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attenuates experimental
autoimmune thyroiditis in mice
by regulating Treg/Th17
cell differentiation
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Qin Xu1, Yang Zeng3, Jia-Ying Xu1* and Jun Jiang1*

1Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical
University, Luzhou, China, 2Department of Clinical Nutrition, the Affiliated Hospital of Southwest
Medical University, Luzhou, China, 3Department of Orthodontics, the Affiliated Stomatological
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Leptin has been found to be involved in the development and progression of

many autoimmune diseases. As an organ-specific autoimmune disease, the

pathogenesis of Hashimoto’s thyroiditis has not been fully elucidated. It has

been reported that serum leptin level is increased in Hashimoto’s thyroiditis,

but other studies have not shown any difference. We replicated a mouse model

of experimental autoimmune thyroiditis (EAT) with a high-iodine diet and found

that injection of the leptin receptor antagonist Allo-aca reduced thyroid follicle

destruction and inflammatory cell infiltration in EAT mice, and thyroxine and

thyroid autoimmune antibody levels. Further investigation revealed that Allo-

aca promotes the differentiation of Treg cells and inhibits the differentiation of

Th17 cells. We believe that Allo-aca can alter the differentiation of Treg/Th17

cells by inhibiting the leptin signaling pathway, thereby alleviating thyroid injury

in EAT mice. Interfering with the leptin signaling pathway may be a novel new

approach to treat treating and ameliorating Hashimoto’s thyroiditis.

KEYWORDS

leptin, experimental autoimmune thyroiditis (EAT), JAK2/STAT3 pathway, leptin
receptor antagonist, NOD/ShiLtJ mouse
Introduction

Leptin is a peptide hormone produced by adipose tissue that plays a key role in

energy metabolism, growth and development, and regulation of the endocrine system (1–

3). In the last 20 years, leptin has been found to play an important role in the regulation of

autoimmune responses. It enhances the proliferation and differentiation of various

immune cells such as T cells, B cells, and dendritic cells, and stimulates the

production of pro-inflammatory cytokines (4–7). It has been reported that leptin is
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associated with the pathogenesis of systemic lupus

erythematosus, multiple sclerosis (MS), and experimental

autoimmune encephalomyelitis (EAE). It influences the

occurrence and development of the diseases by altering the

differentiation and proliferation of CD4+ T cells (8–11).

Hashimoto’s thyroiditis (HT), also known as chronic

lymphocytic thyroiditis, is an organ-specific autoimmune

disease caused by genetic, autoimmune, and acquired

environmental factors. It is characterized by goiter, lymphocytic

infiltration, and elevated serum thyroid autoantibodies, which are

often accompanied by changes in thyroid function in the later

stages of the disease. Previous reports have shown that

autoreactive CD4+ T cells against thyroid antigens are

particularly important in the development of thyroiditis,

especially the imbalance of immune responses between Th1 and

Th2 helper cells involved in the initiation and development of HT

(12, 13). Some recent studies have described that the increased

Th17 cells and the decreased Treg cells in CD4+ T cells may be

involved in the pathogenesis of HT (14–16). Until now, little is

known about the role of leptin in the pathogenesis of

Hashimoto’s thyroiditis.

In this study, we hypothesized that leptin might participate

in the occurrence and development of HT by regulating the

differentiation of Treg/Th17 cells. We replicated the animal

model of autoimmune thyroiditis (EAT) with female non-

obese diabetes (NOD) mice (17, 18). The leptin signaling

pathway was inhibited by injection of the leptin receptor
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antagonist Allo-aca to investigate the relationship between

