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Progress in the genetic manipulation of the Desulfovibrio strains has provided an oppor-
tunity to explore electron flow pathways during sulfate respiration. Most bacteria in this
genus couple the oxidation of organic acids or ethanol with the reduction of sulfate, sulfite,
or thiosulfate. Both fermentation of pyruvate in the absence of an alternative terminal elec-
tron acceptor, disproportionation of fumarate and growth on H2 with CO2 during sulfate
reduction are exhibited by some strains. The ability to produce or consume H2 provides
Desulfovibrio strains the capacity to participate as either partner in interspecies H2 trans-
fer. Interestingly the mechanisms of energy conversion, pathways of electron flow and the
parameters determining the pathways used remain to be elucidated. Recent application
of molecular genetic tools for the exploration of the metabolism of Desulfovibrio vulgaris
Hildenborough has provided several new datasets that might provide insights and con-
straints to the electron flow pathways.These datasets include (1) gene expression changes
measured in microarrays for cells cultured with different electron donors and acceptors,
(2) relative mRNA abundances for cells growing exponentially in defined medium with lac-
tate as carbon source and electron donor plus sulfate as terminal electron acceptor, and
(3) a random transposon mutant library selected on medium containing lactate plus sulfate
supplemented with yeast extract. Studies of directed mutations eliminating apparent key
components, the quinone-interacting membrane-bound oxidoreductase (Qmo) complex,
the Type 1 tetraheme cytochrome c3 (Tp1-c3), or the Type 1 cytochrome c3:menaquinone
oxidoreductase (Qrc) complex, suggest a greater flexibility in electron flow than previously
considered. The new datasets revealed the absence of random transposons in the genes
encoding an enzyme with homology to Coo membrane-bound hydrogenase. From this
result, we infer that Coo hydrogenase plays an important role in D. vulgaris growth on
lactate plus sulfate. These observations along with those reported previously have been
combined in a model showing dual pathways of electrons from the oxidation of both lac-
tate and pyruvate during sulfate respiration. Continuing genetic and biochemical analyses
of key genes in Desulfovibrio strains will allow further clarification of a general model for
sulfate respiration.
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INTRODUCTION
The ability to obtain energy from substrate oxidation coupled with
sulfate reduction is a unique mechanism that is shared by a hetero-
geneous group of microbes that include proteobacteria, firmicutes
and archaea; mesophiles, thermophiles, and psychrophiles. While
this means of energy generation is restricted to anaerobes, these
sulfate-reducing microbes (SRM) are found in a wide variety of
environments including oxic waters and soils. Whereas oxygen at
high concentrations is toxic to SRM, large variations in sensitiv-
ity are observed (Sass and Cypionka, 2007). Oxygen is reduced
by many SRM perhaps as a protective mechanism because sus-
tained growth supported through oxygenic respiration has not
been demonstrated (Marschall et al., 1993; Hansen, 1994a).

Of this group of microbes, members of the δ-proteobacterial
genus Desulfovibrio have been most intensively studied because of
their rapid growth and ease of manipulation. Desulfovibrio vul-
garis Hildenborough was the first of the sulfate-reducing bacteria
to have its genome sequenced (Heidelberg et al., 2004). D. vulgaris
was also the first to be genetically manipulated through conju-
gation (Powell et al., 1989; van den Berg et al., 1989) and the
second to be modified by marker exchange mutagenesis (Fu and
Voordouw, 1997), after Desulfovibrio fructosovorans (Rousset et al.,
1991). Genome sequences of many more SRM are now available.1

1http://www.ncbi.nlm.nih.gov/sites/entrez
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Improved genetic tools have been developed (Wall et al., 1993;
Rousset et al., 1998; Bender et al., 2007; Keller et al., 2009; Zane
et al., 2010), transposon mutant libraries have been generated
(Groh et al., 2005; Deutschbauer, personal communication, and
this lab) and systems biology tools have been applied (Mukhopad-
hyay et al., 2006; Redding et al., 2006; Tang et al., 2007; Pereira
et al., 2008; He et al., 2010). Therefore this chapter will focus on
the contributions of molecular genetics to our understanding of
energy conversion in the Desulfovibrio strains. Confirmation that
these insights might be applicable to other SRM genera remain to
be established.

Our discussion will consider energy conversion by Desulfovibrio
strains grown with lactate as carbon and electron source and sulfate
as electron acceptor. Because electron flow from lactate oxidation
with sulfate reduction provides robust growth of Desulfovibrio,
data from systems biology approaches are now available from cells
grown on these substrates. Strengthening relevance, the released
fermentation products, lactate and H2, are likely to be the sources
of electrons found in natural environments where these bacte-
ria flourish. Currently many transcriptomic data and some pro-
teomic data have been generated2 and transposon libraries have
been selected with cells grown on these substrates (Deutschbauer,
personal communication, and Wall lab).

As a terminal electron acceptor, sulfate has four properties that
together give the SRM access to growth niches unavailable to
other microbes. First, sulfate is a thermodynamically stable oxi-
dized form of sulfur and must be activated prior to being reduced.
Second, sulfate is reduced by soluble enzymes in the cytoplasm
making active transport of the sulfate necessary because it is an
ionized species at physiological pHs (H2SO4; pKa1,−3; pKa2, 2).
Third, sulfide, HS- (H2S, pKa 6.9) the reduced product, is toxic
at elevated concentrations (Caffrey and Voordouw, 2010) and
must be transported out of the cell or defense systems invoked.
Fourth, the fact that the reductive enzymes are soluble and not
membrane-bound suggests that reduction of sulfate may not be
uniquely or tightly associated with an electron transport system in
the membrane.

The common sources of carbon and electrons used by SRM are
fermentation products from facultative anaerobes. Most Desul-
fovibrio strains are incomplete oxidizers of organic acids and
alcohols producing acetate in quantities nearly stoichiometric to
the added substrate (Postgate, 1984a; Rabus et al., 2006). There-
fore, about 95% of the carbon substrate oxidized by Desulfovibrio
strains is used for energy generation and the residual used to pro-
duce cell material (Noguera et al., 1998; Rabus et al., 2006). The
inability of these strains to oxidize acetate has been suggested to
result from the high reduction potential of the fumarate/succinate
couple (E0′ = 33 mV, Eq. 1, from Thauer et al., 1977) in the
standard TCA cycle (Thauer, 1989). Therefore, reduction of the
activated form of sulfate, adenosine 5′-phosphosulfate (APS, Eq.
2) or bisulfite (Eq. 3) cannot be coupled with succinate oxidation.

Fumarate+ 2e− + 2H+ = Succinate E0′ = 33 mV (1)

APS2− + 2e− +H+ = HSO−3 + AMP2− E0′ = −60 mV (2)

HSO−3 + 6e− + 6H+ = HS− + 3H2O E0′ = −116 mV (3)

2www.microbesonline.org

For those strains of the genus Desulfobacter or Desulfobacterium
that do completely oxidize organic acids to CO2 with sulfate as
electron acceptor, the standard TCA cycle is not used (Hansen,
1994a).

The Desulfovibrio pathway for lactate oxidation is through
pyruvate to acetyl-CoA and from acetyl-CoA to acetate via
acetylphosphate which is of sufficient energy to generate ATP by
substrate-level phosphorylation (See Eqs 4–8). Early researchers
believed that the SRM were restricted to substrate-level phospho-
rylation for ATP generation. However, the demonstration that
Desulfovibrio strains could grow with H2 oxidation, with car-
bon supplied by CO2 and acetate, and sulfate as terminal elec-
tron acceptor (Butlin et al., 1949; Peck, 1960) firmly established
the capacity for electron transport-linked phosphorylation. In
addition, Peck (1966) convincingly argued that a mechanism, in
addition to substrate-level phosphorylation, was essential during
lactate plus sulfate growth. Peck pointed out that the two moles
of ATP generated during the oxidation of two moles of lactate
would be consumed during sulfate activation. Therefore, energy
to support growth must be provided by an additional mechanism.

HYDROGEN CYCLING MODEL
Odom and Peck (1981a) proposed an unusual and controversial
model for increasing the energy budget called the“hydrogen cycle.”
This model was proposed, in part, as an explanation for the obser-
vation of a H2 transient seen in cultures of Desulfovibrio inoculated
into medium with lactate or pyruvate as electron donors and sul-
fate as electron acceptor. They proposed that electrons and protons
generated from organic acid oxidation could serve as substrates
for a cytoplasmically located hydrogenase. The resulting H2 could
diffuse through the cytoplasmic membrane and be reoxidized by
periplasmic hydrogenases. The electrons produced by the H2 oxi-
dation would be delivered to the c-type cytochrome pool for return
to the cytoplasm through transmembrane protein complexes and
used for sulfate reduction. The protons released would contribute
to the chemiosmotic potential.

In contrast, Lupton et al. (1984) proposed that trace H2 was
produced and consumed in the initial growth phases of Desul-
fovibrio cultures on organic acids plus sulfate to control redox
state of electron carriers. These researchers also provided evidence
that they interpreted as eliminating the argument that the pur-
pose of the transient H2 production was to allow fermentation to
make ATP for sulfate activation and reduction in growth initiation.
They showed that with thiosulfate as terminal electron acceptor, a
substrate that does not require activation prior to reduction, H2

was still produced and consumed when cells were introduced into
fresh medium.

