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New phosphosite‑specific 
antibodies to unravel the role 
of GRK phosphorylation 
in dopamine D2 receptor regulation 
and signaling
Anika Mann1,7, Alastair C. Keen2,3,4,7, Hanka Mark1, Pooja Dasgupta1, Jonathan A. Javitch5,6, 
Meritxell Canals3,4, Stefan Schulz1* & J. Robert Lane3,4*

The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s 
disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G 
protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated 
signaling has been shown to have distinct physiological functions to those of G protein signalling. 
Relatively little is known regarding the patterns of D2R phosphorylation that might control these 
processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to 
facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides 
corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-
specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an 
antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared 
measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected 
D2R agonists including previously described biased agonists. These studies demonstrate the utility of 
novel phosphosite-specific antibodies to investigate D2R regulation and signalling.

The catecholamine neurotransmitter dopamine (DA) is involved in many physiological processes in the central 
nervous system (CNS) such as cognition, motor control and reward1. DA effects are mediated by 5 members of 
the G protein-coupled receptor (GPCR) superfamily2. The dopamine D1 and D5 receptors (D1R & D5R) are cou-
pled to stimulatory G proteins (Gαs or Gαolf) whereas the D2-like DRs (D2R, D3R, D4R) are coupled to inhibitory 
G proteins (Gαi/o/z). Dysregulation of dopamine signaling is associated with many CNS disorders. D2R agonists 
are used to treat the symptoms of Parkinson’s disease, whereas D2R antagonism is a necessary property of all 
clinically used antipsychotics3.

G protein signaling is rapidly desensitized by phosphorylation of the receptor by GPCR kinases (GRKs) fol-
lowed by the recruitment of β-arrestins to the phosphorylated receptor4. This inhibits G protein-signaling and 
leads to receptor internalization, dephosphorylation and recycling of receptors to the cell surface or traffick-
ing to lysosomes for degradation. GRKs 2 and 3 primarily mediate agonist-stimulated D2R phosphorylation5,6 
and overexpression of GRK2 has been shown to enhance D2R β-arrestin recruitment7. The D2R lacks the long 
C-terminal tail that is the site of GRK phosphorylation for many GPCRs. Mutagenesis studies from Namkung 
and colleagues identified eight serine/threonine (Ser/Thr) residues that are phosphorylated by GRK2/3 and 
a further five residues that are phosphorylated by protein kinase C (PKC) within intracellular loop (ICL) 38. 
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A subsequent study by Cho and colleagues identified additional residues in ICL2 and 3 important for PKC-
meditated desensitization of the D2R6.

In addition to their role in receptor regulation, β-arrestins may act as scaffolding proteins to initiate signal-
ing pathways9. Indeed, while Gαi/o/z G protein signaling appears to be responsible for many of the physiological 
consequences of D2R activation, a β-arrestin2-mediated signaling cascade involving protein phosphatase 2A, Akt 
(PKB) and glycogen synthase 3β has also been identified10,11. A global β-arrestin-2 knockout mouse displayed a 
reduction in DA-dependent locomotor activity11. Two studies that expressed mutant D2Rs, compromised either 
in the ability to recruit β-arrestin or to activate G protein-signaling relative to the other signaling process, in 
D2R-expressing medium spiny neurons (D2R-MSNs), provided evidence that D2R-β-arrestin signaling is suf-
ficient for normal locomotor activity but not incentive motivation12,13. Elimination of β-arrestin2 specifically 
in D2R-MSNs reduced locomotor responses and blunted cocaine reward14. Together these data suggest that 
D2R-β-arrestin2 signaling may mediate physiological functions distinct from those controlled by D2R Gαi/o/z 
protein signaling15. Biased agonism describes a phenomenon whereby different ligands stabilize distinct confor-
mations of a single receptor such that they differentially engage distinct signaling effectors16. If the therapeutic 
and deleterious side effects of a drug are mediated by distinct downstream signalling pathways through a single 
receptor, this concept may allow the development of biased pathways specific drugs that avoid such “on-target” 
side effects17. For the most part, however, the distinct GPCR signaling pathways in a specific tissue or cell that 
modulate particular physiological effects remains unclear18. Both arrestin and G protein biased ligands have 
been identified for the D2R7,19. Intriguingly, the action of one series of arrestin-biased ligands both to attenuate 
amphetamine-induced hyperlocomotion and avoid catalepsy in mice was diminished by global knockout of 
β-arrestin27.

Together these studies suggest that D2R phosphorylation by GRK2/3 is a key step in modulating downstream 
signaling to control distinct physiological responses to DA by terminating G protein signalling and engaging 
β-arrestins. We and others have shown that antibodies specific to phosphorylated residues of GPCRs are par-
ticularly useful in unravelling the complexities of such regulatory processes and in particular the hierarchy of 
phosphorylation patterns or barcodes20–22. In this study, we develop and characterize the first GRK phospho-
rylation site (phosphosite)-specific antibodies for the D2R and identify a site that is phosphorylated by GRK2 in 
response to D2R agonists. We compare the action of a number of agonists, including previously described biased 
agonists, to trigger receptor phosphorylation and correlate this to G protein activation, GRK2 recruitment and 
β-arrestin recruitment.

Materials and methods
Plasmids.  DNA for the long splice variant of the hD2R was generated via artificial synthesis and cloned 
into pcDNA3.1 by Imagenes. The coding sequence for an amino-terminal HA-tag was added. Venus-1-155-Gγ2, 
Venus-156-239-Gβ1, masGRK3ct-NLuc were gifts from Nevin Lambert (Augusta University). hD2LR-Nluc was 
generated in house. GRK2-venus and YFP-βarrestin2 have been described previously23. The cDNA clones for 
human Gαi1-C351I or GαoA-C351I were obtained from the cDNA Resource Center (www.​cdna.​org).

