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Abstract: Rheological properties related to the extrusion of polyolefins are the shear viscosity, the
elongational viscosity, the slip velocity and their temperature- and pressure-dependencies. These
properties are measured in the rheology lab mainly via a parallel-plate rheometer and a capillary
rheometer. Then appropriate rheological models have to be used to account for all these properties.
Such models are either viscous (e.g., the Cross model) or viscoelastic (e.g., the K-BKZ model).
The latter gives the best fitting of the experimental data and offers excellent results in numerical
simulations, especially in extrusion flows. Wall slip effects are also found and measured by rheometric
flows. Modeling of extrusion flows should make use of appropriate slip models that take into
effect the various slip parameters, including the effects of shear stress, molecular characteristics,
temperature and pressure on the slip velocity. In this paper the importance of these properties in
extrusion are discussed.

Keywords: shear viscosity; cross model; K-BKZ model; temperature-dependence of viscosity;
pressure-dependence of viscosity; slip at the wall

1. Introduction

Extrusion lies in the heart of polymer processing. Essentially nearly all polymer
processing operations need an extruder to melt, mix and process polymers and their com-
pounds [1,2]. To understand and optimize an extrusion process, the rheological properties
first have to be understood [3]. In other words, it is difficult to understand and optimize
a polymer processing operation without having first a thorough understanding of the
rheological behaviour of the material under process over a wide range of time and length
scales. Moreover, using the rheological properties in both shear and extensional flows,
an appropriate constitutive equation should be identified, capable of capturing the correct
rheological response of the material in both shear and extensional flows, including simple
contraction flows through capillaries and slit dies [1–4].

In this article some important rheological properties related to extrusion are discussed.
These include the following: (i) the entry pressure in capillary extrusion important to
capture the extensional behavior of polymer melts [5–10]; (ii) the effects of temperature and
pressure on the rheological properties [11,12]; and (iii) the slip behaviour of polymers at
solid boundaries [13–18]. The main focus will be polyolefins as there is a considerable body
of rheological data allowing the assessment of the importance of rheological properties
in extrusion.

This paper is organised as follows. First the temperature sensitivity of the viscosity of
polymers is discussed by means of experimental data obtained from a rheometer equipped
with a parallel-plate geometry (Section 2). Next capillary flow is discussed (Section 3) as an
important rheological test (i) to capture the effect of pressure on viscosity (Section 3.1)
and (ii) to determine the entry pressure drop from the reservoir to the capillary die and
use of this to evaluate the suitability of a rheological constitutive equation to predict it
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(Section 3.2) as well as to capture the important effects of extensional viscosity (Section 3.3).
Finally, the possibilities of polymer melt wall slip are discussed and a comprehensive
slip velocity equation is presented (Section 4) as an appropriate boundary condition for
high-shear flows.

2. Parallel-Plate Rheometry: Effect of Temperature

Parallel-plate rheometry is the starting point in any rheological study of polymer melts
which can provide useful information on the structure–property relationships of polymers,
i.e., effects of shear rate, molecular weight and its distribution, the complex and absolute
viscosity of polymers in both shear and extensional flows [1–4]. Performing rheological
tests at various temperatures and using the powerful technique of time-Temperature
Superposition (tTS), the rheological properties can be captured over a wide range of time
and length scales [1–4]. Consequently, using these rheological properties, the effects of
temperature and pressure can be assessed easier, i.e., comparing them with rheological data
obtained from pressure-driven flow such as capillary flow (discussed extensively below).

An important parameter that can be obtained accurately from the parallel-plate ge-
ometry is the effect of temperature on the rheological properties, which can be significant.
The effect can be obtained by measuring the viscosity η of the melts over a wide range
of temperatures T and then using the following equation to model the temperature shift
factor, aT, determined from the application of the tTS to obtain the master curve of the
viscosity at the reference temperature, Tref:

aT(T) =
η

η0
= exp

[
E

Rg

(
1
T
− 1

Tre f

)]
. (1)

In the above, η0 is the viscosity at the reference temperature Tref, E is the flow activa-
tion energy constant, Rg is the ideal gas constant, and Tref is a reference temperature (in K).
Typical values reported for the activation energy of various polymers can range from as
low as ≈ 22, 800 J/mol for HDPE to ≈ 83, 000 J/mol for HDPE to for LDPE (depending
on the degree of branching) to ≈ 116, 500 J/mol of polystyrene [19]. This roughly corre-
sponds to a decrease of viscosity of 36% to 370% by increasing the temperature by 20 ◦C,
a nontrivial effect.