Evidence both for and against the hydrogen cycling model has
been published. Odom and Peck (1981a) demonstrated that spher-
oplasts produced from Desulfovibrio gigas were unable to oxidize
lactate and reduce sulfate without the restoration of the periplas-
mic proteins, hydrogenase and the type I cytochrome c3 (Tp1-c3).
From this result it was inferred that electrons were routed from
lactate through the periplasm and back to sulfate. In addition,
Peck et al. (1987) were able to trap and measure H2 released by
D. vulgaris from pyruvate oxidation coupled to sulfate reduction
with membrane-inlet mass spectrometry. On the other hand, the
existence of free H2, predicted by the model to be a periplasmic
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intermediate in the oxidation of lactate or pyruvate, would lead to
the expectation that a H2 atmosphere would strongly inhibit oxi-
dation of these substrates. Lupton et al. (1984) showed that there
was no inhibition of lactate or pyruvate oxidation by H2 during
sulfate respiration. This lack of inhibition of substrate oxidation
by H2 was confirmed by Pankhania et al. (1986) for cells with lac-
tate. Also, a mutant of Desulfovibrio desulfuricans ATCC27774 was
isolated that could grow on lactate plus sulfate but not H2 plus
sulfate (Odom and Wall, 1987). This result is incongruent with
periplasmic H2 as an intermediate in lactate oxidation during sul-
fate reduction. In addition, if the cycling process – H2 production,
membrane diffusion and H2 oxidation – were essential for sulfate
respiration with organic acids, SRM should all have hydrogenases.
Desulfovibrio sapovorans is one example that lacks hydrogenase
(Postgate, 1984b).

More recent reviews have diminished the putative role of hydro-
gen cycling in the metabolism of the SRM. Widdel and Hansen
(1991) suggested that H2 production is simply an accident of hav-
ing constitutive hydrogenases active in the cell. Rabus et al. (2006)
proposed that constitutive hydrogenases would produce hydrogen
whenever there was an imbalance between reductant produced
or consumed by the cells. An alternative suggestion of the latter
researchers derived from the postulation that in natural environ-
ments the SRM participate routinely in interspecies H2 transfer
when sulfate is absent. As a result, SRM might not be able to redi-
rect electrons completely when sulfate was available, thus driving
the release of electrons as H2 (Rabus et al., 2006). In contrast to
these theories, Noguera et al. (1998) elegantly generated and tested
a model for H2 production and consumption by D. vulgaris grow-
ing on lactate plus sulfate. These researchers proposed that dual
pathways were operating, simultaneously, for electron flow and
that the free energy available determined the distribution of elec-
tron flow. Their model predicted 52% of the electron flow would
move from lactate through H2 and finally to sulfate; whereas, 48%
would move to sulfate without H2 formation. After subtraction
of the reductant moving to biomass, their experiments showed
that 47% of the remaining electrons were directly coupled to sul-
fate reduction and 53% formed H2 before being used for sulfate
reduction (Noguera et al., 1998).

SULFATE REDUCTION AND LACTATE OXIDATION
REACTIONS
The predicted pathways of sulfate reduction and lactate oxidation
are presented in the equations below (Eqs 4–16). Dissimilatory sul-
fate reduction occurs by a two step process requiring a minimum
of four enzymes (Table 1A). First sulfate is activated to form APS at
the expense of two ATP equivalents by sulfate adenylyltransferase.
Two electrons are then used by APS reductase to reduce APS to
HSO−3 (Eqs 10 and 12). The activation reaction is pulled by the
hydrolysis of the released pyrophosphate (Eq. 11). Then bisulfite
reductase reduces HSO−3 with six electrons to HS−, in one step
(Eq. 13). The equations show protonated species considering the
published pKa’s of the compounds3 and assuming that the internal
pH is ca. 7.5 (Cypionka, 1995). It should be noted that the pKa’s
of HSO2−

3 , H2S, and H2PO−4 are 7.2, 7.0, and 7.2, respectively,

3http://chemweb.unp.ac.za/Chemistry/Physical_data/pKa_complilation.pdf

and therefore the protonated and deprotonated forms were con-
sidered to be present in about equal quantities. The net result for
sulfate reduction (Eq. 14) indicates a consumption of eight moles
of electrons with eight and a half moles of protons.

Lactate oxidation by the incomplete oxidizers in the Desul-
fovibrio genus, proceeds with pyruvate and acetyl-CoA as inter-
mediates. Reductant is generated from lactate through lactate
dehydrogenase and pyruvate:ferredoxin oxidoreductase (Eqs 4 and
5), while acetyl-CoA is the source for substrate-level phosphoryla-
tion producing ATP (Eqs 6 and 7). Seven protons were produced in
the reactions as shown (Eq. 8). By interconversion of the adenylate
nucleotides (Eq. 15) and summing Eqs 8, 9, 14, and 15, the com-
bined oxidation/reduction reaction for growth with lactate plus
sulfate is shown as Eq. 16. With the assumptions made here, 0.5
mole of protons are produced in excess of those consumed dur-
ing reduction of one mole of sulfate. Clearly nitrogen metabolism,
biomass production, transport functions and/or small variations
in internal pH that affect the concentrations of protonated species
will all affect the actual balance of electrons and protons (Hooper
and DiSpirito, 1985).

EQUATIONS
Lactate oxidation:

2CH3CHOHCOO− = 2CH3COCOO− + 4e− + 4H+

Lactate dehydrogenase (4)

2CH3COCOO− + 2CoASH = 2CH3CO ∼ SCoA+ CO2

+ 4e− + 2H+ Pyruvate:ferredoxin oxidoreductase (5)

2CH3CO ∼ SCoA + H2PO−4 +HPO2−
4 = 2CH3CO ∼ OPO2−

3

+ 2CoASH+H+ Phosphotransacetylase (6)

2CH3CO ∼ OPO2−
3 + 2ADP3− = 2CH3COO− + 2ATP4−

Acetate kinase (7)

2CH3CHOHCOO− + 2ADP3− +H2PO2−
4 = 2CH3COO−

+ 2ATP4− + 2CO2 + 8e− + 7H+ Lactate oxidation summary
(8)

Dissolved CO2:

2CO2 + 2H2O = 2HCO−3 + 2H+ Carbonic anhydrase (9)

Sulfate reduction:

SO2−
4 + ATP4− +H + = APS2− +HP2O3−

7

Sulfate adenylyltransferase (10)

HP2O3−
7 +H2O = H2PO−4 +HPO2−

4

Inorganic pyrophosphatase (11)

APS2− + 2e− + 0.5H + = 0.5 HSO−3 + 0.5 SO2−
3 + AMP2−

APS reductase (12)

0.5 HSO−3 + 0.5 SO2−
3 + 6e− + 7H+ = 0.5 HS− + 0.5 H2S

+ 3 H2O Bisulfite reductase (13)

SO2−
4 + ATP4− + 8e− + 8.5H + = 0.5 HS− + 0.5 H2S + AMP2−

+ H2PO−4 + HPO2−
4 + 2 H2O Sulfate reduction summary

(14)
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Table 1 | Expression of genes encoding enzymes putatively involved in Lactate/Sulfate growth of Desulfovibrio vulgaris Hildenborough.

Locus

DVU

No. Gene Annotationa

Microarray data (Log2 R)b Average

Log2

RNA/DNAf

Tn in

geneg

Stat/Expoc LThio/LSd PS/LSe

A. SULFATE REDUCTION ENZYMES

1295 sat Sulfate adenylyltransferase (ATP-sulfurylase) 0.45 −1.07 −0.33 4.44 N

1636 ppaC Pyrophosphatase 0.52 −1.17 −0.24 2.52 N

h

←−
−− 0846 apsB Adenylsulfate reductase ß subunit −0.56 −0.99 0.39 4.90 N

0847 aspA Adenylsulfate reductase a subunit −0.58 −1.81 0.04 4.72 N

←−
−−
−−− 0402 dsrA Dissimilatory sulfite reductase alpha subunit −0.07 −0.33 0.69 4.32 N

0403 dsrB Dissimilatory sulfite reductase beta subunit −1.23 −0.18 0.88 4.19 N

0404 dsrD Dissimilatory sulfite reductase D −1.88 0.91 0.47 4.89 N

2776 dsrC Dissimilatory sulfite reductase, gamma

subunit

3.48 0.07 −0.87 3.39 N

B. CARBON METABOLISM ENZYMES

0253 D-ldh Lactate dehydrogenase, Glycolate

oxidoreductase, FAD/iron-sulfur

cluster-binding domain protein

−0.16 0.33 0.39 2.09 Y

0390 glcD FAD/FMN-containing dehydrogenase,

glycolate oxidase, subunit GlcD, putative

−0.97 0.28 0.26 0.11 Y

0600 ldh L-lactate dehydrogenase 1.20 0.22 −0.14 −1.32 Y←−−−−−

0826 NAi Glycolate oxidase, iron-sulfur subunit,

putative

0.47 −0.51 −0.28 −0.05 Y

0827 NA Glycolate oxidase, subunit GlcD, putative,

GO:0009339 glycolate oxidase complex

−0.19 −0.58 −0.02 −0.05 Y

1412 NA D-isomer specific 2-hydroxyacid

dehydrogenase family protein

0.15 −0.42 −0.36 0.42 Y

←−−− 1782 NA Iron-sulfur cluster-binding protein 0.29 −0.22 −0.21 −0.02 Y

1783 NA Cysteine-rich domain protein; GO:0009339

glycolate oxidase complex

1.19 0.02 −0.61 0.40 Y

2784 L-ldh Dehydrogenase, FMN-dependent family −0.84 −1.10 −0.45 0.07 Y

3071 NA Oxidoreductase, FAD/iron-sulfur

cluster-binding domain protein

−0.71 1.02 0.39 0.25 N

←−
−−
−−
−−
−−
−−
−−
−−
−− 3025 por Pyruvate:ferredoxin oxidoreductase −0.57 −0.26 0.37 2.83 N