Antibodies.  Peptide sequences used for generating phosphosite-specific antibodies against individual phos-
phorylated forms of the long splice variant of the D2R are shown in Table 1, including a phosphorylation-inde-
pendent antiserum targeting a proximal epitope in the D2R third intracellular loop. After HPLC purification, the 
respective peptides were coupled to keyhole limpet haemocyanin. The conjugates were mixed 1:1 with Freund´s 
adjuvant and injected into groups of three rabbits (5095–5097) for anti-pThr287/Ser288 antibody production, 
(5098–5100) for anti-pThr293/Ser296 antibody production, (5101–5103) for anti-pSer317/Thr318 antibody produc-
tion, and (5104–5106) for anti-D2R antibody production. The rabbits were injected at 4-week intervals. The 
serum was obtained 2 weeks after immunizations, beginning with the second injection. Specificity of the antisera 
was tested using dot blot analysis. Antibodies were affinity-purified against their immunizing peptide, immo-
bilized using the SulfoLink kit (Thermo Scientific), for subsequent analysis. Anti-GRK2 (sc-562, AB_630931), 
anti-GRK3 (sc-563, AB_2225849), anti-GRK5 (sc-518005) and anti-GRK6 (sc-566, AB_2115466) antibodies 
were purchased from Santa Cruz Biotechnology. The anti-HA IgG C 488A antibody (SAB4600054) was obtained 
from Sigma-Aldrich, anti-HA IgG CF640R antibody (20240) was purchased from Biotium and the anti-rabbit 
IgG HRP-conjugated antibody (7074) was obtained from Cell Signaling Technologies.

Table 1.   D2R peptide sequences used for generation of phosphosite-specific antisera. List of peptide sequences 
used for generating phosphosite-specific antibodies against individual phosphorylated forms of the D2R and a 
phosphorylation-independent antiserum targeting the D2R at the proximal part of the third intracellular loop.

Antiserum name Sequence used for immunization Amino acid position in hD2LR

Thr287/Ser288 EMLSS-T(p)-S(p)-PPER 282–292

Thr293/Ser296 PPER-T(p)-RY-S(p)-PIPP 289–300

Ser317/Thr318 HHGLH-S(p)-T(p)-PDSP 312–322

D2R
(phosphorylation-independent) VNTKRSSRAFRAHLRAPLKGN 223–243

http://www.cdna.org
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Drugs.  Terguride (ab144611) was obtained from Abcam. Aripiprazole (SML-0935), PMA (P8139) and per-
golide mesylate (P8828) were purchased from Sigma-Aldrich. Apomorphine hydrochloride (2073), MLS1547 
(6171), ropinirole (3680), quinpirole hydrochloride (1061), dopamine hydrochloride (3548), cabergoline (2664), 
bromocriptine mesylate (0427), forskolin (1099), SCH23390 (0925), PTX (3097), haloperidol hydrochloride 
(0931), L-741,626 (1003) and roxindole (1559) were obtained from Tocris. UNC9994 (A16087) was purchased 
from AdooQ Bioscience. Lambda-phosphatase (P0753S) was obtained from Santa Cruz. Compound 101 
(HB2840) was obtained from Hello Bio. Terguride, PMA, forskolin, L-741,626, aripiprazole, pergolide, apomor-
phine, MLS1547, ropinirole, cabergoline, bromocriptine, haloperidol, roxindole, UNC9994 and compound 101 
are DMSO-soluble and all the other mentioned compounds are water-soluble.

Cell culture and transfection.  Human embryonic kidney 293 (HEK293) cells were obtained from the 
German Collection of Microorganisms and Cell Cultures GmbH (Deutsche Sammlung von Mikroorganis-
men und Zellkulturen; DSMZ). Cells were cultured in Dulbecco´s modified Eagle´s medium (DMEM), sup-
plemented with 10% fetal bovine serum, 2 mM L-glutamine and 100 U/ml penicillin/streptomycin at 37 °C and 
5% CO2. HEK293 cells were stably transfected with TurboFect (ThermoFisher Scientific). Cells stably expressing 
HA-hD2R receptor were selected in medium supplemented with 400 µg/ml geneticin and cells stably transfected 
with HA-hD2R receptor and GIRK2-eGFP were selected in medium supplemented with 400 µg/ml geneticin 
and 300 µg/ml hygromycin. To increase the number of HEK293 cells stably expressing HA-hD2R receptor or 
HA-hD2R receptor in combination with GIRK-eGFP, fluorescence-activated cell sorting was used as described 
previously21,24.

Small interfering RNA (siRNA) silencing of gene expression.  Chemically synthesized double-
stranded siRNA duplexes (with 3′-dTdT overhangs) were purchased from Qiagen for the following targets: 
GRK2 (5′-AAG​AAA​UUC​AUU​GAG​AGC​GAU-3′), GRK3 (5′-AAG​CAA​GCU​GUA​GAA​CAC​GUA-3′), GRK5 
(5′-AAG​CAG​TAT​CGA​GTG​CTA​GGA-3′) and GRK6 (5′-AAC​ACC​UUC​AGG​CAA​UAC​CGA-3′) and from GE 
Dharmacon a non-silencing RNA duplex (5′-GCU​UAG​GAG​CAU​UAG​UAA​A-3′ and 3′-UUU​ACU​AAU​GCU​
CCU​AAG​C-5′). HEK293 cells stably expressing HA-hD2 receptor were transfected with 150 nM siRNA for sin-
gle transfection or with 100 nM of each siRNA for double transfection using HiPerFect. All experiments showed 
target protein abundance reduced by ≥ 80% 3 days after transfection.

Western blot analysis.  Western blot analysis was performed as described previously21. HEK293 cells sta-
bly expressing the HA-hD2R were plated onto poly-l-lysine-coated 60-mm dishes and grown for 2 days to 80% 
confluency. Cells were treated with agonists or antagonists and subsequently lysed with detergent buffer (50 mM 
Tris–HCl, pH 7.4; 150 mM NaCl; 5 mM EDTA; 10 mM NaF; 10 mM disodium pyrophosphate; 1% Nonidet P-40; 
0.5% sodium deoxycholate; 0.1% SDS) in the presence of protease and phosphatase inhibitors. Where indicated, 
cells were preincubated with GRK2/3 inhibitor compound 101 or D2 receptor antagonist for 30  min before 
agonist treatment. HA-tagged hD2R were enriched using anti-HA-agarose beads after 30 min centrifugation at 
4 °C. Samples were inverted for 2 h at 4 °C. Where indicated, cell lysates were dephosphorylated with lambda 
protein phosphatase (Santa Cruz) for 1 h at 30 °C. Following sample washing, proteins were eluted using SDS 
sample buffer for 30 min at 50 °C. Protein separation was performed on 7.5% or 12% SDS–polyacrylamide gels. 
After electroblotting, membranes were incubated with 0.1 µg/ml antibodies to pThr287/Ser288 (5095), pThr293/
Ser296 (5099) or pSer317/Thr318 (5102) overnight at 4 °C. Enhanced chemiluminescence detection (ECL) was used 
to detect bound antibodies (Thermo Fisher Scientific). Subsequently, blots were stripped and reprobed with the 
phosphorylation-independent antibody to the D2R (5106) to ensure equal loading of the gels.