3. Capillary Rheometry

Capillary rheometry is extensively used in both industry and academia to assess the
rheological behaviour of polymer melts at high shear rates as well before testing their
processability in full industrial scale [1,3]. When such a flow is used and the raw data are
collected, a number of important corrections should be applied before the rheological data
can be compared with corresponding data from a rotational rheometer [1,3]. Details of anal-
ysis of raw experimental data obtained from capillary rheometer to calculate fundamental
rheological quantities such as shear stress and shear rate can be found in most books on
rheology [1,3]. In this paper, the importance of entry pressure is discussed. However, the
important effects of temperature (discussed above) and pressure on viscosity should be
considered next before the importance of entry pressure is discussed.

3.1. Effect of Pressure on Viscosity

The effect of pressure on the viscosity is very important for polymer melts. In extrusion
operations, typically large pressures are encountered at high shear rates which can cause
significant increase of viscosity due to pressure. This also causes significant viscous
dissipation, which should also be taken into account, i.e., considering the energy equation
in modeling essential non-isothermal flows [1,3].

The effect of pressure on viscosity can be studied by using capillary data from dies of
various length-to-diameter (L/D) ratios [1,3,20–25]. As a first approximation, the following
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expression (Barus equation) can be used to determine the parameter, βp, known as the
pressure coefficient of viscosity:

ηp = η0 exp
(

βp p
)

(2)

where ηp is the viscosity at pressure p, and η0 is the viscosity at ambient pressure and
reference temperature Tref. Combining Equations 1 and 2, the viscosity (or any other
rheological property) can be modeled by

ηp,T = η0 exp
(

βp p
)

exp

[
E

Rg

(
1
T
− 1

Tre f

)]
(3)

where now ηp,T is the viscosity at pressure, p, and temperature, T, with respect to the
viscosity of the melt η0 at the reference temperature Tref and ambient pressure.

Using a pressurized sliding-plate rheometer, Koran and Dealy [26], Park and Dealy [27],
and Park et al. [23], have determined the coefficient βp for various systems, including
low-density polyethylene (LDPE), poly-a-methylstyrene-co-acrylonitrile (PaMSAN), and
linear low-density polyethylene (LLDPE). For the LDPE (of main interest in the present
work) a value between 1.3× 10−8 Pa and 4.9× 10−8 Pa has been reported by various
authors [21,25,28,29]. This coefficient has also been reported to be a function of the shear
rate, with βp of LDPE decreasing significantly with shear rate [3,30]. These typical values
can increase the viscosity significantly. For example, for a typical pressure of 100 MPa in
extrusion and a coefficient of the order of 10−8 to 5× 10−8 Pa, the viscosity can increase by
a factor of exp(βp p), that is 2.71 to 148 times, effects nontrivial.

3.2. Entrance Pressure Significance

First, capillary flow involves flow through a contraction of a certain angle, where there
is a large pressure drop associated with such flow, known as end (or entry or entrance)
pressure [1,4]. Figure 1 plots the axial pressure variation in a capillary die including both
its entrance and exit regions. It can be seen that the total pressure drop, ∆p, consists of
three components and may be written as:

∆p = ∆pCap + ∆pEnt + ∆pExit (4)

where ∆p is the total pressure drop from the reservoir to the capillary exit, ∆pCap is the
pressure drop over the length of the capillary where the flow is fully developed, ∆PEnt the
entry pressure which is mainly due to the extensional (acceleration) flow at the entrance,
and the ∆pExit the exit pressure associated with normal stress effects at the exit region of
the capillary [3]. The combined end pressure ∆pEnd = ∆pEnt + ∆pExit is required in order
to calculate the true shear stress. On the other hand, the entry pressure ∆pEnt is frequently
used to determine the apparent extensional rheology of molten polymers, a method well
practiced in industry [5–10]. An appropriate rheological constitutive equation should
be capable of capturing/predicting the entry pressure correctly, essentially capable of
capturing the pressure associated with a simple contraction flow before tested in polymer
processing where the geometries are much more complex (combinations of contraction and
expansion of various degrees).