leptin and the pathogenesis of Hashimoto’s thyroiditis.
Material and methods

Experimental autoimmune thyroiditis
mouse model

The experimental process complied with the China Animal

Management Regulations (Document No. 55 of the Ministry of

Health of China in 2001) and was approved by the Animal

Protection and Utilization Committee of Southwest Medical

University (No. 20210827-008). Four-week-old female NOD/

ShiLtJ mice (GemPharmatech, Jiangsu, China) were raised in a

specific pathogen-free (SPF) facility with unrestricted access to

water and food. The experimental animals were randomly

divided into three groups (n=10/group). The control group

received a normal rodent diet. The experimental autoimmune

thyroiditis (EAT) group received 0.05% sodium iodide (0.64g/L

NaI) water. The Allo-aca treatment group received NaI water

and a subcutaneous injection of Allo-aca daily. 1mg/kg leptin

receptor antagonist Allo-aca (MedChemExpress, Shanghai,

China) was dissolved in 100µl sal ine and injected

subcutaneously into the neck of the mice (19). After 8 weeks,

the experimental animals were euthanized, and peripheral blood,

thyroid was collected for subsequent experiments (Figure 1).
FIGURE 1

Experimental Procedure. NOD mice were divided into the control group, the experimental autoimmune thyroiditis (EAT) group and the Allo-aca
treatment group. The EAT model was replicated by 0.05% iodine water intaking for 8 weeks. The Allo-aca treatment group received a
subcutaneous injection of Allo-aca daily. The peripheral blood, thyroid and spleen of the experimental animals were used in the subsequent
experiments.
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Histological analysis of the thyroid gland

The spleen and thyroid gland were fixed in 4%

paraformaldehyde solution, then embedded in paraffin,

sectioned, and stained with hematoxylin and eosin.

Experimental autoimmune thyroiditis was graded based on the

percentage of lymphocytic infiltration in the thyroid gland by

two researchers who observed the thyroid sections in a blinded

fashion (20). Grade 0: normal thyroid; grade 1: lymphocytic

infiltration in thyroid gland < 1%; grade 2: 1% ≤ lymphocytic

infiltration < 10%; grade 3: 10% ≤ lymphocytic infiltration <

40%; grade 4: lymphocytic infiltration ≥40%.
Enzyme-linked immunosorbent assay

Peripheral blood from mice was centrifuged at 3000 rpm for

20 minutes to separate serum. Serum levels of leptin, T3, T4,

TSH, TPO-Ab, TG-Ab, IL-17 and IL-10 were measured on a

microplate reader (Rayto RT-6100, Shenzhen, China) using the

corresponding ELISA kits (FANKEL, Shanghai, China)

following the manufacturer’s instructions. Thyroid tissue was

completely homogenized, and the supernatant was separated by

centrifugation at 3000 rpm for 20 minutes. Levels of STAT3,

RORgt, Il-17, FOXP3, TGF-b, and IL -10 were detected in the

thyroid using their respective ELISA kits.
Multiplex fluorescence
immunohistochemistry

Paraffin sections of thyroid tissue were dehydrated, antigen

repaired, and blocked endogenous peroxidase activity and

nonspecific antigens. Using the TSA tyramide signal

amplification technique, samples were incubated with anti-

FOXP3 antibody (Servicebio, Wuhan, China) and anti-IL-17A

antibody (Proteintech, Wuhan, China) at 4 °C for 8 h, followed

by the corresponding secondary antibody (Servicebio, Wuhan,

China) were at room temperature for 50 min. The nuclei were

labeled with DAPI (Servicebio, Wuhan, China) for 3 min.

Recorded and photographed under a confocal laser

microscope. The fluorescence intensities of FOXP3 and IL

-17A were analyzed using ImageJ software.
Statistical analysis

GraphPad Prism 8.0 was used for data analysis and charting.

All data are presented as mean ± standard deviation (SD) or

percent. Comparisons between two groups were performed with

Student’s t-test; comparisons between multiple groups were

performed with one-way analysis of variance (ANOVA). The
Frontiers in Endocrinology 03
95% confidence level was considered significant. For all tests,

statistical significance of p-values is shown as ns: not significant

*, P< 0.05, **; P < 0.01; ***, P < 0.001; ****, P < 0.0001.
Result

Replication of EAT mouse model

Experimental autoimmune thyroiditis (EAT) mouse model

was induced by feeding the animal 0.05% NaI water for 8 weeks.

Thyroid histology showed irregular morphology and destruction

of thyroid follicles in EAT mice, and a massive number of

lymphocytes infiltrated the thyroid gland (Figure 2A). The level

of thyroglobulin antibodies (TgAb) in EAT mice elevated

significantly compared with the control group (Figure 2B).