3027 glcD D-lactate dehydrogenase, glycolate oxidase

subunit

1.10 0.25 −0.01 1.99 Y

3028 glpC D-lactate dehydrogenase, iron-sulfur

cluster-binding protein

1.39 0.47 −0.34 1.44 Y

3029 pta Phosphotransacetylase −0.33 −0.50 −0.29 1.80 N

3030 ackA Acetate kinase −0.97 −0.78 −0.30 1.79 N

2824 pfl-I Pyruvate formate lyase 0.36 −0.40 −0.41 −1.44 Y

←−
−−
−−− 1569 porA Pyruvate-ferredoxin-oxidoreductase, alpha

subunit

0.80 −0.56 −0.12 0.53 Y

1570 porB Pyruvate-ferredoxin-oxidoreductase, beta

subunit

−0.02 −0.25 −0.06 −0.81 N

C. PERMEASES ANDTRANSPORTERS

0053 sulP-1 Sulfate permease, putative 1.49 −0.23 −0.12 −0.21 Y

0279 sulP-1 Sulfate permease family protein −2.28 −0.46 0.38 0.40 Y

1999 sul-1 Sulfate transporter family protein −0.13 −0.06 −0.01 −0.75 Y

2110 b2975 L-lactate permease 0.79 0.65 −0.13 −0.85 Y

2285 lctP-1 L-lactate permease family protein −2.34 −0.31 −0.20 0.13 Y

2451 lctP-2 L-lactate permease family protein −1.05 −0.07 0.28 0.69 Y

2683 lldP-1 L-lactate permease family protein −1.41 −0.27 0.25 0.47 Y

(Continued)

Frontiers in Microbiology | Microbial Physiology and Metabolism June 2011 | Volume 2 | Article 135 | 4

http://www.frontiersin.org/microbial_physiology_and_metabolism/
http://www.frontiersin.org/microbial_physiology_and_metabolism/archive


Keller and Wall Genetics of Desulfovibrio sulfate respiration

Table 1 | Continued

Locus

DVU

No. Gene Annotationa

Microarray data (Log2 R)b Average

Log2

RNA/DNAf

Tn in

geneg

Stat/Expoc LThio/LSd PS/LSe

3026 lldP-2 L-lactate permease 0.23 0.11 0.13 0.74 Y

3284 b2975 L-lactate permease 1.28 1.07 0.51 −1.68 Y

0446 dhlC Sodium/solute symporter family protein 1.51 −0.09 0.23 −1.98 Y

0088 panF Sodium/pantothenate symporter 1.16 0.61 0.07 −0.09 Y

D. MEMBRANE-BOUND ELECTRONTRANSFER COMPLEXES

←−
−−
−−
−−
−−
−−− 0848 qmoA Quinone-interacting membrane-bound

oxidoreductase, Flavin protein

−0.49 −1.30 0.46 2.64 N

0849 qmoB Quinone-interacting membrane-bound

oxidoreductase, Flavin protein

−1.25 −1.30 0.004 1.62 N

0850 qmoC Quinone-interacting membrane-bound

oxidoreductase, Membrane FeS protein

−0.15 −1.26 0.42 0.83 N

←−−−−−−−−−−−

1286 dsrP Integral membrane protein 1.40 −1.07 0.66 2.06 N

1287 dsrO Periplasmic (Tat), binds 2[4Fe-4S] −1.57 −1.47 0.81 1.43 N

1288 dsrJ Periplasmic (Sec) triheme cytochrome c −1.31 −1.47 0.46 1.42 N

1289 dsrK Cytoplasmic, binds 2 [4Fe-4S] −1.98 −1.46 0.58 1.04 N

1290 dsrM Inner membrane protein binds 2 heme b −1.84 NDj ND 1.37 N←−−−−−−−−−−−−−−−−−−−

0692 qrcDk Molybdopterin oxidoreductase,

transmembrane subunit

−0.46 −0.81 0.47 1.11 Y

0693 qrcC Molybdopterin oxidoreductase, iron sulfur

cluster binding subunit, containing

cytochrome c heme

−1.65 −0.67 0.05 1.10 N

0694 qrcB Molybdopterin oxidoreductase,

molybdopterin binding subunit

−0.95 −0.35 0.10 1.06 Y

0695 qrcA Cytochrome c, (six hemes) −0.72 0.06 0.34 1.34 N←−−−−−−−−−−−

0263 tmcA Transmembrane complex, tetraheme

cytochrome c3

−0.31 −0.17 0.28 1.69 N

0264 tmcB Transmembrane complex, ferredoxin, 2

[4Fe-4S]

0.5 −0.44 0.39 2.21 Y

0265 NA Membrane protein, putative 0.58 −0.50 0.26 1.41 Y←−−−−−−−−−−−−−−

0531 hmcF 52.7 kd protein in hmc operon 0.59 0.29 −1.49 −1.90 Y

0532 hmcE 25.3 kd protein in hmc operon 0.19 1.53 0.35 −1.54 Y

0533 hmcD 5.8 kd protein in hmc operon 0.78 −0.55 −1.1 −1.97 N

0534 hmcC 43.2 kd protein in hmc operon 2.33 0.16 −0.33 −1.07 Y

0535 hmcB 40.1 kd protein in hmc operon 1.55 1.79 ND −1.21 Y

0536 hmcA High-molecular-weight cytochrome c 0.14 1.61 −0.3 −1.44 N

←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
− 2791 dhcA Decaheme cytochrome c associated with

Rnf complex

−0.19 −0.14 0.96 1.03 Y

2792 rnfC NADH:quinone oxidoreductase subunit RnfC −0.37 −0.26 0.91 0.21 Y

2793 rnfD Electron transport complex protein RnfD,

putative

1.10 −0.57 1.00 −0.43 Y

2794 rnfG NADH:quinone oxidoreductase subunit RnfG 0.14 −0.60 0.94 −0.05 Y

2795 rnfE NADH:quinone oxidoreductase subunit RnfE 1.08 −0.71 0.38 −1.03 N

2796 rnfA NADH:quinone oxidoreductase subunit RnfA 1.38 −0.52 1.09 −0.75 N

2797 rnfB NADH:quinone oxidoreductase subunit RnfB −0.13 −0.03 0.73 0.05 Y

←−
−−
−− 3143 ohcB Iron-sulfur cluster-binding protein 1.36 −0.11 0.59 −2.33 N

3144 ohcA Cytochrome c family protein 1.12 −0.15 0.54 −1.74 Y

3145 ohcC Hydrogenase, b-type cytochrome subunit,

putative

0.78 0.48 0.64 −1.75 Y

(Continued)
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Table 1 | Continued

Locus

DVU

No. Gene Annotationa

Microarray data (Log2 R)b Average

Log2

RNA/DNAf

Tn in

geneg

Stat/Expoc LThio/LSd PS/LSe

E. PERIPLASMIC HYDROGENASES

←−
−− 1769 hydA Periplasmic [Fe] hydrogenase, large subunit −0.47 1.27 −0.003 −0.06 Y

1770 hydB Periplasmic [Fe] hydrogenase, small subunit −0.42 1.86 0.74 −0.29 Y

←−
−−
−−− 1917 hysB Periplasmic [NiFeSe] hydrogenase, small

subunit

−0.93 0.25 0.31 1.88 Y

1918 hysA Periplasmic [NiFeSe] hydrogenase, large

subunit, selenocysteine-containing

−1.32 ND ND 2.43 Y

←−
−−
−−− 1921 hynB-1 Periplasmic [NiFe] hydrogenase, small

subunit, isozyme 1

0.82 −0.56 0.74 0.74 Y

1922 hynA-1 Periplasmic [NiFe] hydrogenase, large

subunit, isozyme 1

0.57 −0.57 0.84 0.39 Y

←−
−−
−−
−−
− 2524 NA [NiFe] hydrogenase −0.23 −1.79 −0.34 −2.22 Y

2525 hynB-2 Periplasmic [NiFe] hydrogenase, small

subunit, isozyme 2

−0.1 −1.46 −0.49 −0.96 Y

2526 hynA-2 Periplasmic [NiFe] hydrogenase, large

subunit, isozyme 2

2.02 −1.36 −0.64 −0.44 Y

F. CYTOPLASMIC HYDROGENASES AND CARBON MONOXIDE DEHYRDOGENASES←−−−−−−−−−−−−−−

0429 echF Ech hydrogenase, subunit EchF, putative 0.55 0.65 1.34 −1.30 Y

0430 echE Ech hydrogenase, subunit EchE, putative ND ND ND ND Y

0431 echD Ech hydrogenase, subunit EchD, putative −0.07 0.64 1.23 −1.14 N

0432 echC Ech hydrogenase, subunit EchC, putative 1.35 0.25 0.77 −0.83 N

0433 echB Ech hydrogenase, subunit EchB, putative 0.51 0.33 1.44 −1.33 Y

0434 echA Ech hydrogenase, subunit EchA, putative −0.08 −0.18 0.63 −0.34 Y

←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
− 2286 cooM Hydrogenase, CooM subunit, putative −1.59 0.25 −0.10 1.30 N