Many studies have previously attempted to examine the origin of entry pressure and
its prediction for various polyethylenes [31–38]. Significant under-estimation was reported
in all these studies that have raised questions with respect to the appropriateness of the
constitutive equations used and/or the adequate rheological data used to fit the model
parameters, particularly those that control the extensional behavior of these polymers. The
problem of predicting the end pressure for LDPE was solved satisfactorily at very high
shear rates (up to 1000 s−1) for the first time by taking in to account the effect of pressure
(mainly) and temperature on viscosity [39]. The authors pointed out the importance
of considering in detail the significant effects of pressure and temperature on viscosity
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(including possible viscous dissipation effects) as well as the importance of extensional
viscosity data to predict correctly the entry pressure. Typical results from the simulations
are shown in Figure 2a–c for three polymer melts, a metallocene polyethylene (m-LLDPE),
a high-density polyethylene (HDPE), and a low-density polyethylene (LDPE), respectively.
Numerical results for the lowest and highest apparent shear rates of 75 s−1 and 1000 s−1

are only presented here for the sake of clarity. Several observations can be made: (i) the use
of a viscous model (Cross model) significantly underpredicts the entry pressure as such
models neglect the important viscoelastic and extensional rheological effects. On the other
hand, the use of the K-BKZ model is capturing adequately well the entrance pressure as a
function of the contraction angle for all three polymers. As the contraction angle increases,
the extensional components are having a stronger effect, thus increasing the discrepancies
between predictions from a purely viscous model and the measured experimental data [39].
Finally, comparing the entrance pressure between the three types of polyethylene, the
authors concluded that it scales with the extensional viscosity of the polymer. For example,
the LDPE (branched polyethylene) possesses the highest entrance pressure due to the
significant strain-hardening effects originated from its branched structure.
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Figure 2. The entrance pressure of (a) LLDPE (b) HDPE and (c) LDPE at 160 ◦C as a function of contraction angle at various
values of apparent shear rate.

3.3. The Importance of Extensional Viscosity

The importance of the extensional viscosity on the entry pressure was studied exten-
sively for the case of ionomers [40–43]. Results are presented in Figure 3 for two polymers,
one ionomer (19.2-Na65) and its corresponding copolymer (19.2-Na65). First, ionomers
exhibit stronger strain-hardening effects, as can be seen from Figure 3a,b, respectively.
The authors reported that the vortex size and intensity are increasing substantially with
extensional viscosity, as can be seen from Figure 3c,d. These differences signify the strong
effects of ionic interactions that give rise to strong strain-hardening effects. In general,
the flow patterns (vortex size and intensity) scale with the number of ionic interaction
(strain-hardening effects) in the case of ionomers. Similar conclusions can be drawn when
a comparison between a linear and branched polymer is made [39].
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figures clearly show that a higher extensional viscosity produces a larger and stronger vortex.
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4. Slip Effects

Unlike Newtonian fluids, polymer melts slip over solid surfaces when the wall shear
stress exceeds a critical value [13–18]. In particular, slip effects have been reported in the cap-
illary flow of molten polyethylenes [44–49], polydimethylsiloxanes [50], polystyrenes [51–53],
polybutadienes [54,55], polypropylenes [56–58], fluoropolymers [59], polylactides [60], poly-
isobutylenes [61], ionomers [40,41] and other viscoelastic fluids [62,63]. Thus, in a compre-
hensive study of any melt, possible slip effects should be studied to be used as boundary
conditions in high shear rate flows. This can be done by using at least three capillary
dies having different diameters and the same L/D in order to keep the effect of pressure
constant. If the flow curve shows a diameter dependency, the Mooney method can be used
to determine the slip velocity as a function of the wall shear stress.

Many researchers have attempted to quantify the slip velocity of polymer melts as a
function of wall shear stress, wall normal stress, temperature and pressure [13–15,54,64–66].
It has also been reported that the slip velocity increases with decrease of molecular weight
for monodisperse polymers [52–54,63]. Moreover, it depends strongly on the breadth of the
molecular weight distribution (MWD) with polydisperse polymers to slip more compared
to their monodisperse counterparts at a given average molecular weight [63]. These effects
should be taken into account as the relationships between slip velocity and molecular
characteristics are nonlinear, and small changes in these parameters may result in large
differences in the slip velocity.

A slip velocity model has been formulated based on reptation theory (presented
below) to capture the molecular weight and MWD effects [66]. To this end, the formulated
integral slip velocity model [66] was coupled with a fractionation model developed by
van der Gucht et al. [67] to accurately capture the MWD effects, which in fact are strong
for very broad molecular weight distribution [68]. Entropy driven migration of polymer
molecules are known to occur, driving shorter polymers closer to the surface (surface
migration/segregation), phenomena which have been predicted theoretically [69–71] and
observed experimentally in polymer extrusion studies [72–79]. A comprehensive slip
model that takes into effect these phenomena of segregation has been developed for
polyethylenes [80] to predict the slip velocity of a large number of polyethylenes reported
in [79,81].