These phenomena indicated that the EAT model is

successfully replicated.
Allo-aca attenuates thyroiditis in
EAT mice

The severity of thyroiditis in mice was assessed by the follicle

morphology (Figure 3A) and lymphocyte infiltration rate

(Figure 3B) in thyroid paraffin sections. Compared with the

control group, the damage to the follicle and the lymphocyte

infiltration rate were significantly increased in the EAT group,

while these indicators were significantly decreased in the Allo-

aca treatment group. Allo-aca showed no significant effect on the

body weight of mice, and there was no statistical difference in

body weight between the three groups (Figure 3C).
Allo-aca down-regulated serum levels of
T3, T4, TPOAb, and TgAb in EAT mice

The serum levels of leptin, T3, T4, TSH, TPOAb and TgAb

were determined in the experimental animals by enzyme-linked

immunosorbent assay (Figure 4). Compared with the control

group, serum levels of leptin, T3, T4, TSH, TPOAb, and TgAb

were all up-regulated in EATmice. Allo-aca decreased the serum

levels of T3, T4, TPO-Ab, and TgAb in EAT mice. A slight

increase in serum TSH was observed in the Allo-aca treatment

group, but it was not statistically significant (P=0.18).
Allo-aca altered the proportion of Treg
and Th17 cells in the thyroid gland of
EAT mice

Multiplex fluorescence immunohistochemistry was used to

detect Th17 cells and Treg cells in the thyroid gland of mice.
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Treg cells and Th17 cells are both derived from CD4-positive

lymphocytes. Treg cells are characterized by FOXP3 positive and

Th17 cells are characterized by IL -17A positive (21, 22). In this

study, Allo-aca significantly increased the level of FOXP3 in the

thyroid gland of EAT mice (Figure 5A). In contrast, the level of

IL -17A significantly increased in the thyroid gland of EAT mice

and was attenuated by Allo-aca (Figure 5B). The result showed

that Allo-aca changed the proportion of Treg and Th17 cells,

indicating the alleviation of thyroiditis.
Allo-aca down-regulated the levels of
STAT3, RORgt, Il-17, and up-regulated
the level of FOXP3 in the thyroid gland
of EAT mice

ELISA was used to detect the levels of STAT3, RORgt, Il-17,
FOXP3, TGF-b and IL-10 in mouse thyroid glands. In this study,

the levels of STAT3, RORgt and Il-17 were up-regulated in EAT

mice thyroid compared with controls. Allo-aca decreased the

levels of STAT3, RORgt, and IL-17 in the thyroid gland of EAT

mice (Figures 6A–C), and up-regulated the level of FOXP3

(Figure 6D). Allo-aca also slightly upregulated TGF-b and IL-

10 levels in the thyroid glands of EAT mice, but not statistically

significant (Figures 6E, F).
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Allo-aca upregulates serum IL-10 levels
in EAT mice

In addition to the thyroid, we also detected the levels of

inflammatory factors in the serum of experimental animals. IL-

17 was up-regulated in the serum of EAT mice, and Allo-aca had

no significant effect on it (Figure 7A). Allo-aca significantly up-

regulated the level of serum IL-10 in EAT mice (Figure 7B).
Discussion

Leptin has a role in promoting the development of

inflammation in many autoimmune diseases such as gout (23),

and osteoarthritis (24, 25). But the relationship of leptin to

autoimmune thyroid disease has not been fully elucidated.

Studies have found that serum leptin levels are slightly higher

in patients with Hashimoto’s thyroiditis than in the normal

group, but it is not statistically significant (26, 27). Postpartum

thyroiditis patients are associated with significantly elevated

leptin levels, and there may be an association between the two

(28). Thyroid autoantibody levels were positively correlated with

leptin levels in non-obese men, but this association was not

found in women (29). In our study, serum leptin levels were

increased and statistically significant in mice with experimental

autoimmune thyroiditis.
B

A

FIGURE 2

Experimental autoimmune thyroiditis (EAT) in mice. (A) The EAT mouse model was replicated by ingestion of 0.05% sodium iodine water. The
thyroid follicular epithelial cells were necrotic, and a large number of lymphocytes infiltrated the thyroid gland of EAT group. (B) Compared with
the NC group, the serum level of thyroid autoantibody TgAb was significantly increased in the EAT group. The above features indicate that the
EAT model was successfully replicated. ***P < 0.001.
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Massive infiltration of T CD4+ lymphocytes is a key