G protein activation assay.  The G protein activation assay was performed based on a previously reported 
bioluminescence resonance energy transfer (BRET) detection method25,26. Initially, 2,500,000 Flp-In HEK 293 
cells stably expressing the human D2LR were harvested into 10 cm dishes. 24 h after harvesting cells, the cells 
were transfected with cDNA constructs using linear polyethylenimine (PEI) in a ratio of 1 μg DNA: 6 μg PEI. 
Cells were transfected with pcDNA3.1 encoding the following constructs: 1 μg Venus-1–155-Gγ2, 1 μg Venus-
156–239-Gβ1, 1 μg masGRK3ct-NLuc and 2 μg of either Gαi1-C351I or GαoA-C351I. 24 h after transfection the 
cells were harvested from dishes and plated into poly-d-lysine coated Greiner white 96-well TC treated plates. 
The cells were left to adhere for approximately 8  h and then treated with 100  ng/mL pertussis toxin (PTX) 
overnight. The following day, cells were washed once with Hank’s balanced salt solution (HBSS) pH 7.4 and left 
to equilibrate in HBSS 37 °C for 30 min before BRET detection. 10 min prior to addition of agonist, 10μL of 
Nano-Glo substrate (Promega) was added to each well (final dilution 1 in 1000). BRET was then measured using 
a PHERAstar FS microplate reader (BMG LABTECH). Luminescence was measured with the BRET1 plus filter 
for the emission signal of NLuc (445–505 nm) and Venus (505–565 nm) simultaneously. Measurements were 
taken 10 min after agonist addition. The counts from the Venus acceptor (505–555 nm) were then divided by 
the donor NLuc (465–505 nm) counts to give a BRET ratio. BRET ratios were then normalized to percent of the 
dopamine-induced maximal responses where indicated.

Membrane potential assay.  Membrane potential change was measured as previously described27. 
HEK293 cells stably expressing the HA-hD2R and GIRK2-eGFP were plated into 96-well plates. After washing 
with Hank´s balanced salt solution (HBSS), buffered with 20 mM HEPES (pH 7.4, containing 1.3 mM CaCl2; 
5.4 mM KCl; 0.4 mM K2HPO4; 0.5 mM MgCl2; 0.4 mM MgSO4; 136.9 mM NaCl; 0.3 mM Na2HPO4; 4.2 mM 
NaHCO3; 5.5 mM glucose) cells were incubated with membrane potential dye (FLIPR Membrane Potential kit 
BLUE, Molecular Devices) for 45 min at 37 °C. Final used injection volume of compounds and vehicle was 20 µl 
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while the initial volume in the wells was 180 µL (90 µL buffer plus 90 µL dye); resulting in a final volume in the 
well of 200 µL and a 1:10 dilution of the compound. Therefore, the compounds were prepared at 10 × concentra-
tions. Compounds or buffer were injected after a baseline reading for 60 s and measurements were recorded at 
37 °C using a FlexStation 3 microplate reader (Molecular Devices). After data normalization to the baseline, the 
buffer-only trace for each corresponding data point was subtracted.

GRK2 and β‑arrestin2 recruitment.  GRK2 and β-arrestin2 recruitment assays were measured by means 
of BRET detection. The BRET assays previously reported by our group28 and by others29 were improved by uti-
lizing NanoBRET technology. Flp-In HEK 293 cells were initially harvested and transferred into plastic 10 cm2 
dishes in DMEM with 10% FBS at a density of 2,000,000 cells. 24 h after transferring the cells to dishes, the cells 
were transfected using linear polyethylenimine (PEI) in a 1:6 ratio of DNA:PEI (μg). For GRK2 recruitment, 
0.25 μg hD2LR-NLuc, 4 μg GRK2-Venus and 3.5 μg pcDNA3.1 were transfected. For β-arrestin2 recruitment, 
0.25 μg hD2LR-NLuc, 2 μg GRK2 (untagged) and 5.5 μg YFP-β-arrestin2 were transfected. Approximately 30 h 
after transfection the cells were harvested from the dishes and plated into poly-D-lysine coated Greiner white 
96-well TC treated plates in DMEM, 10% FBS. Approximately 20 h after cells were transferred to plates, the plate 
was washed with HBSS pH 7.4 and replaced with 80 μL HBSS. The cells were then left to equilibrate for 30 min 
at 37 °C before agonist addition. 10 min prior to agonist addition, 10 μL of Nano-Glo Luciferase Assay Substrate 
(Promega) diluted in HBSS was added to each well with a multi-step pipette (final concentration 1 in 1000). 
Changes in BRET were then detected 10 min after agonist addition in a PHERAstar FS microplate reader (BMG 
Labtech) at 37 °C. Individual wells were measured for the luminescence emission signal of NLuc (465–505 nm) 
and Venus/YFP (505–555 nm) simultaneously. Data was analysed by taking the counts from the acceptor Venus/
YFP (505–555 nm) and dividing by the donor NLuc (465–505 nm) counts to give a BRET ratio. The BRET ratio 
was baseline-normalized to vehicle wells as well as 100% defined as the maximal BRET ratio obtained by stimu-
lation with dopamine or quinpirole where indicated.

Data analysis.  ImageJ 1.47v software was used for quantification of protein bands detected on Western 
blots as described previously21. GraphPad Prism 5 software was used for data analysis and this was performed 
as described previously. Densitometry of every protein band was carried out with Image J. We used the same 
area size to perform densitometry for every protein band from the same experiment for every phosphorylation 
site as well as the total receptor. Accordingly, an equally sized empty area from the blot/film was measured to 
subtract this value as background signal from every measuring point. Finally, phosphorylation signals were 
normalized to the total receptor (phosphorylation-independent antibody; D2R). SCR-controls were defined as 
100% and phosphorylation of every target protein was calculated as percentage phosphorylation in comparison 
to the respective control. Statistical analysis was carried out with one-way ANOVA followed by Bonferroni cor-
rection. P values < 0.05 were considered statistically significant. Data sets of n less than 5 were not subjected to 
such statistical analyses.