As discussed above, using elements from the theory of double reptation, Ebrahimi et al. [68]
and Najm and Hatzikiriakos [80] developed a slip velocity model that relates the wall slip of
polymers, VS, with their detailed molecular weight distribution (MWD). This can be written as:

aTapVS = A


∞∫

0

Mβw(M)

∞∫
M

w(M′)dM′

dM

σ1/n
w = A f (M)σ1/n

w (5)

where n is equal to the local slope of the flow curve of the corresponding polymer,n ≡
d(log(σw))/d(log(

.
γw)), σw is the wall shear stress,

.
γw is the wall shear rate, M represents

the molecular weight, aT and ap are the temperature and pressure dependency coefficients
of slip respectively, and A and β are constants which depend solely on the polymer type
and are equal to 1.0 × 1010 and −2, respectively, for HDPEs. This model gives the slip
velocity of polymers based on the molecular weight distribution of the polymer in the
bulk. However, fractionation phenomena are occurring during flow and such effects are
important to be considered. Thus, given the molecular weight of the polymer in the bulk,
wb(M), a model is used to calculate the molecular weight of the polymer at the wall surface,
ws (M), that controls the slip of the polymers. Essentially the molecular weight at the
surface, ws(M), is related to that at the bulk, wb(M), by:

νex(M)

wb(M)
= AC

(
1− M

Mw

)
± AF

√∣∣∣∣1− M
Mw

∣∣∣∣( σw

Go
N

) 1
n

(6)

ws(M) = wb(M) + νex(M) (7)
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where νex(M), ws(M) and wb(M) represent the excess, surface and bulk weight fractions
and Go

N is the plateau modulus. The first term in Equation (6) represents the entropy driven
migration while the second represents the flow induced migration effects. More details can
be found in [46,80].

Figure 4 presents typical results comparing experimental slip velocity data for a PE
melt with model predictions considering various cases. Figure 4a presents the MWD of
the polymer and the various MWD of the polymer at the surface under the influence of
various levels of the wall shear stress. As the wall shear stress increases essentially the
population of smaller molecules increases at the surface at the expense of larger ones.
Using the MWD of the polymer at the bulk, the prediction of the slip velocity (Equation (5))
is several orders of magnitude less than the experimental data as can be seen from Figure 4b
(solid black line). Considering now the shear-induced segregation effects, which are
represented by the first term only of Equation (6), the model prediction is significantly
improved, essentially capturing the experimental data at small values of the wall shear
stress. However, it underpredicts the experimental data at higher wall shear stress values,
which indicates that the additional effects of wall shear stress (shear-induced migration)
need to be included. When the concentration gradient effects as given by Equation (6)
are taken in to account (entropy driven and flow-induced) the calculations (red squares
connected with a continuous line) agree remarkably well with the experimental data (black
squares). Note that the surface MWD depends on the value of the wall shear stress (several
distributions are plotted in Figure 4a). As the wall shear stress increases, high-MW species
are depleted from the surface at the expense of short-MW ones. As a result, the slip velocity
increases further in a nonlinear fashion.
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5. Conclusions

Rheological data were considered from parallel-plate and capillary rheometers and
discussed in the context of their importance in extrusion flows [1–4]. These include steady
shear viscosity and transient elongational viscosity data and their temperature and pressure
dependency, which should be used to best fit the parameters of an integral constitutive
equation of the K-BKZ type. This integral model successfully simulates remarkably well
the entrance pressure drops polymers are showing, and it is a suitable equation to be used
in more complex flows such as extrusion. It is further capable of simulating successfully
the flow patterns in the contraction areas in capillary dies showing that it captures the
important effects of the extensional viscosity.

However, to successfully simulate complex flows of polymers in extrusion, the wall
slip should be taken into account which seems to be the rule and not the exception. A com-
prehensive slip velocity model has been presented that is capable of capturing not only
the dependence of slip velocity on wall shear stress and molecular characteristics of the
polymers but also the possible strong segregation effects that occur at solid boundaries due
to (i) entropy driven migration of smaller molecules towards the wall at the expense of
larger ones and (ii) the flow induced migration effects that contribute significantly as well.
Coupling of the slip velocity model with the segregation/fractionation model provides an
appropriate boundary condition suitable to simulate viscoelastic fluids in complex flows.

This article pointed out the importance of some rheological parameters that are needed
to improve the capabilities of rheological constitutive equations to simulate complex flows
related to polymer processing operations such as extrusion. The K-BKZ model has been
shown to be one of the most successful constitutive equations to simulate complex flows.
It needs a minimum number of rheological tests to determine its parameters. Therefore,
more work in this direction is recommended in the future, i.e., use of K-BKZ to simulate
extrusion operations of polymers, polymer blends and polymer composites [82,83].
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