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A B S T R A C T   

Racial disparities in birth outcomes are seemingly intractable. Using person-centered methods and drawing from 
the life course and Weathering Hypothesis literatures, we used data from the National Longitudinal Study of 
Adolescent to Adult Health to group non-Hispanic White and non-Hispanic Black women ages 24–34 into latent 
classes based on pre-pregnancy biomarkers of allostatic load. Stratified analyses yielded four latent classes 
among non-Hispanic White women, characterized by: 1) high blood pressure, 2) high body mass index and waist 
circumference, 3) high total cholesterol and triglycerides, and low high-density lipoprotein, and 4) low-risk, and 
two latent classes among non-Hispanic Black women, characterized by: 1) high body mass index and waist 
circumference, and moderate-risk blood pressure, hbA1c, and c-reactive protein, and 2) low-risk. Allostatic load 
class membership and other maternal- and infant-level covariates were then included simultaneously as pre-
dictors of three separate dichotomous outcomes: preterm birth, macrosomia, and low birth weight in multilevel 
logistic regression models. In a separate multilevel linear regression model, the same variables were simulta-
neously entered to predict continuously measured birthweight. In multilevel, multivariate models, White women 
in the high-risk body mass index and waist circumference class, as compared to the high-risk blood pressure class, 
had infants with higher birthweights. Other comparisons were not significant or not of meaningful magnitude. 
Prioritizing temporality so that allostatic load measurement preceded first birth likely biased the composition of 
the analytical sample. Additional research is needed to help medical providers and public health practitioners 
understand the complex biological and social mechanisms underlying inequities in birth outcomes and identify 
prevention strategies.   

1. Introduction 

1.1. Preterm birth and birth weight 

Preterm birth (birth at less than 37 weeks of completed gestation) 
(Olson et al., 2015) and low birth weight (less than 2500 g) (Ely et al., 
2018; Xu et al., 2020) are the leading causes of infant morbidity and 
mortality in the United States. Preterm birth and low and high (more 
than 4000 g; macrosomia) birth weight are also associated with 
increased risk of cardiovascular disease, diabetes, and obesity in adult-
hood (Abu-Saad & Fraser, 2010; Danielzik et al., 2004; Fanaroff et al., 
2007; Harder et al., 2007; Malin et al., 2014; Mathews et al., 2013). In 
the U.S., Black women are much more likely to have preterm (14.4%) 

and low birthweight (14.2%) births than White women (9.3% preterm; 
6.9% low birthweight) (Martin et al., 2021). 

1.2. Racism and the Weathering Hypothesis 

A recent review paper concluded that racism, working through 
multiple pathways and biological mechanisms, is the major upstream 
contributor to the persistent Black-White disparity in preterm birth in 
the U.S. (Braveman et al., 2021). Racism in the U.S. makes it such that 
“the context for childbearing among African Americans may be quali-
tatively distinct from that experienced by more advantaged pop-
ulations” (pg. 215) (Geronimus, 1992). Specifically, “racism explains the 
racial disparity in socioeconomic factors— the legacy of slavery, 100 
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years of Jim Crow laws, racial residential segregation, and ongoing 
discrimination in housing, employment, policing, and sentencing” (pg. 
12), resulting in Black women being more exposed to stressful neigh-
borhoods, fast food outlets, environmental toxins, and worse childcare, 
education, and healthcare than White women (Braveman et al., 2021). 
This conclusion dovetails with The Weathering Hypothesis, which sug-
gests that racism, and associated cumulative life stressors, “weather” 
persons of color in the United States more quickly than White in-
dividuals. This “weathering” is thought to accumulate, wear down the 
body’s adaptive systems, and increase an individual’s vulnerability to 
disease (Geronimus et al., 2006). The cumulative socioeconomic 
disadvantage and racism experienced by Black women is hypothesized 
to cause their reproductive functioning to deteriorate more rapidly than 
that of White women (Geronimus, 1992, 1996; Seckl, 1998). 

1.3. Allostatic load 

The concept of allostatic load captures the prolonged activation of 
biomarkers as an organism attempts to maintain allostasis (homeostasis) 
in the face of environmental, genetic, and individual influences (McE-
wen & Stellar, 1993). Allostatic load is useful in characterizing the cu-
mulative ‘wear and tear,’ or weathering, of multiple biological systems 
caused by stressors (McEwen & Wingfield, 2003), and has been used in 
previous research to link biomarkers of maternal stress with birth out-
comes (Olson et al., 2015; Wallace et al., 2013a, 2013b). 

1.4. Linking individual biomarkers of stress with birth outcomes 

Several studies have looked at the associations between individual 
biomarkers (such as blood pressure, cholesterol, etc.) of pre-pregnancy 
health and subsequent birth outcomes, with mixed results (Harville 
et al., 2011; Magnussen et al., 2011; Moayeri et al., 2017; Smith et al., 
2018; Witt et al., 2014). We are only aware of two studies that moved 
beyond individual biomarkers to explore the association between a cu-
mulative risk measure (the sum of several individual biomarker in-
dicators) of pre-pregnancy allostatic load and subsequent birth 
outcomes (Wallace et al., 2013a, 2013b). Both of these studies found no 
association. However, both studies drew from small town samples with 
young ages at biomarker collection (12 and 14.6 years) and first birth 
(21.4 years). The lack of association between pre-pregnancy allostatic 
load and subsequent birth outcomes could be due to limited exposure 
periods and the fact that variable-centered cumulative risk models, 
which describe associations between variables and their relative pre-
diction of an outcome, assign equal weight to each biomarker and treat 
biomarkers as interchangeable. Thus, individuals can qualify as having 
high allostatic loads while presenting different biomarker profiles. We 
hypothesize that these variable-centered models fail to capture the 
complexities inherent in the accumulation of stress over a lifetime 
(weathering). Studies focused on individual risk factors also fail to ac-
count for their interconnection; person-centered approaches that cluster 
individuals based on their patterns of multiple existing health conditions 
among U.S. adults could provide new insights (Barnett et al., 2012; Boyd 
& Kent, 2014; Guthrie et al., 2012; Larsen et al., 2017). 