The results of concentration response experiments were analysed using Prism 8.0 (GraphPad Software Inc.). 
Concentration–response curves were fitted using the following three parameter equation:

where top and bottom represent the maximal and minimal asymptote of the dose response curve, [A] is the 
molar concentration of agonist, and EC50 is the molar concentration of agonist required to give a response half-
way between maximal and minimal asymptote. Dose–response data were fitted to the following form of the 
operational model of agonism30 to allow the quantification of biased agonism:

where Em is the maximal possible response of the system, basal is the basal level of response, KA represents the 
equilibrium dissociation constant of the agonist (A) and τ is an index of the signalling efficacy of the agonist that 
is defined as RT/KE, where RT is the total number of receptors and KE is the coupling efficiency of each agonist-
occupied receptor, and n is the slope of the transducer function that links occupancy to response. The analysis 
assumes that the transduction machinery utilized for a given cellular pathway are the same for all agonists, such 
that the Em and transducer slope (n) are shared between agonists. Data for all compounds for each pathway were 
fit globally to determine values of KA and τ. Note that in fitting the concentration response curves to Eq. (1) in 
measurements of GIRK and GαoA activation, while some agonists displayed an apparently higher Emax than 
DA, this maximal response was found not to be significantly different to that of dopamine such that in our 
global fitting using Eq. 2 the concentration response curves of all such agonists could be well fitted by curves 
that displayed the same maximal response. Biased agonism was quantified as previously described31. In short, 
to exclude the impact of cell-dependent and assay-dependent effects on the observed agonism at each pathway, 
the log(τ/KA) value of a reference agonist, in this case dopamine, is subtracted from the log(τ/KA) value of the 
agonists of interest to yield Δlog(τ/KA). The relative bias can then be calculated for each agonist at the two differ-
ent signaling pathways by subtracting the Δlog(τ/KA) of one pathway from the other to give a ΔΔlog(τ/KA) value 
which is a measure of bias. A lack of biased agonism will result in values of ΔΔlog(τ/KA) not significantly different 
from 0 between pathways. Our previous studies have included an additional step of normalization in which the 
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∆log(τ/KA) of a particular agonist at a selected pathway is subtracted from the ∆log(τ/KA) determined at other 
pathways, termed the ∆∆log(τ/KA) or LogBias value (Supp. Table 1). However, because it is the ∆log(τ/KA) values 
that are statistically compared we show these values. All affinity (pKi or pKA), potency (pEC50), and transduction 
ratio (log(τ/KA)) parameters were estimated as logarithms. When fold-changes in bias are described this was 
calculated by converting values of ΔΔlog(τ/KA) to the corresponding antilog value. However, we have previ-
ously demonstrated that such the distribution of these parameters does not conform to a normal (Gaussian) 
distribution whereas the logarithm of the measure is approximately Gaussian32. Thus, since the application of t 
tests and analyses of variance assume Gaussian distribution, estimating the parameters as logarithms allows valid 
statistical comparison. All results are expressed as the mean ± S.E.M. As such we performed a Brown-Forsythe 
test (Graphpad prism 8) to assure ourselves of equal variance when such parameters are compared.

Results
The development of novel phosphosite‑specific antibodies for the D2R.  We set out to develop G 
protein-coupled receptor kinase (GRK) phosphosite-specific antibodies for the hD2R. Previous work identified 
putative GRK2 phosphorylation sites within the intracellular loops of the rat D2R (rD2R) using site-directed 
mutagenesis coupled with whole cell phosphorylation assays and auto-radiography including Thr287, Ser288, 
Thr293 and Ser6,8. Note that in the hD2R Ser317 is positioned next to another putative GRK site, Thr318, that is 
substituted for Asn in rD2LR (Supp. Figure 1). Taking this work into consideration, we synthesized phospho-pep-
tides corresponding to regions within ICL3 of the hD2R (Table 1, Fig. 1A, Supp. Figure 1) and used them to raise 
phosphosite-specific antibodies targeting pThr287/pSer288, pThr293/pSer296 and pSer317/pThr318 (Fig. 1A). Using 
these double phosphorylated peptides we hoped to capture a broad screen of GRK-mediated phosphorylation of 

Figure 1.   Characterization of phosphosite-specific D2R antibodies. (A) Schematic representation of the 
long splice variant of the human dopamine D2 receptor (hD2LR). All potential phosphate acceptor sites in 
the third intracellular loop are indicated (gray). Thr287/Ser288, Thr293/Ser296 and Ser317/Thr318 were targeted 
for the generation of phosphosite-specific antibodies and the epitope used for generating a phosphorylation-
independent antibody (D2RL) is indicated by a black line. This figure was generated using Adobe InDesign 
CS6. (B) HEK293 cells stably expressing HA-tagged D2R were either untreated (−) or treated ( +) with 1 µM 
quinpirole for 10 min at 37 °C. Cells were lysed and immunoblotted with the anti-pThr287/Ser288 (5095–5097), 
anti-pThr293/Ser296 (5098–5100), anti-pSer317/Thr318 (5101–5103) or anti-D2R antibodies (5104–5106), 
respectively. Blots are representative, n = 3. (C) Characterization of phosphosite-specific antibodies directed 
against Thr287/Ser288, Thr293/Ser296 and Ser317/Thr318 using λ-phosphatase. Cells described in (B) were either 
untreated (−) or treated ( +) with 1 µM quinpirole for 10 min at 37 °C. Lysates were then either incubated 
( +) or not (−) with λ-phosphatase and immunoblotted with the phosphosite-specific antibodies to pThr287/
Ser288 [5095], pThr293/Ser296 [5099], or pSer317/Thr318 [5102]. Blots were stripped and re-probed with the 
phosphorylation-independent antibody to D2R [5106] as a loading control. Blots are representative, n = 3. 
Molecular mass markers (kDa) are indicated, left.
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the D2R ICL3. In addition to raising antibodies to distinct phosphosites, we also raised antibodies to a spatially 
separate region of ICL3 to serve as a hD2R loading control antibody (Table 1, Fig. 1A). All sites are conserved in 
the long (D2LR) and short (D2SR) isoforms of the D2R.