2287 cooK Hydrogenase, CooK subunit,

selenocysteine-containing, putative

−0.47 −0.01 −0.78 1.52 N

2288 cooL Hydrogenase, CooL subunit, putative −0.70 −0.11 −0.73 1.69 N

2289 cooX Hydrogenase, CooX subunit, putative −0.91 0.09 −0.54 1.73 N

2290 cooU Hydrogenase, CooU subunit, putative −0.10 −0.21 −0.51 2.10 N

2291 cooH Carbon monoxide-induced hydrogenase

CooH, putative

−0.88 −0.34 −0.70 1.82 N

2292 hypA Hydrogenase nickel insertion protein 1.09 0.50 −0.44 2.82 N

2293 cooF Iron-sulfur protein 1.04 0.21 −0.74 2.70 N

←−
−− 2098 cooS Carbon monoxide dehydrogenase ND ND ND 0.54 Y

2099 cooC Carbon monoxide dehydrogenase 0.19 1.52 1.52 −1.58 Y

G. PERIPLASMIC FORMATE DEHYDROGENASES

←−
−−
−−− 0587 fdnG-1 Formate dehydrogenase, alpha subunit,

selenocysteine-containing

1.87 ND ND 0.29 Y

0588 hybA Formate dehydrogenase, beta subunit 0.93 1.31 0.39 −0.27 N←−−−−−−−−−−−−−−−−−−−−

2481 fdoH Formate dehydrogenase, beta subunit 0.49 −0.17 −0.52 0.65 Y

2482 fdnG-2 Formate dehydrogenase, alpha subunit,

selenocysteine-containing

0.34 ND ND 0.00 Y

2483 cfdE Formate dehydrogenase, cytochrome c

family protein

0.09 −0.55 −0.27 0.54 Y

2484 cfdD Formate dehydrogenase, cytochrome c

family protein

−0.18 −0.59 −0.08 −0.62 N

2485 cfdC Formate dehydrogenase, membrane protein,

putative

0.53 −0.35 −0.33 0.15 Y

(Continued)
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Table 1 | Continued

Locus

DVU

No. Gene Annotationa

Microarray data (Log2 R)b Average

Log2

RNA/DNAf

Tn in

geneg

Stat/Expoc LThio/LSd PS/LSe

←−−−−−−−−−−−

2809 NA Cytochrome c3 −0.83 −0.09 0.84 −1.51 Y

2810 fdhE Formate dehydrogenase formation protein

FdhE, putative

0.16 0.06 0.77 −1.70 Y

2811 COG-HybA Formate dehydrogenase, beta subunit −0.16 −0.82 0.66 −1.95 Y

2812 fdnG-3 Formate dehydrogenase, alpha subunit,

selenocysteine-containing

−0.03 −0.33 0.70 −1.75 Y

H. PERIPLASMIC CYTOCHROMES

3107 occ Cytochrome c family protein (eight hemes) 2.63 −2.33 0.14 −0.10 Y

3171 cycA Cytochrome c3 (TpI-c3; four hemes) 0.29 −0.73 0.81 4.30 N

1817 cyf c553cytochrome (one heme) 0.90 −0.04 −0.12 2.54 Y

3041 NA c553 cytochrome (one heme) −0.13 0.89 −0.10 0.13 N

0702 NA c554 cytochrome (four hemes) −0.30 0.26 −0.17 0.99 N

0922 NA c554 cytochrome (four hemes) 0.20 −0.05 0.14 −1.60 Y

←−
−−
−−0624 nrfH Cytochrome c nitrate reductase, small

subunit (four hemes)

−0.34 0.08 −0.01 −0.58 Y

0625 nrfA Cytochrome c nitrite reductase, catalytic

subunit (five hemes)

−0.49 −0.90 0.46 −2.37 Y

I. OTHER

1777 cynT Carbonic anhydrase −1.08 0.15 −0.39 0.50 Y

2013 HCP Hybrid cluster protein ND ND ND 0.74 Y

2543 b0873 Hybrid cluster protein 0.67 0.07 0.01 0.66 Y←−−−−−

2402 hdrA Heterodisulfide reductase, A subunit −0.3 −0.36 0.23 1.61 Y

2403 hdrB Heterodisulfide reductase, B subunit −0.1 −0.17 0.54 2.14 Y

2404 hdrC Heterodisulfide reductase, C subunit 0.8 −0.30 −0.11 2.48 N

aGene annotation was obtained from http://www.microbesonline.org
bLog2 R, where R is the ratio of transcripts in the experimental versus the control.
cStat/Expo is the ratio of transcripts from cells grown in lactate/sulfate (60 mM/50 mM) comparing stationary cells to exponentially growing cells (samples T5/T1 as

presented in Clark et al., 2006).
dLThio/LS is the ratio of transcripts from cultures growing exponentially (OD600≈ 0.3) on lactate/thiosulfate (60 mM/30 mM) compared to those from lactate/sulfate

(60 mM/30 mM) grown cells.
ePS/LS is the ratio of transcripts from cultures growing exponentially (OD600≈ 0.3) on pyruvate/sulfate (60 mM/15 mM) compared to those from lactate/sulfate

(60 mM/30 mM) grown cells.
fAverage Log2 RNA/DNA hybridization is a measure of the relative abundance of transcripts present for a given gene in an exponentially growing lactate/sulfate culture

(OD600≈ 0.3; Wall et al., 2009). Abundances were averaged from 173 data points with an average standard deviation of± 1.54. The average gene expression was

arbitrarily given a Log2 R value of 0.
gTn in gene, ‘Y’ indicates that at least one transposon insertion has been recovered in the gene and ‘N’, that a transposon insertion has not been recovered. The

transposon used is the modified Tn5-RL27 (Oh et al., 2010).
hArrows in the first column indicate the direction of transcription of the genes within a predicted operon.
iNA=Not annotated with a gene name.
jND=No data, insufficient useable data for given condition.
kMost current annotation of DVU0692–0695 was used (Venceslau et al., 2010).

Adenylate nucleotide interchange:

AMP2− + ATP4− = 2ADP3− Adenylate kinase (15)

Summary lactate plus sulfate metabolism:

2 CH3CHOHCOO− + SO2−
4 = 2 CH3COO− + 2 HCO−3

+ 0.5 HS− + 0.5 H2S+ 0.5H+ (16)

TRANSPORT FUNCTIONS
Transport functions of substrates and products have been
addressed experimentally in variable detail. Cypionka (1995) has
summarized his detailed work on sulfate transport in SRM. In
freshwater SRM strains, sulfate was shown to be symported with
protons, two if sulfate were in excess and three electrogenically if
sulfate were limited. Since the genetic experiments to be described
here with D. vulgaris were carried out with excess sulfate, transport
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of sulfate likely occurs with the electroneutral symport of two elec-
trons. Energy for the sulfate transport, i.e., the two protons used,
is compensated by the diffusion of H2S from the cell. However,
in the slightly alkaline pH of the cell much of the sulfide would
be ionized, HS-. Little is known about the export of this charged
ion. Cypionka (1995) suggests that it may be impermeable or sym-
ported with one proton. If true, energy spent transporting sulfate
into the cell would be balanced by the electroneutral export of
sulfide or diffusion of the protonated form.

Transport of the monocarboxylates, lactate and acetate, into
and out of the cell, respectively, is likely to be by symport with
one proton (Dong et al., 1993). Thus, the reciprocal transport of
these compounds will not affect the proton balance of the cell.
Although acetic acid in its protonated form can apparently diffuse
across the cell membrane (Thauer and Morris, 1984), its con-
tinued production against a chemical gradient of acetate during
oxidation of lactate or pyruvate would suggest an energy linked
export process. Six genes have been annotated as lactate perme-
ases in D. vulgaris, five for L-lactate and one for D-lactate (Table 1);
whereas, no genes were annotated as acetate transporters. BLAST
analysis4 of the D. vulgaris genome showed that DVU0446 is 61%
identical and DVU0088 is 23% identical to the acetate permease
(actP, b4067) from Escherichia coli str. K-12 substr. MG1655. Fur-
ther experimentation will be needed to establish whether these
genes encode transporters for acetate and whether they might be
essential.