mechanism for thyroid cell destruction in autoimmune thyroid

disease. And T CD4+ lymphocytes can differentiate into Th1,

Th2, Th17 and Treg cells. The role of Th1 and Th2 cells in

thyroiditis has been extensively studied. They mediate apoptosis/

necrosis of thyroid follicular cells through cellular/humoral

immune mechanisms (12, 13, 30, 31). In recent years, Th17/

Treg cells have also been found to be important for thyroiditis,

and several studies have shown that the imbalance of Th17/Treg

cells is involved in the pathogenesis of autoimmune thyroid

diseases (32–36). The increase in the number of Th17 cells in

Hashimoto’s thyroiditis correlated positively with the degree of

thyroiditis (37) and damage to the thyroid structure (38). Th17

cells stimulate macrophages, fibroblasts, and epithelial cells to

produce cytokines by secreting IL -17, which leads to apoptosis

of thyroid cells (39, 40). Blockade of IL -17 signaling significantly
Frontiers in Endocrinology 05
reduced lymphocyte infiltration in the thyroid gland of mice

with experimental autoimmune thyroiditis (41). On the other

hand, the number and function of Treg cells is reduced in

autoimmune thyroiditis. Treg cells were supposed to reduce

the inflammatory response in the thyroid gland by suppressing

Th1, Th2, and Th17 cells (30, 42), but this effect was attenuated

in AITD. In addition, Treg cells and Th17 cells inhibit each

other’s differentiation (43, 44). Therefore, the ratio of Th17/

Tregs is increased in AITD, which is critical for assessing the

development of autoimmune thyroid disease.

There is evidence that leptin affects inflammation by altering

the balance of Th17/Treg cells in autoimmune diseases (8, 43, 44).

Leptin has been found to regulate the proliferation and

differentiation of T lymphocytes. It increases Th1 and inhibits

Th2 cytokine production (45). And leptin inhibits the

proliferation of Treg cells, and this effect can be reinforced by
B C

A

FIGURE 3

Allo-aca alleviates autoimmune thyroiditis caused by high iodine intake. (A) In normal mouse thyroid, the follicles were distributed evenly and
there were no infiltrated inflammatory cells. High iodine intake caused autoimmune thyroiditis (EAT) in NOD mice, which was characterized by
structural damage to thyroid follicles. Whereas treatment with Allo-aca attenuated the destruction of thyroid follicular cells. (B) Allo-aca
significantly reduced the number of lymphocytes in the thyroid gland according to the lymphocyte infiltration score. (C) The body weight of
mice was continuously monitored during the experimental period, and there was no statistical difference in body weight among the three
groups. n = 4, data are expressed as mean ± standard deviation, **P < 0.01, ***P < 0.001.
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FIGURE 4

Serum leptin, thyroid hormone, and thyroid autoimmune antibody levels in experimental mice. Serum leptin, T3, T4, TSH, TPO-Ab, and TgAb
expressions were all up-regulated in high iodine-induced EAT mice. Allo-aca reduced serum T3, T4, TPO-Ab, and TgAb levels in EAT mice.
n=10, data are expressed as mean ± standard deviation, ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
BA

FIGURE 5

Allo-aca altered the expression of FOXP3 and IL -17A in the thyroid gland of EAT mice. (A) Allo-aca increased the level of FOXP3 in the thyroid
gland of EAT mice. (B) The level of IL -17A was increased in the thyroid gland of EAT mice and was significantly attenuated by Allo-aca. FOX3P
was labeled in green, IL -17A was labeled in pink, and nuclei were stained with DAPI. Scale bar: 20µm. n=3, data are expressed as mean ±
standard deviation, *P < 0.05, **P < 0.01.
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B C