1.5. What this study adds 

The present study uses data from the National Longitudinal Study of 
Adolescent to Adult Health (Add Health) to examine the existence and 
strength of an association between women’s membership in latent 
classes defined by patterns of biomarkers of maternal pre-pregnancy 
health and subsequent infant preterm birth and birthweight. We hy-
pothesized that women in classes characterized by higher-risk allostatic 
load would have worse birth outcomes (i.e., more likely to have a pre-
term birth or an infant that is high or low birthweight) than women in 
lower-risk classes. We use latent class analysis (LCA), a holistic, person- 
centered technique that groups women with similar patterns of (both 

measured and unmeasured) allostatic load. In addition to the strength of 
capturing patterns and potential interactions of factors through LCA, we 
use biomarkers as objective measures of preconception allostatic load in a 
population-based sample. Our respondents were between 24 and 34 
years old at biomarker collection, and between 33 and 43 years old at 
age of first birth, capturing greater exposure periods (or more potential 
weathering) in a more diverse and larger sample than the Wallace et al. 
studies. These strengths may better detect the weathering effects of 
racism and associations with birth outcomes. 

2. Methods 

2.1. Data source 

Add Health, launched to comprehensively study adolescent health 
and development in the context of peers, school, family, and neighbor-
hood, recruited participants in grades 7–12 through their school in 
1994–1995. All students who were in a sample of middle (n = 52) and 
high (n = 80) schools in the United States on the administration day took 
the in-school questionnaire (n = 90,000). Add Health also oversampled 
siblings, twins, and several racial/ethnic groups that are typically un-
derrepresented in surveys, resulting in a sample of 20,745 respondents 
selected to complete the Wave I in-home interview (Harris et al., 2013). 
All eligible Wave I respondents were invited to participate in each 
subsequent wave. The allostatic load biomarkers for the present analyses 
are from the Wave IV dataset, collected in 2008, when respondents were 
aged 24–34. Over 99% of respondents consented to anthropometric and 
blood pressure measurement at Wave IV, and 95% consented to blood 
spot collection (Harris et al., 2013). To ensure that biomarker collection 
preceded the birth, we included only births that occurred after the Wave 
IV interview, as reported at Wave V (collected in 2016–2018). 

2.2. Sample 

Present analyses are restricted to individuals with a valid Wave V 
survey weight (n = 12,300) and region information (n = 12,057), who 
were female (n = 6134) and were not missing the birth section of the 
questionnaire (n = 6011). We also restrict to women who were not 
pregnant or probably pregnant (n = 5599) or in prison (n = 5593) at the 
time of Wave IV biomarker collection and were not missing information 
for more than 5 biomarkers (n = 5543). Women in our sample had to 
have at least one singleton birth that is reported at Wave V (n = 3097) 
with complete data on the infants’s biological sex, and birth month and 
year (n = 2085). Hispanic, non-Hispanic Asian, and women of “other” 
race were removed from our sample, for a latent class analysis sample 
size of 1644 women.1 We then removed women who had given birth 
before Wave IV, resulting in a birth sample of 797 unique women giving 
birth to 1260 infants. 

We excluded women who were pregnant or who had previously 
given birth at the time of biomarker collection because pregnancy is an 
inherently altered physiological state independent of allostatic load 
(Shannon et al., 2007), and parous and nulliparous women may differ on 
important metrics of allostatic load (Li et al., 2019). Multiple births 
(twins, triplets, etc.) are excluded because they are often delivered 
earlier and are smaller birthweight than singleton births (Martin et al., 
2021). 

1 Our goal was to include Hispanic and non-Hispanic White, Black, and Asian 
women. However, our latent class analysis, stratified by race, resulted in a one 
class solution for both Hispanic and non-Hispanic Asian women, forcing us to 
reduce our sample to only non-Hispanic White and Black respondents (n =
1,644). 
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2.3. Biomarker measurement in Add Health 

At Add Health Wave IV, after consent was obtained, trained and 
certified field interviewers measured height and weight, which were 
used to compute the body mass index (BMI) of participants. Waist 
circumference was taken at the top of the hip bone using a circumference 
tape measure. Systolic and diastolic blood pressure (SBP and DBP, 
respectively) and pulse rate (PR) measurements were taken using 
oscillometric blood pressure monitors while the participant was in a 
seated position. 

Using standard procedures, interviewers pricked a finger and then 
collected blood using a 7-spot capillary whole blood collection card 
(Entzel et al., 2009). From these samples, glycohemoglobin (hbA1c), an 
integrated measure of blood glucose control over the preceding 2–3 
months, triglycerides (TG), low-density lipoprotein, high-density lipo-
protein (HDL), and high sensitivity C-reactive protein (CRP) levels were 
assayed. Additional details on the collection and measurement of bio-
markers in Add Health are available here: https://www.cpc.unc.edu/p 
rojects/addhealth/documentation/guides. 

2.4. Measuring allostatic load 

We used the ten biomarkers available in Add Health to group women 
based on latent classes of allostatic load. Consistent with previous 
allostatic load work, our latent class analysis was based on biomarkers 
dichotomized at high-risk cutpoints at the 75th/25th percentile (Seeman 
et al., 1997), but we also categorized the biomarker indicator as 
high-risk if the respondent reported a doctor or nurse ever telling them 
that they had that condition or if they took a medication for that con-
dition. Data quality prohibited the release of exact biomarker values for 
women for total cholesterol (TC), TG, and HDL in Add Health (Whitsel, 
2016). For these biomarkers, we only have decile cutoffs. To be con-
servative, we set our cutpoints for these biomarkers at the 8th decile for 
TC and TG and the 2nd decile for HDL (low, not high, HDL is considered 
high-risk). 

Previous diagnoses of high blood pressure, cholesterol, or diabetes 
were captured with questions asking whether “a doctor, nurse or other 
health care provider ever told you that you have or had” that condition. 
If a respondent answered yes to the blood pressure question, they were 
coded as high-risk on both systolic and diastolic blood pressure, since we 
are unable to differentiate which was elevated based on the question. 
Similarly, if a respondent answered yes to the cholesterol question, they 
were coded as high-risk on total cholesterol, triglycerides, and HDL 
cholesterol. 

At Wave IV, respondents were also asked about prescription medi-
cations they had taken in the last four weeks. When possible, the 
interviewer asked to see the medication and typed the name of each 
medication into the computer. Add Health then categorized medications 
based on the Multum Lexicon with this protocol: https://addhealth.cpc. 
unc.edu/wp-content/uploads/docs/user_guides/Medication_Document 
ation.pdf. 

Respondents were coded as high-risk on: SBP and DBP if they were 
taking any blood pressure medication; hbA1c if they were taking any 
diabetes medication; CRP if they were taking any anti-inflammatories; 
and/or TC, TG, and HDL if they were taking any antihyperlipidemic 
medication. 