When used for Western blotting, all the antibodies detected the hD2LR, showing a diffuse band migrating 
between 60 and 80 kDa, consistent with preceding studies of N-terminally glycosylated D2Rs expressed in 
HEK293 cells8. While previous work suggested that Thr287, Ser288, and Thr293 are GRK2 phosphorylation sites8, 
we were unable to detect agonist-induced changes in phosphorylation with the pThr287/pSer288 antibody or the 
pThr293/pSer296 antibodies (Fig. 1B). Despite this, the pThr287/pSer288 and pThr293/pSer296 antibody recognition 
was phosphorylation-dependent because the signal was lost when samples were treated with λ-phosphatase, 
which releases phosphate groups from phosphorylated Ser, Thr and Tyr residues (Fig. 1C). This indicates that 
these sites are likely to be constitutively phosphorylated. In contrast, the antibody recognising pSer317/pThr318 
showed a large increase in signal when cells were stimulated with the D2R-selective agonist quinpirole, and this 
agonist-induced phosphorylation was lost when samples were treated with λ-phosphatase (Fig. 1B,C), or with 
the D2R antagonists haloperidol or L741,626 (Supp. Figure 2).

GRKs 2 & 3 phosphorylate Ser317/Thr318 and enhance β‑arrestin‑2 recruitment.  Ser317 has been 
shown to be phosphorylated by GRK2 in the rD2R8. We wanted to confirm that GRK2/3 phosphorylates Ser317/
Thr318 in the hD2R. No phosphorylation of Ser317/Thr318 was detected when cells were stimulated with either 
phorbol 12-myristate 13-acetate (PMA) or forskolin, that lead to activation of protein kinase C (PKC) and pro-
tein kinase A (PKA) family members, respectively (Fig.  2A). Treatment of cells with the inhibitor of GRK2 
and 3, compound 101 (cmpd101)33, led to a concentration-dependent decrease in quinpirole-induced phos-
phorylation of Ser317/Thr318 (Fig. 2B). We used siRNA to confirm the GRK subtypes involved in phosphoryla-
tion of Ser317/Thr318. Transfection of siRNA directed at GRK2 significantly reduced Ser317/Thr318 phosphoryla-
tion, as did siRNA directed at GRK3 (Fig. 2C). Co-transfection of cells with the siRNAs directed at GRK2 and 
GRK3 had a synergistic effect in decreasing the phosphorylation of Ser317/Thr318 further as compared to each 
siRNA alone (One-way ANOVA with Tukey post hoc test, GRK2 vs GRK2 + 3 – P < 0.05, GRK3 vs GRK2 + 3 – 
P < 0.05, Fig. 2C). Moreover, experiments transfecting siRNA directed at the other ubiquitously expressed GRKs; 
GRK5 and GRK6, had no effect on agonist-induced phosphorylation (Fig. 2D). Finally, overexpression of GRK2 
increased the phosphorylation of Ser317/Thr318 in response to quinpirole (Supp. Figure 3). Together these data 
confirm that GRK2 or 3 activity is required for agonist-induced phosphorylation of Ser317/Thr318.

In the prevalent model of β-arrestin recruitment to GPCRs, GRK-mediated phosphorylation of intracellular 
serine and threonine residues drives this process by increasing the affinity of β-arrestins for the GPCR4,34. Having 
shown that GRK2 or 3 mediate agonist-dependent phosphorylation of Ser317/Thr318, we next investigated the role 
GRK2-mediated phosphorylation plays in β-arrestin2 recruitment to the D2R. β-arrestin2 recruitment assays 
were performed with or without GRK2 overexpression (Fig. 2E,F). Quinpirole-induced β-arrestin2 recruitment 
was enhanced upon GRK2 overexpression. Pre-treatment of cells overexpressing GRK2 with cmpd101 reduced 
β-arrestin2 recruitment (vehicle control Emax = 100.00, cmpd101 Emax = 28.89 (95% CI 21.1–30.7) (vehicle con-
trol pEC50 = 7.29 (95% CI 7.25–7.33), cmpd101 pEC50 = 6.89 (95% CI 6.76–7.01) (Fig. 2E). In cells expressing 
endogenous levels of GRK2, a very small reduction in maximal effect was observed on treatment with cmpd101 
(vehicle control Emax = 33.58 (95% CI 30.9–36.3), cmpd101 Emax = 29.09 (95% CI 27.6–30.6)), (vehicle control 
pEC50 = 6.83 (95% CI 6.98–6.67), cmpd101 pEC50 = 6.82 (95% CI 6.72–6.93)) (Fig. 2F). Since 30 μM cmpd101 
fully inhibited phosphorylation of Ser317/Thr318 but only partially inhibited β-arrestin2 recruitment, we infer that 
there are both GRK2/3 phosphorylation-dependent and -independent components of β-arrestin2 recruitment 
to the hD2LR. We next measured GRK2 recruitment to the plasma membrane following activation of the hD2LR 
in live cells using a BRET assay. This assay measures the proximity between hD2LR-NLuc and GRK2-Venus on 
translocation of GRK2 to the plasma membrane. Therefore, this signal is likely a composite of bystander signal 
as GRK2-venus is recruited to beta-gamma subunits at the plasma membrane that are released on G protein 
activation, and a direct receptor-GRK2 interaction. GRK2 was rapidly recruited, within one minute of dopamine 
addition, and this recruitment was sustained over time (Supp. Figure 4A). Similarly, phosphorylation of Ser317/
Thr318 following application of the agonist quinpirole (1 µM) was rapid and sustained over time, with maximal 
signal obtained within 2.5 min (Supp. Figure 4B).

D2R agonists vary broadly in their ability to stimulate the recruitment of GRK2, phospho‑
rylation of Ser317/Thr318 and recruitment of β‑arrestin2.  Previous studies have shown that different 
ligands can induce different patterns of GPCR phosphorylation21,23,35. We next measured the action of 12 D2R 
agonists to initiate receptor phosphorylation, GRK2 recruitment and β-arrestin2 recruitment. This selection 
included the efficacious agonists pergolide, cabergoline, bromocriptine, ropinirole, apomorphine; the partial 
agonists roxindole, terguride and the antipsychotic aripiprazole; and ligands that have previously been described 
as G protein (MLS1547) or arrestin (UNC9994) biased agonists7,19. We hypothesized that these biased ligands 
might display a differential ability to stimulate Ser317/Thr318 phosphorylation. For example, the arrestin biased 
agonist UNC9994 might be expected to stimulate Ser317/Thr318 phosphorylation even in the absence of G pro-
tein signalling. We have previously shown that the binding kinetics of D2R agonists can influence comparisons 
of agonist effects across measurements of different signaling endpoints28. This effect is driven, to an extent, by 
measurements of agonist action at different signaling endpoints at distinct timepoints. To negate this effect and 
allow comparison across assays, agonist-induced effects were measured 10 min after stimulation.