D E F

A

FIGURE 6

Effects of leptin receptor antagonists on inflammatory factors associated with hyper iodine-induced autoimmune thyroiditis in mice. (A-C). The
levels of STAT3, RORgt and IL-17 in thyroid of EAT mice increased and Allo-aca decreased their levels. (D). Allo-aca increased the level of FOXP3
in thyroid of EAT mice. (E-F). Allo-aca mildly increased the levels of TGF-b and IL-10 in thyroid of EAT mice, but the change was not statistically
significant. n=6. Data is expressed as mean ± SEM. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
BA

FIGURE 7

The levels of IL-17 and IL-10 in EAT mouse serum and the effect of Allo-aca on them. (A) Serum IL-17 levels in EAT mice were higher than in
control mice, but Allo-aca had no significant effect on it. (B) Allo-aca significantly up-regulated serum IL-10 levels in EAT mice. n=10 in NC and
EAT group, n=8 in Allo-aca group. Data is expressed as mean ± SEM. ns: not significant, *P < 0.05, ***P < 0.001.
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the negative feedback generated by Treg cells autocreting leptin

and overexpressing leptin receptors (46). Through this study, we

suggest that antagonists of leptin receptors may alleviate thyroid

damage in mice with experimental autoimmune thyroiditis by

modulating Th17 and Treg cells. Serum leptin concentrations

were higher in the EAT mice than in the normal mice. After

administration of Allo-aca, an antagonist of the leptin receptor,

thyroiditis in EAT mice was significantly alleviated, manifested as

reduced thyroid follicle destruction, decreased lymphocyte

infiltration, and decreased serum thyroid autoantibody levels.

Thyroxine T3 and T4 tended to be normal, and TSH slightly

increased compared with EAT model, but it was not statistically

significant. Immunohistochemistry of the thyroid showed

increased Treg cells and decreased Th17 cells in Allo-aca treated

EAT mice. The levels of thyroid STAT3 (47), RORgt and IL-17

were decreased, the level of FOXP3 was increased, and the level of

serum IL-10 was increased in Allo-aca treated EAT mice. In

Hashimoto’s thyroiditis, T CD4+ lymphocytes, under the action

of antigen presenting cells (APCs), activate RORgt through the

JAK2/STAT3 pathway and differentiate into Th17 cells. This

process requires the involvement of leptin, and Allo-aca blocks

this process, thus inhibiting Th17 cell differentiation. On the other

hand, blockade of the leptin pathway promoted the transcription

of FOXP3 and induced the differentiation of T CD4+ lymphocytes
Frontiers in Endocrinology 08
into Treg cells. Since leptin has the effect of inhibiting the

proliferation of Treg cells, blocking the leptin pathway also

maintains the proliferation of Treg cells. Treg cells attenuated

thyroid cell apoptosis/necrosis caused by autoimmune thyroiditis

by inhibiting Th1, Th2 and Th17 (Figure 8).
Conclusion

We found in the mouse model of autoimmune thyroiditis

that antagonists of leptin receptors attenuated thyroid

inflammation by promoting Treg cell differentiation and

inhibiting Th17 cell differentiation. Therefore, intervening

leptin signaling pathway may be a new approach to treat or

improve Hashimoto’s thyroiditis.
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FIGURE 8

Mechanism of leptin receptor antagonists attenuating experimental autoimmune thyroiditis. Leptin binds to the leptin receptor (ObR) on the
surface of T CD4+ lymphocytes, transmits signals to the nucleus through the JAK2/STAT3 pathway (47), promotes the transcription of RORgt,
and then promotes the differentiation of T CD4+ lymphocytes into Th17 cells. Th17 cells mediate downstream immune responses through the
production of IL-17, thereby leading to apoptosis/necrosis of thyroid cells. Treg can alleviate inflammatory response by inhibiting Th1, Th2 and
Th17 cells. Treg and Th17 cells have antagonistic developmental programs and the differentiation of Treg inhibits Th17 differentiation (43, 44).
On the other hand, Allo-aca can also bind to ObR of Treg cells to maintain Treg proliferation (46). Therefore, leptin receptor antagonists
alleviate thyroid cell apoptosis/necrosis in experimental autoimmune thyroiditis by inhibiting Th17 cell differentiation and promoting Treg
differentiation and proliferation.
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