2.5. Measuring birth outcomes 

Birthweight is a continuous outcome based on mother’s report. We 
created dichotomized indicators of: macrosomia (births greater than 
4000 g) and low birth weight (less than 2500 g). Preterm birth was 
assessed based on mother’s response to the question “a preterm delivery 
is one that occurs before 37 weeks in pregnancy (more than 3 weeks 
early). Was this baby born preterm?” 

2.6. Maternal-level covariates 

We created the following race/ethnicity categories based on re-
spondent’s self-reported race/ethnicity at Wave V: Black or African 
American, non-Hispanic, and White, non-Hispanic. Educational attain-
ment was dichotomized as college degree or higher vs. no college de-
gree. We created dichotomized measures of whether the respondent 
reported pre-pregnancy: 1) binge drinking (4 or more drinks in a row for 
females) monthly or more frequently in the last year, and 2) smoking 
cigarettes on one or more days in the last 30 days. All covariates were 
selected based on prior literature (Athyros et al., 2013; Bailey & Sokol, 
2011; Bhattacharya et al., 2010; Goldwater et al., 2019; Patra et al., 
2011; Richardson et al., 2021; Wallace et al., 2013a,b). 

2.7. Infant-level covariates 

All infant-level covariates were assessed at Wave V. Mother’s age and 
the birthdate of the infant were used to calculate mother’s age at the 
birth of the focal infant. Infant’s biological sex is assessed with the 
question: “was this baby a boy or a girl?” Female infant is the referent 
category. Parity is categorized for each infant as first, second, and third 
or higher order birth. We created dichotomized measures of: 1) cigarette 
smoking during pregnancy, 2) whether or not the respondent was 
married to the pregnancy partner, and 3) receipt of prenatal care. We 
had so few respondents that did not receive prenatal care that this 
variable was ultimately dropped from the analysis. All covariates were 
selected based on prior literature (Bhattacharya et al., 2010; Di Renzo 
et al., 2007; Kramer, 1987; Murata et al., 1992; Shah et al., 2011). 

2.8. Statistical analysis 

We conducted analysis on two samples: LCA on women (n = 1644) 
and regressions on births (n = 1260) by a sample of those women (n =
797). Sample sizes are not the same because non-nulliparous women 
were removed from the analysis after the latent classes were built. 
Following standard LCA model fitting practice, we fit a series of models 
with an increasing number of classes, and each of these models was 
examined using various indices (the AIC, BIC, ssBIC, and Lo-Mendell- 
Rubin adjusted likelihood ratio test), classification uncertainty, and 
model interpretability, to select the best-fitting model. We examined 
results to determine whether or not class solutions should be stratified 
by race. Women were assigned to a latent class that had the highest 
probability of membership. 

Allostatic load class membership and other maternal- and infant- 
level covariates were included simultaneously as predictors of three 
separate dichotomous outcomes: preterm birth, macrosomia, and low 
birth weight in multilevel logistic regression models. In a separate 
multilevel linear regression model, the same variables were simulta-
neously entered to predict continuously measured birthweight. To 
determine if we needed to stratify birthweight by term and preterm, we 
tested for interactions of term/preterm with each of our predictor var-
iables in the birthweight model. 

In Stata 16.1, data were coded and associations between predictors 
and birth outcomes were assessed. Latent class analyses and appropriate 
fit statistics were conducted in MPlus 8.4. Add Health has a complex 
survey design. Therefore, weighting is done for representativeness in 
latent class and regression analyses. In addition, regression analyses 
account for clustering at two levels: births within mothers and mothers 
within the schools where they were originally sampled, by using 
multilevel modeling. This study was deemed “not human subjects 
research” by the Institutional Review Board at The University of North 
Carolina at Chapel Hill. 
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3. Results 

3.1. Descriptive statistics 

The range, high-risk cutpoint, and weighted: mean, standard devia-
tion, and prevalences of women categorized as high-risk for each 
biomarker, stratified by race, are displayed in Appendix Table 1. Aver-
aged over the full sample, most of the biomarkers are fairly close to 
ideal. However, the mean BMI is in the “overweight” category. Non- 
Hispanic Whites and Blacks statistically significantly differed on the 
percentages categorized as high-risk on seven biomarkers. Black women 
were more likely to be high-risk on SBP, hbA1c, BMI, and WC, while 
White women were more likely to be high-risk on CRP, TC, and TG. This 
suggests that the health profiles of young adult women in our sample 
vary by race. 

3.2. Enumeration of latent classes 

In stratified analyses we found different class solutions by race. In 
each of our race-stratified solutions, our log likelihood, AIC, BIC, and 
ABIC all decreased as the number of classes increased, suggesting that a 
greater number of classes fit the data progressively better. Among non- 
Hispanic Whites, the decreases in AIC, BIC, and ABIC began to level off 
after the 4-class solution, and the Lo-Mendell-Rubin Adjusted Likelihood 
Ratio Test also favors a 4-class solution (Appendix Table 2). Among non- 
Hispanic Blacks, the decreases in AIC, BIC, and ABIC began to level off 
after the 2-class solution, and the Lo-Mendell-Rubin Adjusted Likelihood 
Ratio Test also favors a 2-class solution (Appendix Table 2). Since classes 
were distinct (all classification probabilities were 0.91 or greater) and 
entropy was relatively high (0.805 for our Black 2-class solution, and 
0.908 for our White 4-class solution), women were fixed in these classes 
for subsequent analyses (Clark and Muthén, 2009). 

3.3. Latent classes by race 

Among non-Hispanic Whites, class 1 (n = 104) comprised 8% of the 
weighted sample and was characterized by a high predicted probability 
(defined as >0.70) of high-risk TC (0.921), TG (1.000), and HDL 
(0.755), but low predicted probabilities (defined as <0.5) of being high- 
risk on the other biomarkers. Class 2 (n = 199) comprised 16% of the 
sample and was characterized by a high predicted probability of high- 
risk SBP (0.960) and DBP (0.820). Class 3 (n = 289) comprised 23% 
of the sample and was characterized by a high predicted probability of 
high-risk BMI (0.885) and WC (0.983). Non-Hispanic White class 4 (n =
666) comprised 53% of the sample and was characterized by low 

predicted probabilities of being high-risk on all 10 biomarkers (Appen-
dix Table 3). 