THERMODYNAMICS
The model of Noguera et al. (1998) is predicated on the exis-
tence of two routes for electron flow during lactate plus sulfate
growth and controlled by a thermodynamic switch that responds
to free energy availability. This is consistent with the differences
in reduction potential for the two oxidation steps generating elec-
trons from lactate. For the first oxidation step, the E0′ (mV) of
the pyruvate/lactate couple is -190 mV; whereas, for pyruvate oxi-
dation, the acetyl-CoA+CO2/pyruvate couple is -498 mV. When
sulfate is terminal electron acceptor, the E0′ (mV) of SO2−

4 / HS−
is -200 (calculated for [HS-] of 0.1 mM; Thauer et al., 2007). The
standard reduction potential of the lactate dehydrogenases is above
that of the H+/H2 couple (E0′ of -414 mV), even if H2 at more
environmental concentrations is considered (E0′ of -270 mV at
1 Pa:H2), and would require energy-driven reverse electron flow
to accomplish H2 generation. In contrast, pyruvate oxidation with
ferredoxin reduction has sufficient redox potential to generate H2.
Thus it is tempting to suggest that the two pathways for elec-
tron transport coincide with electrons from lactate and those from
pyruvate.

It is clear that the lactate dehydrogenases are membrane-
bound flavoproteins capable of delivering electrons directly to the
menaquinone pool in the membrane (Reed and Hartzell, 1999;
Thauer et al., 2007). In contrast, the pyruvate:ferredoxin oxidore-
ductase is a soluble enzyme in the cytoplasm that delivers electrons
to the soluble electron carrier, ferredoxin (Kletzin and Adams,
1996; Garczarek et al., 2007). Indeed, these electron pools must mix

4http://blast.ncbi.nlm.nih.gov/Blast.cgi

when the SRM grow on lactate in coculture with hydrogenotrophic
methanogens, since lactate can be completely oxidized without the
production of detectable pyruvate (Walker et al., 2009). During
this syntrophic growth by D. vulgaris, the Coo membrane-bound
hydrogenase has been shown to be needed, although it was not
essential for monoculture on lactate plus sulfate (Walker et al.,
2009). Interestingly, this protein complex belongs to a family of
transmembrane complexes that function as proton (or sodium) –
translocating hydrogenases and that use reduced ferredoxin as
electron donors (Welte et al., 2010; Figure 1). The recently pro-
posed mechanism of flavin-based electron bifurcation (Herrmann
et al., 2008) could offer a possible solution to the necessity of lactate
supported hydrogen production. This mechanism would suggest
that, when concentrations of H2 are maintained at very low levels,
the exergonic reduction of protons to form H2 from the reduced
ferredoxin (E0′ ≤ 420 mV) could be coupled with the endergonic
formation of hydrogen with electrons from menaquinone (E0′
-75 mV). The Coo membrane-bound hydrogenase complex is a
flavoprotein that could allow bifurcation of electrons from the
two sources, reduced ferredoxin and menaquinone. This model
(Figure 1) would also provide an explanation for the decrease or
cessation of electron flow in this pathway as hydrogen concentra-
tions increased. Currently no experiments have been conducted to
explore electron bifurcation during lactate oxidation and sulfate
reduction in Desulfovibrio.

GENOMES
In 2004, the genome sequence of D. vulgaris (Heidelberg et al.,
2004) became available. In the ensuing few years, several addi-
tional SRM genomes have become accessible. If hydrogen cycling
were a major mechanism for augmenting the energy budget of the
SRM, one might predict that conserved hydrogenases would be
found among these bacteria for this process. By making the simple
comparison of the genomes of two species that from physiological
analyses were thought to be closely related, D. vulgaris and Desul-
fovibrio alaskensis G20 (Hauser et al., 2011), it can be seen that the
candidate cytoplasmic hydrogenases from D. vulgaris (Ech hydro-
genase, DVU0429–0434, and Coo hydrogenase, DVU2286–2293)
are not conserved in the G20 strain. However, that does not pre-
clude the existence of multiple electron pathways to sulfate in the
SRM.

EXPRESSION AND MUTANT ANALYSIS OF GENES FOR
CENTRAL REDOX PATHWAYS OF D.VULGARIS
HILDENBOROUGH
Here we examine D. vulgaris gene expression data from microar-
rays of cells grown under different nutrient conditions, the relative
abundance of transcripts from cells grown on lactate plus sulfate,
and a random transposon mutant library to determine whether
genes important for enzymes needed for energy generation in this
growth mode become evident (Table 1).

MICROARRAY DATA
Microarray data provide information about the changes in expres-
sion of genes in response to environmental changes but do not
allow absolute levels of gene expression to be determined. Changes
in gene expression for D. vulgaris have been generated through
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FIGURE 1 | Proposed model for the flow of electrons during sulfate

respiration in D. vulgaris Hildenborough. Abbreviations: QmoABC,
Quinone-interacting membrane-bound oxidoreductase (DVU0848–0850);
Ldhs, lactate dehydrogenases (nine annotated); Coo Hase, CO-induced
membrane-bound hydrogenase (DVU2286–2293); Hase(s), periplasmic
hydrogenases (four annotated); TpI-c3, Type-1 tetraheme cytochrome c3

(DVU3171); QrcABCD, Type-1 cytochrome c3:menaquinone oxidoreductase,
formerly molybdopterin oxidoreductase (DVU0692–0695); DsrMKJOP,
(DVU1290–1286); and MK, Menaquinone pool. Red, dashed lines and (?)
indicate metabolic pathways for which less evidence is available. The reaction
arrows were drawn as unidirectional for clarity of the model and electron flow.
Pathway description is given in text.

the Virtual Institute for Microbial Stress and Survival (VIMSS)
program5 supported by the US Department of Energy and are
available at www.microbesonline.org (Dehal et al., 2010). These
data are log2 ratios of experimental versus control transcript abun-
dances from gene probe microarrays with 12 replicates for each
ratio. All transcript preparations were made from cells that were
in the mid-exponential growth phase (OD600 of ca. 0.3) with the
exception of the experiment following gene expression changes
throughout the growth curve (Clark et al., 2006).

Our simple interpretations of the differential expression of
genes in microarrays (Table 1) are as follows. Comparison of
transcripts from cultures in stationary phase versus exponen-
tial phase for cells growing with lactate (60 mM) plus sulfate
(50 mM; Clark et al., 2006) represent a lactate-limiting condition
and preparation for a non-growing state. We have assumed that
an indicator for gene importance in the metabolism of lactate
plus sulfate as cells enter stationary phase, at the substrate con-
centrations given, would be an increase in expression of carbon
acquisition genes. A decrease in those genes needed for sulfate
reduction and energy generation might also be expected since the
cells are slowing growth and sulfate is plentiful. For cultures grown
to mid-exponential phase with thiosulfate versus sulfate as elec-
tron acceptor, we would predict that transcript changes would

5http://VIMSS.lbl.gov

reflect a decrease for the sulfate-reducing enzymes but that sulfite
reduction and carbon and electron metabolism would remain
unchanged. For cultures growing exponentially with pyruvate as
carbon and electron source compared to lactate, the genes differ-
entially transcribed should include those required for lactate trans-
port and oxidation. Clearly a direct connection between transcript
changes and enzyme levels is often not evident (Torres-García
et al., 2009). However, because energy conversion is such a large
proportion of the metabolism of these bacteria, the possibility of
correlated changes was tacitly assumed.

RELATIVE ABUNDANCE OF TRANSCRIPTS
All microarray experiments in the database of the VIMSS pro-
gram have been normalized to DNA signals on the microarrays.
As a result, a robust measure of the relative abundance of mRNA
for each gene has been accumulated during microarray exper-
iments, with 173 data points in the calculation for each (Wall
et al., 2009). We determined an average expression level from the
mRNA/DNA signals and arbitrarily set the average for all genes to 1
or log2= 0± 1.54. Thus a transcript value that is one SD above the
average is a gene expressed approximately three fold more highly
than average and is in the top 16% expression level of all genes.
Because so much of the metabolic capacity of anaerobes is devoted
to energy conversion, we assumed that the genes for the proteins
and enzymes responsible would likely be among those above the
average in expression.
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RANDOM TRANSPOSON MUTANTS
To reveal genes needed for growth of D. vulgaris on lac-
tate plus sulfate, the final information source comes from
mutation analysis. The creation of a random transposon
library in this bacterium with a modified Tn5-RL27 trans-
poson (Larsen et al., 2002; Oh et al., 2010) has been initi-
ated. To date, the Wall lab has 8,869 D. vulgaris mutants in
which the insertion site of the transposon has been identi-
fied by sequencing that can be seen on the following website
http://desulfovibriomaps.biochem.missouri.edu/mutants/. Most
mutants were selected on lactate (60 mM) plus sulfate (30 mM)
medium supplemented with yeast extract to avoid loss of aux-
otrophs. The library currently has mutations in 2208 unique genes
or 62% of the ca. 3500 genes predicted in the genome. Our assump-
tion for interpreting these data was that if a gene were essential for
this growth mode, no mutations would be found in the gene. Of
course, essential genes not specific to lactate/sulfate growth would
also be identified among those not mutated. Conversely, genes
actually needed, but whose loss could be compensated by expres-
sion of others, would likely be found to be mutated. As yet the
library is not saturating for non-essential genes and the data must
be interpreted with that caveat in mind.