There was a wide range in the maximal response of agonists to induce GRK2 recruitment to the D2LR (Fig. 3A, 
Table 2). Interestingly, DA produced a larger maximal effect than all other agonists tested. A previous study sug-
gested that there are endogenously expressed D1-like receptors in HEK293 cells36. However, Schild analysis of 
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Figure 2.   GRK2 and GRK3 mediate phosphorylation at Ser317/Thr318 and enhance β-arrestin-2 recruitment. (A) HEK293 cells stably 
expressing HA-hD2LR were stimulated with 1 µM quinpirole, 1 µM PMA or 10 µM forskolin for 10 min at 37 °C. Cell lysates were 
immunoblotted with anti-pSer317/Thr318 [5102] antibody. Blots were stripped and reprobed for D2R [5106] to confirm equal loading 
of the gel. Blots are representative, n = 3. (B) Cells described in (A) were pre-incubated with either vehicle (DMSO; control (−)) or the 
GRK2/3-specific inhibitor compound 101 (cmpd 101) at the indicated concentrations for 30 min at 37 °C, then treated with water (−) 
or 1 µM quinpirole for 10 min at 37 °C. Lysates were immunoblotted as described in (A). Blots are representative, n = 3. (C,D) Cells 
described in (A) were transfected with siRNAs targeting GRK2, GRK3, GRK2 and GRK3 (GRK2/3) or a scrambled control (SCR) (C) or 
with siRNAs targeting GRK5, GRK6, GRK5 and GRK6 (GRK5/6) or a scrambled control (SCR) (D). 72 h post-transfection, cells were 
stimulated with 1 µM quinpirole for 10 min at 37 °C and cell lysates were immunoblotted as described in (A). Blots were stripped and 
reprobed for D2R [5106] to confirm equal loading of the gel. Densitometry analysis, shown above the blots, was normalized to the signal 
obtained in SCR-transfected cells, which was set to 100%. Data are mean ± SEM from five to six independent experiments. (*p < 0.05 vs. 
SCR by one-way ANOVA with Tukey post-test). (E,F) β-arrestin2 recruitment to the D2R in the presence and absence of overexpressed 
GRK2. HEK 293 cells were transfected with cDNA encoding hD2LR-NLuc, YFP-β-arrestin2, and either GRK2 (E) or pcDNA3.1 control 
(F) as described in Methods. Transfected cells were then preincubated with either vehicle (DMSO) or 30 µM cmpd101 for 30 min 
at 37 °C before stimulation with increasing concentrations of quinpirole for 10 min at 37 °C. Data represents mean ± SEM from 3–4 
separate experiments and are normalized to the maximal effect of quinpirole in the presence of GRK2 overexpression.
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DA’s response in this GRK2 recruitment assay using the selective D1-type antagonist SCH23390 gave a Schild 
slope of unity (1.10 ± 0.04), and a low affinity (pA2 = 6.28 ± 0.06, Supp. Figure 5A,B) consistent with the reported 
affinity of SCH23390 for the D2R rather than the D1R. This indicates that the higher Emax of DA in our meas-
urements of GRK2 recruitment relative to the other tested agonists is due to its action at the D2R. Quinpirole, 
apomorphine, ropinirole and cabergoline showed robust GRK2 recruitment to 50–60% that of DA (Fig. 3A & 
Table 2). The antipsychotic and weak partial agonist aripiprazole, stimulated GRK2 recruitment very poorly such 
that we could not determine an accurate estimate of maximal effect or potency. Both the previously reported G 
protein-biased agonist (MLS1547) and the β-arrestin-biased agonist (UNC9994) induced GRK2 recruitment 
with similar low efficacy (26.1% and 13.3% of DA, respectively at a saturating concentration of 10 μM (Fig. 3A & 
Table 2). Bromocriptine, roxindole and terguride also displayed weak partial agonist efficacy in this assay (Emax 
39%, 24% and 7% of DA, respectively).

We next determined the level of Ser317/Thr318 phosphorylation induced by the twelve different agonists 
(Fig. 3B, Table 2). The relative ability of a saturating concentration (10 μM) of each agonist to stimulate Ser317/
Thr318 phosphorylation was compared (Fig. 3B). These bands were quantified by densitometry and normalized to 
the corresponding intensity of the total D2R bands (Fig. 3C). In general, the relative ability of saturating (10 μM) 
concentrations of the various agonists to induce phosphorylation at Ser317/Thr318 matched their relative ability 
stimulate GRK2 recruitment. No significant phosphorylation could be detected after treatment with aripiprazole, 
MLS1547 or UNC9994 (Fig. 3B), in line with the very low efficacy shown by these ligands in the GRK2 recruit-
ment assay. Indeed, there was a correlation between the maximal effect of each agonist in this assay with that 
observed for GRK2 recruitment (Fig. 3E). To determine the potencies of the various agonists, we measured the 
ability of increasing concentrations of each agonist to stimulate Ser317/Thr318 phosphorylation and then performed 
densitometry analysis in which the intensity of the pSer317/pThr318 bands were normalized to the corresponding 
intensity of the total D2R bands (Fig. 4). These concentration response curves were then normalized to the rela-
tive signal of each agonist at 10 μM (Fig. 3B) and expressed as a percentage of the 10 μM DA signal to yield the 
concentration-dependent increases in Ser317/Thr318 phosphorylation for each agonist (Fig. 4B). The observed 
agonist potencies were generally lower for Ser317/Thr318 phosphorylation as compared to GRK2 recruitment, but 
the order of potencies was consistent (Figs. 3A, 4B, Table 2).

Next, we evaluated β-arrestin2 recruitment to the D2LR in the presence of GRK2 to enable us to observe 
both the GRK2 phosphorylation-dependent and -independent components that we previously distinguished 
(Fig. 2E,F). The maximal effects observed for β-arrestin2 recruitment for each agonist were found to correlate 
with those observed for GRK2 recruitment and Ser317/Thr318 phosphorylation (Fig. 3D,F,G, Table 2). DA was 
more potent in this assay as compared to our measurements of GRK2 recruitment or Ser317/Thr318 phosphoryla-
tion and all other agonists followed this trend, indicating a greater degree of signal amplification is associated 
with β-arrestin2 recruitment. The putative arrestin-biased agonist UNC9994 acted as a weak partial agonist for 
β-arrestin2 recruitment (Emax 23.3 ± 3.3% of DA, Table 2). In summary, the relative ability of agonists to stimu-
late GRK2 recruitment and Ser317/Thr318 phosphorylation correlates with their ability to stimulate β-arrestin2 
recruitment (Fig. 3E–G).