Among non-Hispanic Black women, class 1 (n = 228) comprised 59% 
of the weighted sample and was characterized by a low predicted 
probability of being high-risk on all biomarkers. Class 2 (n = 158) 
comprised 41% of the sample and was characterized by high predicted 
probabilities of being high-risk on BMI (0.935) and WC (0.834), and 
moderately high (between 0.7 and 0.5) predicted probabilities of being 
high-risk on SBP (0.585), DBP (0.531), HbA1c (0.587), and CRP (0.601) 
(Appendix Table 4). 

3.4. Woman- and birth-level descriptive statistics 

White women were statistically significantly more likely than Black 
women to have smoked (36% vs. 18%) or binge drank (46% vs. 16%) 
pre-pregnancy (Table 1), and to be married to their pregnancy partner 
(90% vs. 51%) (Table 2). Focal births occurred between January 2008 
and December 2018. White women in the sample had more children 
than Black women (among White women, 33% had 2 children, and 6% 
had 3 or more children, compared with 22% and 0% of Black women, 
respectively) (Table 2). White women had infants with higher mean 
birthweights than Black women (3396 vs. 3095 g), while Black women 
were three times as likely to have a low birthweight birth (15% vs 5%) 
and twice as likely to have a preterm birth (18% vs. 9%) (Table 2).2 

3.5. Birth outcomes 

3.5.1. White women 
Preterm birth outcome. We present bivariate (Table 3 and Appendix 

Table 5) and multivariate (Table 3 and Appendix Table 6) results where 
preterm birth is the outcome in a binomial, multilevel logistic regres-
sion. In multivariate models, when the low-risk class is the reference 
category, no comparisons with other classes were statistically significant 
predictors of preterm birth (Table 3). However, when we look at com-
parisons with other classes, we see that being in the high-risk BMI and 
WC class (as compared to the high-risk SBP and DBP class) (OR = 6.63; 
95% CI 1.59, 27.65) was associated with increased odds of preterm birth 
in bivariate (Appendix Table 5), but not multivariate (Appendix Table 6) 
models. 

Birth weight outcome. We present bivariate and then multivariate 

Table 1 
Prevalence of woman-level predictors of birth outcomes by race (n = 797 unique women).   

Non-Hispanic White women (n =
666) 

Non-Hispanic Black women (n =
131) 

Comparing White vs. Black 
values 

n Weighted mean or % (95% 
CI) 

n Weighted mean or % (95% 
CI) 

Weighted χ2 p-value 

White allostatic load class 
Class 1: high-risk TC, TG, & HDL 69 9.46% (6.59, 12.33)  – – 
Class 2: high-risk SBP & DBP 110 18.71% (13.74, 23.67)  – – 
Class 3: high-risk BMI & WC 107 17.47% (13.33, 21.62)  – – 
Class 4: low-risk 380 54.36% (47.47, 61.24)  – – 
Black allostatic load class 
Class 1: low-risk  – 82 50.49% (39.80, 61.18) – 
Class 2: high-risk BMI & WC  – 49 49.51% (38.82, 60.20) – 
4-year degree or higher  65.07% (58.88, 71.27)  62.53% (49.09, 75.97) 0.719 
Smoker (pre-pregnancy)  36.21% (31.56, 40.86)  17.68% (7.46, 27.89) 0.001 
Binge drinking monthly or more frequently (pre- 

pregnancy)  
45.87% (41.38, 50.36)  16.06% (7.29, 24.83) 0.000 

All variables in this table are from wave IV. Sample sizes (ns) are not weighted. 
Table abbreviations: SBP: Systolic blood pressure. DBP: Diastolic blood pressure. BMI: Body mass index. WC: Waist circumference. TC: Total cholesterol. TG: Tri-
glycerides. HDL: High-density lipoprotein. 

2 Low birthweight and macrosomia were not associated with our allostatic 
load classes for White or Black women, so they are not included as outcomes in 
subsequent results or tables. 
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results of a variety of predictors where birth weight is the outcome in a 
multilevel linear regression. In multivariate models with allostatic load 
class, preterm birth, and all of our other predictors simultaneously, 
being in the high-risk BMI and WC class, when compared to the high-risk 
SBP and DBP class, was associated with higher birthweight in the 
multivariate model (179.73 g; 95% CI 17.04, 342.41) (Appendix 
Table 6). 

3.5.2. Black women 
In Table 4, we present the findings of multilevel logistic regression on 

preterm birth, and linear regression on infant birth weight, among Black 
women. Allostatic load class was not associated with any of these birth 
outcomes in bivariate or multivariate models. 

4. Discussion 

This study used a population-based U.S. sample to explore whether 
there were associations between allostatic load class membership and 
birth outcomes, specifically birthweight and whether or not the infant 
was preterm or high or low birthweight. In multivariate models, the 
allostatic load class characterized by White women with high-risk BMI 
and WC had infants with higher birthweights than women in the high- 
risk SBP and DBP class. Overall, however, the allostatic load classes 
were not associated with birth outcomes, especially when higher risk 
classes were compared with the low-risk class. 

Our findings that the allostatic load class characterized by White 
women with high-risk BMI and WC was associated with higher infant 
birthweight (than infants from mothers in the high-risk SBP and DBP 
class) is consistent with previous findings. Previous studies have found 
that heavier women have heavier babies (Lutsiv et al., 2015; Vinturache 
et al., 2017), and that chronic maternal hypertension is associated with 
an increased likelihood of having a low birthweight infant (Bramham 
et al., 2014). However, membership in our high-risk BMI and WC class 
was not predictive of increased odds of macrosomia, which suggests that 
birthweights of infants born to heavier moms remain in the “normal” 
range, and therefore are not a cause for concern. 

We hypothesized that a person-centered approach would allow us to 
identify more nuanced patterns of allostatic load, which in turn would 
allow for a more thorough examination of linkages between allostatic 
load and birth outcomes. We anticipated that women in the high-risk 
allostatic load classes, compared to the low-risk class, would have 
worse birth outcomes. Our results do not support this hypothesis. Pre-
vious literature indicates that many factors interact to influence birth 
weight (Wilcox, 2010) and preterm birth. As with other work, our 

classes fail to capture all the factors and interactions that are relevant to 
predict birth outcomes. Despite preterm birth being “one of the greatest 
unmet medical challenges” (pg. 29856) (Olson et al., 2015), our current 
collective understanding can likely only explain about 50% of the 
variation in the cause of preterm birth (Kramer et al., 2013). Thus, 
additional work is needed, perhaps capturing chronic structural fea-
tures, to better understand how maternal stressors over the life course 
get under the skin to influence biomarkers of health and subsequent 
birth outcomes. 