Figure 2 provides two examples of the transposon mutant
analysis. The enzymes for sulfate reduction have been biochemi-
cally confirmed (Peck and LeGall, 1994) and, as a result, the gene
annotations are firm (Table 1A). There are apparently single copies
of these genes in the genome and we would not expect mutations
to be found in cells growing by sulfate respiration. In Figure 2A,
a section of the genome with the genes for the bisulfite reductase
is illustrated with the insertion sites of the transposon indicated.
There are no mutations in dsrABD while the flanking genes were
successfully mutated. In the second example (Figure 2B), the genes
putatively encoding the cytoplasmic hydrogenase associated with
carbon monoxide dehydrogenase, cooMKLXUH, also lack inser-
tions of the transposon, a result not entirely expected. This is a
region is about 8.2 kb. With 8869 transposon insertions, on average
we should expect an insertion about every 425 bp (with the conser-
vative assumption that the entire genome is an appropriate target).
Interestingly the region in which transposon mutations have not
been recovered is precisely congruent with the Coo hydrogenase
operon. It is probable that this region is needed for growth on
lactate/sulfate or to survive the manipulations of the mutagenesis
process.

INFLUENCE OF GROWTH CONDITIONS ON THE EXPRESSION
OF GENES
SULFATE UTILIZATION GENES
The molecular information about genes potentially involved in
lactate/sulfate growth of D. vulgaris – differential expression in
defined culture conditions, relative abundance of mRNA and
essentiality during growth with lactate/sulfate – are considered
for the different categories of functions (Table 1). First, the genes
known to encode APS reductase (apsBA) and bisulfite reductase
(dsrABD), tended to decrease in expression in stationary phase
cells limited for electron donor where growth rate was decreasing
(Table 1A). The expression levels of apsBA were also decreased
when thiosulfate replaced sulfate. This result might be predicted

since the substrate for the APS reductase was absent. Also as
expected, dsrABD mRNA did not decrease with thiosulfate, since
the initial two electron reduction of thiosulfate generates sulfide
and bisulfite (Thauer et al., 2007). Measurements of the dissimila-
tory bisulfite reductase genes in Desulfobacterium autotrophicum
grown in lactate/sulfate compared to lactate/thiosulfate (lactate
limiting in both media) showed that early exponential phase
expression of the dsrAB genes with sulfate was slightly higher
than that observed with bisulfite (Neretin et al., 2003). As these
D. autotrophicum cells entered stationary phase, the dsrAB expres-
sion in bisulfite medium exceeded that with sulfate. Major changes
were not seen in the production of dsrAB transcripts in D. vulgaris
with alternative electron acceptors consistent with the report of
constitutive expression of these genes (Brusseau, 1998, as reported
in Neretin et al., 2003).

Neither apsBA nor dsrABD was responsive to the change in elec-
tron donor from lactate to pyruvate. The predictions of abundant
mRNAs for these genes (Table 1A) and the absence of transposon
mutations in the library (Figure 2A) were accurate and serve as
the proof of principle for the use of these features as predictive
measures. The transcript abundances for these genes were among
the top 1% of all D. vulgaris genes.

For the highly expressed genes encoding sulfate adenylyltrans-
ferase and pyrophosphatase, sat and ppaC, the microarray data
showed that transcription decreased with thiosulfate as terminal
electron acceptor (Table 1A). Because these enzymes function pri-
marily for sulfate utilization, the mRNA decrease for the encoding
genes might reflect a control by sulfate concentrations. No trans-
poson mutations in these genes were isolated from cells grown on
lactate/sulfate medium consistent with an essential function.

Because sulfate carries two charges at physiological pHs, trans-
port functions would be expected. However, all growth conditions
from which molecular and genetic information were obtained had
plentiful sulfate, where electroneutral uptake with two protons
might be expected (Cypionka, 1995). Three candidate sulfate per-
mease genes were annotated, but no single one was apparently
essential since transposon mutants lacking each were recovered
(Table 1C). The abundance level of the mRNA of each was near
that of the average for D. vulgaris genes. Microarray changes also
did not indicate a unique ortholog among the genes, although
DVU0279 was strongly decreased in expression in stationary phase
when carbon and electron flow was limited.

CANDIDATE GENES FOR LACTATE METABOLISM
For genes encoding possible enzymes for lactate transport and
oxidation, the story is not clear. While some biochemical analy-
sis for lactate dehydrogenase has been accomplished (Odom and
Peck, 1981b; Ogata et al., 1981; Stams and Hansen, 1982), the
genes encoding the enzyme(s) responsible for either oxidation or
transport have not been identified. Of the six genes annotated
as putative lactate permeases, only two showed increases in tran-
scription as the cells were being limited for carbon, DVU2110 and
DVU3284. Neither of these was essential alone since mutations
were found in each in lactate/sulfate grown cells and the mRNA
abundance of both was well below average (Table 1C). The two
most highly transcribed orthologs were still only 1.6–1.7 times the
average gene in expression.
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FIGURE 2 | Chromosomal maps generated with CGView (Stothard and

Wishart, 2004) indicating the location of transposon insertions in the

Desulfovibrio vulgaris Hildenborough genome. Open reading frames are
designated by TIGR DVU numbers. (A) No intragenic transposons are within
the 4.2 kb four gene dissimilatory bisulfite reductase (dsr ) operon; however

within the 5 kb regions flanking the operon there are 14 intragenic insertions.
(B) No intragenic transposons are within the 8.2 kb eight gene putative
CO-induced membrane-bound hydrogenase (coo) operon. Also, there are 21
intragenic transposon insertions within the 10 kb regions up- and
down-stream of the operon, as well as two intergenic transposon insertions.

The number of candidate genes encoding the lactate dehy-
drogenase (LDH) activities that have been annotated is about
nine (Table 1B), including those annotated as glycolate oxidases.
Because many Desulfovibrio strains can readily use both L- and D-
lactate (Stams and Hansen, 1982), at least two enzymes would seem
to be necessary. Biochemical analysis of the LDHs showed that
all are membrane-bound and NAD(P)+ -independent (Hansen,
1994b). However, the L- and D-LDH differ in their sensitivity to
oxygen with the L-LDH from Desulfovibrio baculatus HL21 DSM
2555 (formerly, Desulfovibrio desulfuricans HL21) being extremely

unstable (Stams and Hansen, 1982; Hansen, 1994a); whereas, the
D-LDH from D. vulgaris Miyazaki is apparently much more stable
when exposed to oxygen (Ogata et al., 1981).

Of the nine ldh orthologs and paralogs in D. vulgaris, none was
increased in response to a change in electron donor from lactate to
pyruvate (Table 1B). Genes for three enzymes were increased from
2.1 to 2.6 fold upon entering stationary phase presumably because
of carbon and electron donor limitation, DVU0600, DVU1783,
and the complex DVU3027–3028. Of the three, only the latter
complex had more abundant transcripts than the average gene.
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This complex is also part of a nine gene operon that includes
por, encoding the primary pyruvate:ferredoxin oxidoreductase;
pta, phosphotransacetylase; and ackA, the acetate kinase; and is
preceded by a gene annotated as a lactate permease, DVU3026.
Interestingly, por, pta, and ackA have not been mutated by the
insertion of the transposon; whereas, seven transposon insertion
sites have been identified within the coding sequences of the puta-
tive permease and lactate dehydrogenase, DVU3026, 3027, and
3028. We suggest that the transposon data mean that these genes
are either not involved in lactate metabolism or that there are other
enzymes able to compensate for the mutations in these genes.

TRANSMEMBRANE COMPLEX OPERONS
The genes encoding the transmembrane electron transport com-
plexes (TMC) that are proposed to function with APS reductase
and bisulfite reductase are qmoABC and dsrMKJOP, respectively
(Table 1D; Matias et al., 2005; Pereira et al. (2007)). They are
strictly conserved among sulfate reducers, underscoring their
importance for sulfate reduction. The assignment of QmoABC
and DsrMKJOP as electron carriers to their respective reductases
also receives support from the location of their encoding genes
(Pereira et al., 2007). qmoABC are immediately adjacent to and
downstream of apsBA. Although the dsrMKJOP operon is not in
the proximity of the structural genes for bisulfite reductase in D.
vulgaris, it is contiguous with orthologs of the structural genes in
the sulfur oxidizer, Allochromatium vinosum (Dahl et al., 2005).
The genes for both of these TMCs were down regulated when D.
vulgaris entered stationary growth phase caused by electron donor
limitation (Table 1D), as suggested for genes encoding functions
involved in energy generation. Curiously both are also decreased in
expression when thiosulfate replaced sulfate as terminal electron
acceptor, even though DsrMKJOP would be predicted to be essen-
tial for thiosulfate use (Thauer et al., 2007). A change in electron
donor did not appear to impact the transcription of the genes for
either of the TMCs importantly. The relative mRNA abundances
for these genes were among the top 20% of all genes in the bac-
terium and no transposon mutants were identified, supporting the
supposition that their function is essential for growth on lactate
plus sulfate.