D2R agonist activity in measurements of G protein signaling.  The two agonists previously described 
as β-arrestin or G protein-biased agonists both acted as low efficacy partial agonists in GRK2 recruitment, Ser317/
Thr318 phosphorylation and β-arrestin2 recruitment. We extended our analysis to measure the relative ability of 
the agonists to activate G protein-mediated pathways using BRET sensors that monitor the dissociation of the 
Gβγ subunit from the Gαi1 and GαoA G protein subunits25,37 (Fig. 5A,B). D2R is preferentially coupled to Gαo G 
proteins over Gαi1 G proteins and, accordingly, efficacious agonists such as DA displayed a greater potency in 
the Gαo assay as compared to the Gαi1 assay (Fig. 5A,B and Table 3)38. Agonists such as aripiprazole, roxindole, 
UNC9994 and terguride acted as partial agonists for Gαi1 activation but displayed a maximal responses equiva-

Figure 3.   Agonist-induced GRK2 recruitment, Ser317/Thr318 phosphorylation and β-arrestin2 recruitment. 
(A). HEK293 cells were transfected GRK2-Venus and hD2LR-NLuc. GRK2 recruitment was measured by BRET 
10 min after agonist addition at 37 °C. Data is presented as the increase in BRET ratio normalized to vehicle 
(0%) and the maximal effect of dopamine (100%). Data represents the mean ± SEM of 5 separate experiments 
performed in duplicate. (B) HA-hD2LR expressing HEK293 cells were either stimulated with vehicle (solvent) or 
10 μM of quinpirole (quin), dopamine (dop), pergolide (perg), ropinirole (rop), apomorphine (apo), cabergoline 
(cabergo), bromocriptine (bromo), terguride (terg), roxindole (roxin), aripiprazole (arip), MLS1547 (MLS) or 
UNC9994 (UNC) for 10 min at 37 °C. Lysates were immunoblotted with antibody to pSer317/Thr318 [5102]. Blots 
were stripped and reprobed for D2R [5106] to confirm equal loading of the gel. Blots are representative, n = 3. 
(C) These Western blots were analyzed using densitometry to yield relative pSer317/pThr318 signals normalized 
to the corresponding total D2R signal. Data represents the mean ± S.E.M. of three separate experiments. (D) 
Agonist-induced β-arrestin2 recruitment to the D2R. HEK293 cells were transfected with hD2LR-NLuc, GRK2 
and YFP-β-arrestin2. β-arrestin2 recruitment was measured by BRET 10 min after agonist addition at 37 °C. 
Data is presented as the increase in BRET ratio normalized to vehicle (0%) and the maximal effect of dopamine 
(100%). Data represents the mean ± SEM of 5 separate experiments performed in duplicate. (E–G) Correlation 
of the effect of a saturating concentration of each agonist (10 μM) to stimulate Ser317/Thr318 phosphorylation 
maximal with the maximal effects of the various agonists in assays measuring GRK2 recruitment and 
β-arrestin2 recruitment determined. DA is marked in blue. The relationship between two variables was assessed 
using a two-tailed Spearman’s rank correlation allowing the calculation of the correlation coefficient, rs. A P 
value of 0.05 was used as the cut-off for statistical significance and relationships depicted as trend lines.

◂
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Table 2.   Potency (pEC50) and maximal effect (Emax) estimates for agonists activating D2R regulatory pathways. 
Concentration–response curves from Figs. 3 and 4 were analyzed using a three-parameter fit (Eq. 1). Values 
represent the mean ± SEM. ND Not determined: unable to be determined due to insufficient response to allow 
accurate fitting of the model.

