONCLUSIONS
Here, we have provided a comprehensive proteomic and
phosphoproteomic characterization of commonly studied PDX
models of SHH, G3, and G4 MB. Our study demonstrates that
orthotopic PDX MB models recapitulate many features of
primary MB tumors and identifies upregulated pathways and
kinases in each proteomic subgroup that may serve as
candidate targets for the development of new therapies.
Additionally, we show that proteomics data can be used to
identify signatures associated with drug sensitivity and find a
significant association between MYC and Actinomycin D
sensitivity. Given the heterogeneous nature of MB, under-
standing how proteomic signatures correlate with drug

sensitivity will allow for more targeted approaches to MB
treatment.
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