A deletion of the qmoABC-DVU0851 was recently constructed
by marker exchange mutagenesis in D. vulgaris (Zane et al., 2010).
This mutant confirmed the essential role of the encoded com-
plex in sulfate reduction. The deletion mutant was unable to grow
with sulfate as terminal electron acceptor with any electron donor
including H2 or formate, although growth with sulfite or thio-
sulfate was unimpaired. The hypothetical gene, DVU0851, was
shown not to be necessary for sulfate reduction. Interestingly no
other TMC of D. vulgaris was able to compensate for the loss of
QmoABC.

Recently an additional four protein transmembrane complex,
QrcDCBA or Type 1 cytochrome c3:menaquinone oxidoreduc-
tase, has been proposed to be essential to carry electrons coming
from H2 or formate to the cytoplasmic membrane for delivery to
APS reductase in D. vulgaris (Venceslau et al., 2010). The Qrc
complex was suggested to be necessary because the QmoABC
complex apparently has no periplasmic interface that would allow
electrons from the soluble cytochrome c matrix to traverse the

membrane to reach the sulfate-reducing enzymes. Curiously 10 of
12 fully sequenced Desulfovibrio strains have highly conserved qrc
operons2; however, D. desulfuricans ATCC 27774 and Desulfovib-
rio piger do not. Because these two species still have a conserved
Qmo complex, another complex may be needed to serve the Qrc
function of delivery of periplasmic electrons to the membrane for
sulfate reduction (Venceslau et al., 2010).

A transposon mutation in the D. alaskensis G20 gene Dde_2933
corresponding to qrcB, was unable to grow with H2 or formate as
electron donor (Li et al., 2009). In D. vulgaris, QrcDCBA was also
decreased in expression during stationary phase when energy gen-
eration was decreased (Table 1D) and was found to have above
average transcript abundance. Surprisingly, transposon insertions
in the genes for this complex were isolated in cells growing on
lactate plus sulfate, showing that either this complex was not
required for electrons from all donors or that compensation for
this complex was possible.

A deletion of DVU0692–0694, �qrcBCD, has been constructed
in D. vulgaris (Wall lab, unpublished). Preliminary experiments
showed that this mutant was capable of growing on lactate plus sul-
fate but the rate was slower and the yield was about 40% less than
that of wild-type cells. As for the D. alaskensis G20 mutant, the D.
vulgaris deletion could not grow with H2 or formate with sulfate as
electron acceptor, consistent with the predicted role for this com-
plex by Venceslau et al. (2010). A need for the Qrc complex should
be bypassed if electrons from the periplasmic cytochrome pool
could be transferred to bisulfite reductase through a cytochrome
c containing complex. Because DsrJ of the DsrMKJOP complex
is a periplasmic cytochrome c and the complex is predicted to be
the electron conduit to bisulfite reductase, this complex would be
predicted to be able to accept periplasmically generated electrons
from H2 or formate carried by the abundant Tp1-c3. Sulfite does
support growth of the qrc mutant on formate. The inability of
the �qmoABC mutant to grow on lactate, H2 or formate dur-
ing sulfate respiration would suggest that the Qrc complex acts
prior to Qmo. The possible role of QrcABCD must be further
investigated.

Of the remaining TMCs characterized or recognized in the D.
vulgaris genome, the High molecular weight cytochrome (Hmc)
complex has been proposed by many researchers to be a con-
duit for electrons from H2 to sulfate (Peck, 1993; Dolla et al.,
2000; Pereira et al., 2007). A mutant deleted for hmcBCDE was
impaired in syntrophic growth with Methanococcus maripaludis
(Walker et al., 2009). The low level of transcript abundance for
this complex during growth on lactate/sulfate (Table 1D) would
not appear compatible with a primary role for Hmc for energy
conversion on these substrates. In addition, the presence of multi-
ple transposon insertions within the Hmc coding sequences in the
mutant library casts doubt on its importance. The inference that a
functional Hmc is not essential for D. vulgaris in lactate plus sul-
fate medium is consistent with monoculture growth, albeit slower,
of the deletion mutant (Dolla et al., 2000; Walker et al., 2009).
These observations support a role for this TMC when H2 must be
maintained at a low level.

A role for the decaheme cytochrome c and the RnfCDGEAB
complex in Desulfovibrio has not been established. This complex
was first identified in Rhodobacter capsulatus as complex required
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for nitrogen fixation (Schmehl et al., 1993). It is also in the family
of electron bifurcating flavoproteins that are NADH ferredoxin
oxidoreductases (Herrmann et al., 2008).Transcript changes and
abundances were not particularly informative. However, several
transposon mutations have been identified in the encoding genes
indicating that the complex is not essential to D. vulgaris cells
growing on lactate plus sulfate. A deletion of rnfC constructed
by marker replacement confirmed a role for this complex in the
ability of D. vulgaris to grow with molecular nitrogen as the sole
nitrogen source (Wall lab, unpublished).

Finally, tmcABCD and ohcABC (Pereira et al., 2007) have
been identified as encoding TMCs but a role for each is not yet
known. The tmc genes are expressed at about the same level as the
dsrMKJOP operon suggesting a role in the metabolism (Table 1D),
but preliminary characterization of a mutant deleted for the genes
had no apparent phenotype (Wall lab, unpublished). This was
consistent with finding transposon mutations within the struc-
tural genes for the complex. In contrast, ohcABC transcripts were
in the lower 15% abundance of all D. vulgaris genes, perhaps indi-
cating a non-critical role in energy metabolism in cells growing
with lactate plus sulfate.

HYDROGENASE OPERONS
The presence and activity of cytoplasmic hydrogenases were pre-
dicted to be necessary for energy augmentation by hydrogen
cycling in sulfate reducers (Odom and Peck, 1981a). Although
the distribution of cytoplasmic hydrogenases in Desulfovibrio
strains is not conserved, there are candidate enzymes that could
function in most cases. D. vulgaris has two putative energy-
converting hydrogenases with subunits related to the proton-
pumping NADH:ubiquinone oxidoreductase (complex I), Ech
hydrogenase (Friedrich and Scheide, 2000) and the Coo hydroge-
nase, CooH, originally described in Rhodospirillum rubrum (Kerby
et al., 1992). These enzyme complexes are reversible, oxidizing
reduced ferredoxin with the production of H2 while generat-
ing an electrochemical proton potential or using reversed elec-
tron transport to catalyze reduced ferredoxin from H2 (Thauer
et al., 2007). These complexes are encoded in DVU0429–0434 and
DVU2286–2293, respectively (Table 1F). Transcription expres-
sion changes were not dramatic for these complexes, but the
transcript abundance difference between the two was striking.
The cooMKLZUHhypAcooF operon is among the top 15% of
expressed genes; whereas, the echABCDEF operon is well below
average in expression. As seen earlier in Figure 1, mutations
in this coo operon were not recovered in cells grown with
lactate/sulfate, suggesting that this cytoplasmic hydrogenase is
needed for this growth mode. It should be noted that the
putative structural genes for the CO dehydrogenase enzyme,
cooSC, were found to carry transposon insertions, as did the ech
operon.

Through examination of a mutation in cooL, the Coo hydro-
genase has also been shown to be essential for syntrophic growth
of D. vulgaris with Methanococcus on lactate but not pyruvate
(Walker et al., 2009). However, there was no requirement for this
hydrogenase for respiration of lactate with sulfate. This obser-
vation is curiously in conflict with the absence of transposon
mutations in these genes when selection was carried out on

lactate/sulfate medium. Interestingly, Coo hydrogenase belongs
to a family of transmembrane complexes that function as proton
(or sodium) – translocating hydrogenases and that use reduced
ferredoxin as electron donors (Welte et al., 2010; Figure 1). The
recently proposed mechanism of flavin-based electron bifurcation
(Herrmann et al., 2008) could offer a possible solution to the neces-
sity of lactate supported hydrogen production. This mechanism
would suggest that, when concentrations of H2 are maintained
at very low levels, the exergonic reduction of protons to form
H2 from the reduced ferredoxin (E0′ ≤ 420 mV) could be cou-
pled with the endergonic formation of hydrogen with electrons
from menaquinone (E0′ -75 mV). The Coo membrane-bound
hydrogenase complex is a flavoprotein potentially allowing bifur-
cation of electrons from the two sources, reduced ferredoxin and
menaquinone. While the energy available for pumping a proton
(or sodium ion) might be dissipated through the bifurcation, the
overall contribution to the proton gradient from the oxidation
of the additional H2 might compensate. This model (Figure 1)
would also provide an explanation for the cessation of electron
flow in this pathway as hydrogen concentrations increased. Cur-
rently no experiments have been conducted to explore electron
bifurcation function during lactate oxidation and sulfate reduction
in Desulfovibrio.

While the four periplasmic hydrogenases have been well charac-
terized (Fontecilla-Camps et al., 1997; Vignais and Billoud, 2007),
no single enzyme has been shown to be essential for uptake or pro-
duction of H2 (Casalot et al., 2002; Caffrey et al., 2007). While the
transcript abundance of the [NiFeSe] hydrogenase appears to be
the highest of the four, this may reflect the inclusion of selenium in
the medium trace elements which strongly increases the produc-
tion of the [NiFeSe] hydrogenase while repressing the [FeFe] and
[NiFe]-1 hydrogenases (Valente et al., 2006). Multiple deletions
and various combinations will be needed to determine the roles
of these enzymes.