We did not directly test Black/White differences in coefficients from 
our bi- and multivariate models. However, we found different class 
structures for White and Black women. It is unclear whether the two 
class solution for Black women reflects a reliable pattern or is a function 
of a smaller sample size and less power. We hypothesize that with a 
larger sample of Black women, we would have seen classes that are 
similar to those seen for White women. 

4.1. Limitations 

A limitation of this study is that we did not have the sample size to 
tease out classes of Black women characterized exclusively by high-risk 
BMI and WC and high-risk SBP and DBP as we did with the White 
women. In other work using a larger sample of Black women from the 
Add Health sample (i.e., not restricted to the temporality of births in 
relation to the allostatic load measurement), we found class solutions 
that were almost identical for Black and White women (Barry et al., 
2022). This suggests that the two class solution for Black women pre-
sented in this paper was primarily a result of sample size, and is not a 
substantive finding. 

All measures, other than our biomarkers and medication usage, are 
based on self-report, and may be recalled inaccurately or reflect social 
desirability. Results are mixed on whether mothers can accurately report 
preterm births (Adegboye & Heitmann, 2008; Casey et al., 1992; Dietz 
et al., 2014; Hakim et al., 1992; Keenan et al., 2017; McCormick & 
Brooks-Gunn, 1999; Sou et al., 2006; Yawn et al., 1998), but a review 
article of 14 studies puts the correlation between maternal recall of 
gestational age and medical records at around 0.9 (Sou et al., 2006). A 
study asking a categorical question similar to the one in Add Health 
found that mothers were able to reliably report that their infants were on 
time, late, or early, even though they were unable to accurately report 
exact gestational age (Yawn et al., 1998). 

Birth weight is the result of both gestational age and intrauterine 
growth restriction, and we were unable to distinguish between these two 
predictors because we do not have direct measures of them. A potential 

Table 2 
Prevalence of infant-level predictors of birth outcomes by race (n = 1260 infants)   

Infants of White women (n = 1,083) Infants of Black women (n = 177) Comparing White vs. Black values 

Weighted mean or % (95% CI) Weighted mean or % (95% CI) Weighted χ2 p-value 

Birthweight (grams) 3395.67 (3348.71, 3442.64) 3095.11 (2888.21, 3302.00) 0.005 
Macrosomia 10.35% (7.72, 12.98) 4.94% (0.00, 10.08) 0.061 
Low birth weight 4.76% (3.14, 6.38) 15.47% (8.01, 22.94) 0.006 
Preterma 9.07% (6.76, 11.38) 17.83% (10.12, 25.55) 0.037 
Mother age at birth (years) 32.46 (32.14, 32.77) 32.76 (32.02, 33.49) 0.445 
Infant biological sex- male 48.72% (45.88, 51.55) 46.17% (36.75, 55.60) 0.604 
Parity 
First 61.45% (59.15, 63.76) 78.22% (71.93, 84.52) 0.000 
Second 32.97% (30.90, 35.04) 21.54% (15.34, 27.73) 0.000 
Third or higher order 5.57% (3.94, 7.21) 0.24% (0.00, 0.53) 0.000 
Mother smoked during pregnancy 7.02% (4.24, 9.81) 4.47% (0.12, 8.83) 0.281 
Mother married to pregnancy partner 89.52% (86.83, 92.21) 51.26% (39.47, 63.06) 0.000 

All variables in this table are from wave V 
a A preterm birth is a birth that occurred at less that 37 weeks of completed gestation. 
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Table 3 
White women-bivariate and multivariate results with preterm birth and birth weight outcomes (n = 1083 births to 666 women)   

Preterm birth (less than 37 weeks) Birth weight (continuous grams) 

Odds Ratio (95% CI) Coefficient (95% CI) 

Bivariate model Multivariate model Bivariate model classes + PTB Multivariate model 

Maternal-level covariates 
Allostatic load class 
Class 1: high-risk TC, TG, & HDL 0.59 (0.17,2.08) 0.62 (0.18, 2.12) − 16.58 (− 133.96, 100.80) − 45.42 (− 162.17, 71.33) − 42.73 (− 173.65, 88.19) 
Class 2: high-risk SBP & DBP 0.38 (0.12, 1.24) 0.45 (0.14, 1.43) − 21.90 (− 137.14, 93.35) − 58.70 (− 167.64, 50.23) − 61.61 (− 171.33, 48.12) 
Class 3: high-risk BMI & WC 2.52 (0.87, 7.31) 1.87 (0.64, 5.48) 10.91 (− 184.08, 205.89) 61.59 (− 124.69, 247.88) 118.12 (− 64.89, 301.13) 
Class 4: low-risk – – – –  
4-year degree or higher 0.41* (0.17, 0.97) 0.52 (0.22, 1.22) − 8.94 (− 121.59, 103.72)  − 61.01 (− 166.25, 44.24) 
Smoker (pre-pregnancy) 1.43 (0.54, 3.77) 1.37 (0.55, 3.44) − 69.52 (− 192.57, 53.53)  − 35.00 (− 134.89, 64.88) 
Binge drinking monthly or more frequently (pre-pregnancy) 0.41 (0.17, 1.02) 0.43* (0.21, 0.90) 122.15* (23.07, 221.23)  121.68** (32.18, 211.18) 
Birth-level covariates 
Mother age at birth 0.94 (0.79, 1.12) 0.96 (0.84, 1.09) 14.63* (0.91, 28.34)  − 4.66 (− 20.55, 11.23) 
Infant biological sex- male 0.69 (0.35, 1.36) 0.79 (0.41, 1.51) 152.80*** (90.23, 215.38)  141.30*** (83.18, 199.43) 
Parity 
First – – –  – 
Second 0.61 (0.30, 1.26) 0.66 (0.32, 1.34) 120.40*** (67.42, 173.38)  114.16*** (49.81, 178.51) 
Third or higher order 1.06 (0.15, 7.35) 1.22 (0.22, 6.70) 72.00 (− 57.32, 201.32)  106.41 (− 26.93, 239.75) 
Mother smoked during pregnancy 2.24 (0.41, 12.10) 1.55 (0.30, 7.95) − 260.80** (− 422.94, − 98.67)  − 256.30** (− 417.22, − 95.39) 
Married to pregnancy partner 1.17 (0.43, 3.18) 2.34 (0.67, 8.13) − 7.51 (− 186.22, 171.20)  − 70.07 (− 247.33, 107.19) 
Preterm birth – – − 773.96*** (− 951.32, − 596.59) − 786.01*** (− 963.37, − 608.66) − 751.31*** (− 922.19, − 580.43) 