GENES FOR c-TYPE CYTOCHROMES
Of the annotated c-type cytochromes that are not apparently asso-
ciated with large TMCs, the Type I tetraheme cytochrome c3 (Tp1-
c3, DVU3171) and the monoheme c553 cytochrome (DVU1817)
have highly abundant transcripts (Table 1H) suggesting a major
role in electron flow during energy conversion. The high expres-
sion levels are congruent with the abundance of the cytochromes
as well (Moura et al., 1991; Pollock and Voordouw, 1994; Aubert
et al., 1998). Tp1-c3 has been suggested to be the electron acceptor
for each of the periplasmic hydrogenases and to serve as a capac-
itor for electrons in the periplasm of the SRM (Heidelberg et al.,
2004). Interestingly, there is little expression modulation of the
gene encoding, Tp1-c3, cycA, upon entry into stationary phase or
in response to altered electron acceptors or donors as has previ-
ously been reported (Payne et al., 2002). No transposon mutations
have been recovered that would eliminate Tp1-c3, although the
small size of cycA may be a factor in mutant isolation. How-
ever, the successful construction of a marker exchange deletion
of the encoding gene (Semkiw et al., 2010), showed that Tp1-c3 is
not essential for growth on lactate/sulfate. Similar mutants have
been generated in D. alaskensis G20 (Rapp-Giles et al., 2000; Li
et al., 2009). The D. vulgaris �cycA mutant was unable to grow
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with H2 or formate with sulfate or sulfite as electron acceptor
(Semkiw et al., 2010). Growth was slowed with lactate plus sulfate
or sulfite but the biomass produced was not different from wild-
type. For cells growing with sulfate respiration, the observations
mirror those for the �qrc mutant of this bacterium or transpo-
son interruptions in the homologs found in D. alaskensis G20 (Li
et al., 2009). These results suggest a pathway for periplasmically
generated electrons through Tp1-c3 and the Qrc complex to the
Qmo. Whether both the cytochrome and the Qrc complex are
needed to transfer electrons for bisulfite reduction remains to be
established.

The gene for the abundant cytochrome c553 (cyf, DVU1817)
is located just upstream of the cytochrome c oxidase, a puta-
tive heme-copper oxygen reductase. It has been suggested that
the cytochrome c553 might serve as an electron donor to that
membrane-bound complex (Dolla et al., 2007). No major differ-
ences in expression were apparent in the microarray data. It might
be predicted that constitutive expression could be advantageous
if this cytochrome plays a role in oxygen protection. A deletion
of cyf grew well on lactate plus sulfate (Wall lab, unpublished)
confirming that this cytochrome is not a key electron carrier
for energy conversion under these conditions. A possible role in
oxygen tolerance will require further experimentation.

The function of other c-type cytochromes is still undetermined
and will likely require multiple deletions and biochemical analysis
to gain insight. The lack of transposon mutations in a number of
the encoding genes may simply reflect the small size of the genes
and the lack of saturation in the library of mutants.

SUMMARY OF KEY OBSERVATIONS FROM TRANSCRIPTS
AND MUTANTS
In summary, the data in Table 1 show that the transcriptional
changes in the microarray data suggest that genes for both sulfate
and sulfite reduction are not constitutively expressed but respond
to the energy demands of the cell, decreasing in expression in sta-
tionary phase and when thiosulfate is provided as electron accep-
tor. The operons for the proposed transmembrane complexes for
donating electrons to APS reductase and that for bisulfite reductase
were similarly decreased under these conditions; whereas, operons
for other putative transmembrane complexes were not uniformly
changed in transcription in these conditions. The genes and oper-
ons for sulfate and sulfite reduction were among the most highly
transcribed genes in the cells and, as would be predicted while
growing with lactate plus sulfate, transposon insertions in these
genes were not recovered. Transposons were recovered in almost all
other operons and genes listed with the interesting exception of the
Coo hydrogenase complex which showed a surprisingly low num-
ber of insertions. This complex has been shown not to be essential
for growth on lactate plus sulfate but it appears to be needed for
syntrophic growth with Methanococcus maripaludis with lactate as
sole source of carbon and reductant (Walker et al., 2009 and for
the efficient recovery of transposon mutants. Because this com-
plex is a member of the energy-converting [NiFe] hydrogenases
(Hedderich, 2004), it is predicted that this complex is integral to
the energy budget at some stage of culturing for single colony for-
mation on medium with lactate as electron donor and sulfate as
electron acceptor.

MUTAGENESIS TOOL DEVELOPED FOR DESULFOVIBRIO
Important information about electron carriers has been gained
from constructed deletions and from transposon insertions. How-
ever, the genes encoding a number of the enzymes believed to
be needed for electron flow in D. vulgaris have not been specifi-
cally identified in part because multiple ORFs have been similarly
annotated. Examples include the periplasmic hydrogenases, for-
mate dehydrogenases, lactate permeases, lactate dehydrogenases,
and others. When multiple genes encode isozymes, the loss of
one enzyme by mutation of its encoding gene may be compen-
sated by others. This compensation or suppression could explain
why transposon mutations are observed in genes for what would
be predicted to be key enzymes (Table 1). To elucidate the func-
tion of individual members of protein families, multiple genes
will likely need to be eliminated simultaneously. Until recently, the
number of sequential deletions in the same strain of D. vulgaris
was limited by the number of reliable antibiotic resistant mark-
ers available to use for marker exchange deletion construction.
A markerless deletion system has now been developed based on
the counterselection of the gene for uracil phosphoribosyltrans-
ferase, upp, by resistance to the toxic uracil analog 5-fluorouracil
(Keller et al., 2009). This method allows the generation of in-frame
deletions without a residual antibiotic resistance gene. The appli-
cation of this technique may contribute critical information about
any unique roles of the four periplasmic hydrogenases. The flexi-
ble electron flow pathways and mechanisms of energy conversion
in D. vulgaris will require the combined application of genetic,
biochemical and systems biology approaches.

MODEL OF ELECTRON TRANSPORT FOR D. VULGARIS
HILDENBOROUGH
To provide a framework for organizing the information obtained
to date for electron flow from lactate to sulfate, a model is presented
in Figure 1. This scheme draws heavily from the models presented
by Noguera et al. (1998) and Walker et al. (2009) and is driven by
the observations of two proteins putatively involved in the electron
pathways, the Tp1-c3 and the Coo hydrogenase. First, the pheno-
type of a deletion of the cycA gene encoding the Tp1-c3 indicates
that electrons from periplasmic H2 (or formate) are exclusively
dependent on this cytochrome for reaching sulfate. Thus the abil-
ity of the �cycA mutant to grow on organic acids with sulfate and
produce sulfide means that some proportion of the electrons gen-
erated from substrate oxidation must not cycle as molecular H2.
Thus the hydrogen cycling hypothesis may contribute but is not
essential to the energy budget of SRM grown with organic acids.
Second, a mutant in the Coo hydrogenase complex cooL::Tn5-
RL27 was unable to grow by syntrophy with a methanogen on
lactate but could grow in monoculture with lactate plus sulfate
(Walker et al., 2009). An interpretation of these observations is
that the mutation in the Coo hydrogenase complex prevented H2

generation from lactate but did not block electron flow to sulfate.
With pyruvate as electron donor, syntrophy was established as well
as growth of monocultures (Walker et al., 2009). Thus a path for
H2 production is available for electrons from pyruvate that is not
available to electrons from lactate. In addition, the apparent lack
of recovery of transposon mutations in the cooMKLXUHhypAcooF
genes in the recently generated library, points to Coo hydrogenase
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as potentially important, but not necessarily essential, player in
electron flow from lactate to sulfate.

The model accommodates these seemingly contradictory
observations by suggesting two pathways for the electrons from
lactate (Figure 1A and B) and from pyruvate (Figure 1C, and D).
In each case, one pathway has the potential for transfer of electrons
into the menaquinone pool for delivery to the membrane associ-
ated complex, Qmo, that is dedicated for the first step in sulfate
reduction (pathways A and D). Whereas the DsrMKJOP complex
is thought to be the transmembrane complex for electron dona-
tion to bisulfite reductase, it may also receive electrons directly
from the menaquinone pool. The second path in each case, B and
C, provides a route for the electrons to generate H2. The model
is already too simple for electron flow from pyruvate since H2

generation in the absence of a functional Coo hydrogenase is doc-
umented (Walker et al., 2009). The question marks in the model
indicate the components that have a high uncertainty, including
the membrane associated component(s) accepting electrons from
pyruvate oxidation.

A future effort will be to determine the gatekeepers for directing
electrons into one path or another. Will this be just the availability
of acceptors or will the rate of flux through the pathways deter-
mine the choices? The complexity of this simple system continues
to impress. It is already evident that there will not be a single wiring

circuit for electron flow from these substrates in the SRM as it does
not extend to the physiologically similar D. alaskensis G20 strain
that lacks orthologs encoding the cytoplasmic hydrogenases of
D. vulgaris.
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