In bivariate models each predictor is run individually with each outcome. 
Table abbreviations: PTB: Preterm birth. SBP: Systolic blood pressure. DBP: Diastolic blood pressure. BMI: Body mass index. WC: Waist circumference. TC: Total cholesterol. TG: Triglycerides. HDL: High-density li-
poprotein. 
*p < 0.05, **p < 0.01, ***p<0.001. 
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Table 4 
Black women-bivariate and multivariate results with preterm birth and birth weight outcomes (n = 177 births to 131 women)   

Preterm birth (less than 37 weeks) Birth weight (continuous grams) 

Odds Ratio (95% CI) Coefficient (95% CI) 

Bivariate model Multivariate model Bivariate model classes + PTB Multivariate model 

Maternal-level covariates 
Allostatic load class 
Class 1: high-risk BMI & WC 1.40 (0.38, 5.14) 1.29 (0.30, 5.46) 47.26 (− 315.25, 409.77) 91.19 (− 188.31, 370.68) 96.24 (− 158.99, 351.47) 
Class 2: low-risk – – –  – 
4-year degree or higher 0.96 (0.23, 3.94) 1.47 (0.27, 7.99) 189.08 (− 174.26, 552.43)  201.98 (− 160.37, 564.33) 
Smoker (pre-pregnancy) 1.61 (0.49, 5.30) 1.86 (0.35, 9.92) − 188.38 (− 642.36, 265.60)  − 153.76 (− 496.30, 188.78) 
Binge drinking monthly or more frequently (pre-pregnancy) 1.01 (0.22, 4.67) 0.94 (0.11, 7.89) 210.13 (− 122.80, 543.05)  287.25* (37.77, 536.72) 
Birth-level covariates 
Mother age at birth 0.86 (0.66, 1.11) 0.83 (0.61, 1.12) 33.95 (− 20.56, 88.46)  − 7.71 (− 37.09, 21.67) 
Infant biological sex- male 2.60 (0.68, 9.94) 2.71 (0.52, 14.02) 169.94 (− 86.47, 426.35)  304.17*** (145.00, 463.34) 
Parity 
First – – –  – 
Second a a 436.54** (175.13, 697.94)  253.03* (7.23, 498.83) 
Third or higher order a a 35.54 (− 156.25, 227.33)  − 266.40* (− 477.58, − 55.22) 
Mother smoked during pregnancy a a − 42.02 (− 668.83, 584.79)  − 59.09 (− 694.84, 576.65) 
Married to pregnancy partner 0.88 (0.28, 2.72) 1.16 (0.34, 4.02) 167.92 (− 158.01, 493.86)  75.63 (− 148.31, 299.57) 
Preterm birth – – − 999.81*** (− 1463.32, − 536.30) 1005.38*** (− 1476.86, − 533.89) − 996.15*** (− 1395.30, − 597.00) 

In bivariate models each predictor is run individually with each outcome. 
Table abbreviations: PTB: Preterm birth. SBP: Systolic blood pressure. DBP: Diastolic blood pressure. BMI: Body mass index. WC: Waist circumference. TC: Total cholesterol. TG: Triglycerides. HDL: High-density li-
poprotein. 
*p < 0.05, **p < 0.01, ***p<0.001. 
a This variable has been dropped from the model due to inadequate cell size. 
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issue of collider stratification bias with gestational age as a collider and 
birthweight as the outcome could exist (Whitcomb et al., 2009). To 
assess the need to stratify our birthweight outcome by term and preterm, 
we tested for interactions by term and preterm for each of our predictor 
variables with birthweight as the outcome; only pre-pregnancy monthly 
binge drinking was significant. Given this outcome, collider stratifica-
tion bias does not appear to be a meaningful issue. Another limitation is 
our inability to distinguish between spontaneous and medically indi-
cated preterm birth. 

For several reasons, our results may not be generalizable to all U.S. 
women and their births. Since biomarkers were drawn at Wave IV, and 
biomarker collection needed to precede birth, we were only able to 
examine births that occurred after the Wave IV interview, at the average 
age of birth at 32 years in our sample, resulting in a higher age at first 
birth than the U.S. average (the mean age of first birth for: Black women 
was 22.8 in 2008 and 25.1 in 2018; White women was 25.3 in 2008 and 
27.7 in 2018) (Martin et al., 2021). A comparison of Add Health mothers 
who were included vs. excluded from our sample found selection bias. 
Black and White women who were in our sample were more socioeco-
nomically advantaged than women who were not in our sample. This 
means that we are missing many of the most disadvantaged or 
“weathered” women, who likely would have already had children before 
Wave IV. Consistent with the two studies that are most similar ours (but 
used variable centered approaches) (Wallace et al., 2013a, 2013b), this 
study prioritized clear temporal order, with allostatic load measurement 
taken prior to any birth. This was an important strength of this study 
because we needed to ensure that allostatic load preceded, and was not 
the result of, or triggered by, poor birth outcomes. However, the tradeoff 
in prioritizing this temporal order was selection bias resulting from 
women who did vs. did not “delay” childbearing. Ultimately, in- and 
out-of-sample women are very different for both races, likely biasing our 
results towards the null. Thus, our null results could be due to significant 
selection bias rather than a lack of association between pre-pregnancy 
allostatic load and subsequent birth outcomes. 

Results are not generalizable to women in racial/ethnic groups with 
sample sizes too small for inclusion (non-Hispanic Asian, Hispanics, and 
women of other or mixed races). Two other findings suggest that our 
sample might not be fully generalizable to all U.S. women. The per-
centage of births that are preterm for non-Hispanic Black women in our 
sample (17.83%) is identical to the percentage of births born to non- 
Hispanic Black women aged 30–34 nationally in 2008 (17.8%) (Mar-
tin et al., 2010), but is elevated compared to the percent in 2018 (14.4%) 
(Martin et al., 2021). The elevated percentage of preterm births to Black 
women in the later years our sample (vs. Black women of a similar age in 
the U.S.) may reflect the fact that Black women in Add Health (as a 
whole and in our sample of women who delayed childbearing, in 
particular) are of higher socioeconomic status than the average Black 
woman in the U.S., and that Black women of higher (vs. lower) socio-
economic status have worse birth outcomes (Collins & Hammond, 1996; 
Kramer et al., 2010; Messer et al., 2010). Additionally, White women in 
our sample were slightly more likely to report smoking during preg-
nancy than the national average (Drake et al., 2018). 

Since biomarkers and other woman-level covariates were only drawn 
at one time point, and not preceding each birth, we may be missing 
important inter-pregnancy changes in biomarkers (such as changes in 
BMI, WC, blood pressure, etc.). 

4.2. Strengths 

Despite these limitations, this study contains a number of strengths. 
To our knowledge, it is the first to use a population-based sample of U.S. 
women to build classes based on pre-pregnancy biomarkers and inves-
tigate whether membership in those classes is associated with birth 

outcomes. This improves upon previous literature that looked at self- 
reported stressors or data-verified events prior to or during pregnancy 
that were assumed to be stressors. Of the previous studies that looked at 
the correlations between pre-pregnancy allostatic load and subsequent 
birth outcomes (Wallace et al., 2013a, 2013b), our sample is older, with 
more time for allostatic load challenges to accumulate, and draws from a 
population-based sample. 

4.3. Suggestions for future work 

Future research looking at the association between pre-pregnancy 
allostatic load and subsequent birth outcomes would benefit from 
larger sample sizes of persons of color, especially Black women, who 
have worse birth outcomes than White women in the U.S. It would be 
helpful to have maternal biomarkers at multiple time points, ideally 
before/between each birth, in order to explore how biomarkers of health 
change after pregnancy and birth, and go on to affect a subsequent birth. 
It would also be helpful for future researchers to investigate how the 
relationship between pre-pregnancy health and birth outcomes are 
mediated by pregnancy-related factors such as perinatal infections, 
pregnancy complications, and gestational weight gain. 

5. Conclusion 

In multivariate models, the allostatic load class characterized by 
White women with high-risk body mass index and waist circumference, 
compared to the class with high-risk systolic and diastolic blood pres-
sure, was associated with higher birthweight infants. Overall, however, 
the allostatic load classes among White and Black women were not 
associated with birth outcomes (continuous birthweight, and dichoto-
mous measures of low birth weight, macrosomia, and preterm birth), 
especially when high risk classes were compared with the low-risk class. 
Despite the study’s holistic approach and design strengths, we did not 
identify consistent patterns that could be used as key markers for pre-
vention purposes. Additional work is needed to expand on the context 
and lived experiences that affect women’s health and birth outcomes. 

Data source 
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(NICHD), with cooperative funding from 23 other federal agencies and 
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APPENDIX TABLES  

Table 1 
Descriptive statistics and high-risk cutpoint of each biomarker, prevalence of high-risk biomarkers by race   

Full sample (n = 1,644) By race  

White (n = 1,258) Black (n = 386)  

Range Mean (SD) High-risk cutpoint % high-risk (95% CI) % high-risk (95% CI) χ2 p-value White vs. Black 

Systolic blood pressure 77-193 120 (14) 126.5 29.5 (25.3, 34.1) 38.6 (31.3, 46.4) 0.0294 
Diastolic blood pressure 31-126 77 (11) 82 27.7 (24.1, 31.7) 34.9 (28.2, 42.3) 0.1483 
Pulse rate 44-118 75 (12) 81.5 23.4 (20.2, 27.0) 26.5 (20.4, 33.7) 0.4147 
HbA1c 5-15 5 (0.66) 5.8 12.0 (0.97, 14.8) 39.1 (30.7, 48.3) <0.001 
Body mass index 15-79 28 (8) 31.37 22.6 (19.7, 25.8) 45.6 (38.7, 52.8) <0.001 
C-reactive protein 0.08-185 6 (12) 6.85 47.4 (43.6, 51.3) 44.1 (37.9, 50.4) 0.0312 
Waist circumference 56-189 94 (19) 103.5 25.0 (21.8, 28.3) 39.2 (32.0, 46.9) 0.0001 
Total cholesterol 1-10 — decile 8 31.7 (28.9, 34.6) 21.1 (16.2, 26.9) 0.0032 
Triglycerides 1-10 — decile 8 24.0 (21.2, 26.9) 15.2 (10.9, 20.8) 0.0323 
HDL cholesterol 1-10 — decile 2 19.4 (16.9, 22.3) 16.4 (11.4, 23.0) 0.9408 

The mean, standard deviation, and all percentages in this table are weighted to account for the complex sampling design of Add Health. 
Both White and Black race are non-Hispanic. 
For SBP, DBP, PR, hbA1c, BMI, CRP, and WC, the high-risk cutpoint is at the 75th percentile.  

Table 2 
Latent class fit statistics (weighted), Non-Hispanic White and Black women  

Non-Hispanic White women (n ¼ 1,258) 
Number of classes Free Parameters Log likelihood AIC BIC ABIC Entropy LMR adj. LRT (p-value) 

1 10 − 7000.624 14021.25 14072.62 14040.86 NA NA 
2 21 − 6402.03 12846.07 12953.95 12887.24 0.913 0.0000 
3 32 − 6207.46 12478.92 12643.32 12541.67 0.913 0.0036 
4 43 − 6072.20 12230.40 12451.30 12314.71 0.908 0.0357 
5 54 − 6022.77 12153.53 12430.95 12259.42 0.883 0.6560 

Non-Hispanic Black women (n ¼ 386) 
Number of classes Free Parameters Log likelihood AIC BIC ABIC Entropy LMR adj. LRT (p-value) 

1 10 − 2313.64 4647.27 4686.83 4655.10 NA NA 
2 21 − 2163.73 4369.47 4452.54 4385.91 0.805 0.0578 
3 32 − 2098.47 4260.95 4387.53 4286.00 0.898 0.3003 
4 43 − 2059.61 4205.22 4375.32 4238.89 0.888 0.7435 
5 54 − 2031.50 4171.00 4384.61 4213.28 0.895 0.5464 

Note: LMR adj. LRT is the Lo-Mendell-Rubin adjusted likelihood ratio test.  

Appendix Table 3 
Latent class probabilities, Non-Hispanic White women (n = 1,258)     

High-risk cutpoint at the 75th % 80th % 20th % 

% n SBP DBP PR HbA1c BMI CRP WC TC TG HDL 

2-Class  
1 25% 318 0.507 0.450 0.400 0.301 0.856 0.635 0.906 0.374 0.466 0.289  
2 75% 940 0.222 0.218 0.178 0.059 0.011 0.419 0.025 0.297 0.162 0.162 

3-Class  
1 13% 159 1.000 0.925 0.245 0.036 0.030 0.619 0.062 0.310 0.105 0.118  
2 24% 301 0.494 0.436 0.403 0.310 0.887 0.634 0.928 0.382 0.481 0.294  
3 63% 798 0.066 0.076 0.167 0.066 0.015 0.382 0.029 0.293 0.176 0.173 

4-Class  
1 8% 104 0.206 0.228 0.279 0.156 0.093 0.356 0.000 0.921 1.000 0.755  
2 16% 199 0.960 0.820 0.261 0.055 0.051 0.622 0.058 0.265 0.045 0.086  
3 23% 289 0.495 0.440 0.402 0.299 0.885 0.638 0.983 0.375 0.479 0.283  
4 53% 666 0.032 0.060 0.149 0.058 0.017 0.380 0.030 0.217 0.081 0.105 

Notes for Appendix Tables 3 and 4. 
SBP, DBP, PR, hbA1c, BMI, CRP, and WC were dichotomized based on high-risk cutpoint at the 75th percentile. In the Add Health data, data quality prohibited the 
release of exact biomarker values for individuals for TC, TG, and HDL. For these biomarkers, we only have decile cutoffs. To be conservative, we set our cutpoints for 
these biomarkers at the 8th/2nd decile. 
All data are weighted to account for the complex sampling design of Add Health. 
Table abbreviations: n: number of people in that row. SBP: Systolic blood pressure. DBP: Diastolic blood pressure. PR: Pulse rate. HbA1c: hemoglobin. BMI: Body mass 
index. CRP: C-reactive protein. WC: Waist circumference. TC: Total cholesterol. TG: Triglycerides. HDL: High-density lipoprotein.  
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Table 4 
Latent class probabilities, Non-Hispanic Black women (n = 386)     

High-risk cutpoint at the 75th % 80th % 20th % 

% n SBP DBP PR HbA1c BMI CRP WC TC TG HDL 

2-Class  
1 59% 228 0.243 0.218 0.239 0.252 0.114 0.326 0.076 0.194 0.108 0.139  
2 41% 158 0.585 0.531 0.302 0.587 0.935 0.601 0.834 0.234 0.213 0.200 

3-Class  
1 32% 125 0.617 0.536 0.339 0.582 0.944 0.656 1.000 0.253 0.232 0.199  
2 22% 85 0.797 0.751 0.222 0.502 0.239 0.383 0.000 0.188 0.156 0.132  
3 46% 176 0.000 0.000 0.234 0.194 0.213 0.313 0.152 0.192 0.091 0.155 

4-Class  
1 22% 86 0.799 0.752 0.224 0.500 0.241 0.383 0.010 0.187 0.154 0.132  
2 42% 164 0.000 0.000 0.243 0.198 0.181 0.317 0.121 0.200 0.097 0.161  
3 8% 33 0.734 0.729 0.277 0.848 0.860 0.807 1.000 0.697 0.723 0.514  
4 27% 104 0.533 0.430 0.340 0.455 0.990 0.576 1.000 0.074 0.035 0.071   

Table 5 
Comparisons of allostatic load class coefficients in bivariate models among White women    

Preterm birth (less than 37 weeks) vs. not Birth weight (continuous grams) 

Odds Ratio (95% CI) Coefficient (95% CI)  

Class 1: high-risk TC, TG, & HDL vs. Class 2: high-risk SBP & DBP 0.64 (0.14, 2.87) − 5.32 (− 166.03, 155.39)  
Class 3: high-risk BMI & WC 4.27 (0.97, 18.79) 27.48 (− 209.65, 264.61)  
Class 4: low-risk 1.70 (0.48, 5.99) 16.58 (− 100.80, 133.96)  

Class 2: high-risk SBP & DBP vs. Class 3: high-risk BMI & WC 6.63** (1.59, 27.65) 32.80 (− 139.22, 204.82)  
Class 4: low-risk 2.63 (0.81, 8.61) 21.90 (− 93.35, 137.14)  

Class 3: high-risk BMI & WC vs. Class 4: low-risk 0.40 (0.14, 1.16) − 10.91 (− 205.89, 184.08) 

*p < 0.05, **p < 0.01, ***p<0.001. 
Table abbreviations: SBP: Systolic blood pressure. DBP: Diastolic blood pressure. BMI: Body mass index. WC: Waist circumference. TC: Total cholesterol. TG: Tri-
glycerides. HDL: High-density lipoprotein.  

Table 6 
Comparisons of allostatic load class coefficients in multivariate models among White women    

Preterm birth (less than 37 weeks) vs. not Birth weight (continuous grams) 

Odds Ratio (95% CI) Coefficient (95% CI) 

Class 1: high-risk TC, TG, & HDL vs. Class 2: high-risk SBP & DBP 0.73 (0.16, 3.35) − 18.87 (− 194.43, 156.68)  
Class 3: high-risk BMI & WC 3.02 (0.70, 13.10) 160.85 (− 71.08, 392.79)  
Class 4: low-risk 1.62 (0.47, 5.55) 42.73 (− 88.19, 173.65)  

Class 2: high-risk SBP & DBP vs. Class 3: high-risk BMI & WC 4.11 (0.98, 17.33) 179.73* (17.04, 342.41)  
Class 4: low-risk 2.20 (0.70, 6.95) 61.61 (− 48.12, 171.33)  

Class 3: high-risk BMI & WC vs. Class 4: low-risk 0.54 (0.18, 1.57) − 118.12 (− 301.13, 64.89) 

Multivariate model controlling for maternal-level covariates: maternal education; pre-pregnancy smoking; pre-pregnancy binge drinking; and infant/birth-level 
covariates: mother age at birth, infant biological sex, parity, mother smoked during pregnancy, and mother married to pregnancy partner. The birth weight model 
also controls for preterm birth. 
*p < 0.05, **p < 0.01, ***p<0.001. 
Table abbreviations: SBP: Systolic blood pressure. DBP: Diastolic blood pressure. BMI: Body mass index. WC: Waist circumference. TC: Total cholesterol. TG: Tri-
glycerides. HDL: High-density lipoprotein. 
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