Agonist

pSer317/pThr318 GRK2 β-arr2

pEC50 Emax pEC50 Emax pEC50 Emax

Dopamine 6.40 ± 0.45 100 6.84 ± 0.04 100.0 7.13 ± 0.05 100.0

Apomorphine 7.42 ± 0.10 84 ± 3 7.68 ± 0.09 56.2 ± 2.1 7.85 ± 0.05 81.2 ± 1.7

Aripiprazole ND ND ND ND 6.23 ± 0.25 10.3 ± 1.5

Bromocriptine 6.84 ± 0.25 57 ± 2 7.18 ± 0.06 38.7 ± 1.1 7.10 ± 0.05 66.3 ± 1.3

Cabergoline 7.38 ± 0.25 61 ± 2 8.36 ± 0.07 54.4 ± 1.4 8.29 ± 0.04 83.7 ± 1.2

MLS1547 ND ND 5.20 ± 0.27 26.1 ± 7.8 5.59 ± 0.13 33.6 ± 3.8

Pergolide 7.73 ± 0.46 79 ± 2 7.67 ± 0.06 50.8 ± 1.2 7.83 ± 0.04 76.7 ± 1.3

Quinpirole 7.06 ± 0.17 83 ± 1 7.13 ± 0.04 62.9 ± 1.2 7.38 ± 0.03 88.6 ± 1.2

Ropinirole 6.77 ± 0.22 77 ± 2 6.72 ± 0.07 59.1 ± 2.0 6.99 ± 0.04 76.8 ± 1.4

Roxindole 7.52 ± 0.09 10 ± 1 8.73 ± 0.15 24.3 ± 1.3 8.83 ± 0.07 41.0 ± 1.0

Terguride ND ND 8.10 ± 0.24 7.4 ± 0.7 8.33 ± 0.09 18.9 ± 0.6

UNC9994 ND ND 5.45 ± 0.31 13.3 ± 3.8 5.63 ± 0.18 23.0 ± 3.3

A

B

Figure 4.   Concentration-dependent agonist-induced Ser317/Thr318 phosphorylation. (A) HA-hD2R expressing 
HEK293 cells were either stimulated with vehicle (solvent) or quinpirole, dopamine, pergolide, ropinirole, 
apomorphine, cabergoline, bromocriptine, terguride, roxindole, aripiprazole, MLS1547 or UNC9994 at 
concentrations ranging from 10–9 to 10–5 M for 10 min at 37 °C. Lysates were immunoblotted with antibody to 
pSer317/Thr318 [5102]. Blots were stripped and reprobed for D2R [5106] to confirm equal loading of the gel. Blots 
are representative, n = 3. (B) Densitometry analysis of Western blots. pSer317/pThr318 signals were normalized to 
the total D2R signal and expressed as a percentage of the signal detected when cells were stimulated with 10 μM 
dopamine (Fig. 4). These data are fitted to a three parameter concentration response curve (Eq. 1).
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Figure 5.   D2R mediated activation of Gαi1, GαoA and GIRK channels by distinct agonists. FlpIn™ HEK293 cells 
stably expressing hD2LR were transfected with BRET sensors for (A) GαoA activation and for (B) Gαi1 activation 
as described in Methods. Agonist responses were determined after 10 min at 37 °C. The response is plotted 
as the increase in BRET ratio normalized to the vehicle control (0%) and the maximal response produced by 
dopamine defined as 100%. (C) GIRK channel activation using a membrane potential kit. Data represents 
mean ± SEM of at least 5 experiments performed in duplicate.
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lent to that of DA in the more efficiently coupled GαoA activation assay (Fig. 5B and Table 3). UNC9994 displayed 
the same maximal effect as DA in the GαoA assay (Fig. 5A and Table 3). Finally, we measured activation of G 
protein inwardly rectifying potassium (GIRK) channels as a readout of the activation of Gαi/o/z proteins using 
a membrane potential sensitive dye (Supp. Figure 6)27. In this case, all agonists displayed the same maximal 
response as DA with the exception of terguride, which acted as a partial agonist. Aripiprazole, MLS1547 and 
UNC9994 displayed low potencies in this assay such that the maximal response was not obtained at the highest 
(1 μM) concentration used for each agonist (Fig. 5C and Table 3). 

Evaluation of bias across D2R signaling pathways.  Qualitative comparisons of agonist action across 
different pathways can be confounded by system bias resulting from, for example, the relative efficiency with 
which each pathway is coupled to the receptor. All agonists displayed a similar maximal effect to that of DA in 
measurements of the efficiently coupled GαoA G protein activation. Efficacious agonists such as apomorphine39 
induced robust responses in all three G protein signaling endpoints as well as in measurements of receptor regu-
latory events, but displayed a higher potency in measurements of GαoA activation than in β-arrestin recruitment. 
Low efficacy partial agonists, like aripiprazole, exhibited a sub-maximal response in all assays with the exception 
of the highly amplified and efficiently coupled GαoA activation assay.

To address the influence of system bias we employed a quantitative approach to determine the relative action 
of each agonist at each pathway by fitting our concentration–response data to an operational model of agonism40. 
Using this model, we can determine a transduction coefficient (τ/KA) that is a composite of the affinity of the 
agonist for the receptor-effector complex (KA) and the efficacy with which the agonist acts at that effector (τ) 
(Supp Table 1). We then subtracted the transduction coefficient (τ/KA) obtained for DA from the values obtained 
for each agonist (∆log(τ/KA)), Fig. 6 & Supp Table 1) and compared these normalized relative transduction 
coefficients of the various agonists between different pathways. This step, therefore, accounts for differences in 
coupling efficiency, amplification and receptor expression across the various signaling measurements. Differences 
in the normalized transduction coefficient (∆log(τ/KA)) for the same ligand between different signaling pathways 
are, therefore, indicative of bias (Fig. 6). In the case of apomorphine, aripiprazole, quinpirole, and ropinirole, the 
normalized transduction coefficients (∆log(τ/KA)) were not significantly different across the different signal-
ing and regulatory endpoints indicating that these agonists do not display pathway bias (Fig. 6). Aripiprazole 
gave no response in measurements of GRK2 recruitment or Ser317/Thr318 phosphorylation so its action at these 
pathways cannot be quantified. However, the D2R is less efficiently coupled to these pathways as compared to 
the G protein mediated responses and β-arrestin recruitment so the lack of aripiprazole response at these weaker 
coupled pathways is consistent with its action as a low efficacy partial agonist (Tables 2 and 3). For all agonists 
that elicited a response in each assay, no significant difference was seen between GRK2 recruitment, Ser317/
Thr318 phosphorylation and β-arrestin2 recruitment (One-way ANOVA with Dunnet’s post hoc test, P > 0.05) in 
agreement with our correlation of maximal effects (Fig. 3E–G). Moreover, for all agonists, there was no signifi-
cant difference between the normalized transduction coefficient obtained in the Gαi1 activation assay and that 
obtained in GRK2 or β-arrestin2 recruitment (One-way ANOVA with Dunnet’s post hoc test, P > 0.05, Fig. 6).

We did, however, observe differences between GαoA activation and the regulatory events for the agonists 
bromocriptine, carbergoline, terguride, pergolide, and roxindole (Fig. 6, Supp Table 1). In all cases, relative to 
the action of DA, these agonists were biased towards the regulatory events (i.e. ∆log(τ/KA) for regulatory events 
was significantly larger than for GαoA activation, Fig. 6). While most of these differences were subtle (< five-
fold), cabergoline displayed a 13-fold and eightfold preference for GRK2 and β-arrestin2 recruitment over GαoA 
activation, respectively (Supp Table 2). Note that these ligands are all partial agonists in these regulatory assays 

Table 3.   Potency (pEC50) and maximal effect (Emax) estimates for agonists activating D2R G protein signalling 
pathways. Concentration–response curves from Fig. 5 were analyzed using a three-parameter fit (Eq. 1). Values 
represent the mean ± SEM. ND Not determined: unable to be determined due to insufficient response to allow 
accurate fitting of the model.

Agonist

Gαi1 GαoA GIRK

pEC50 Emax pEC50 Emax pEC50 Emax

Dopamine 7.50 ± 0.09 100.0 8.63 ± 0.08 100.0 8.70 ± 0.06 100.0

Apomorphine 8.10 ± 0.07 103.6 ± 2.5 9.07 ± 0.06 98.6 ± 1.9 9.13 ± 0.08 110.0 ± 3.5

Aripiprazole 6.21 ± 0.17 67.5 ± 6.9 6.64 ± 0.08 97.6 ± 3.8 ND ND

Bromocriptine 7.07 ± 0.08 115.0 ± 4.1 7.84 ± 0.05 103.7 ± 2.0 7.38 ± 0.08 104.7 ± 4.3

Cabergoline 8.13 ± 0.16 109.8 ± 6.5 8.80 ± 0.05 102.7 ± 1.7 9.01 ± 0.08 104.0 ± 3.4

MLS1547 5.71 ± 0.20 123.9 ± 19.5 6.68 ± 0.08 106.5 ± 4.4 ND ND

Pergolide 7.73 ± 0.17 112.3 ± 7.3 8.73 ± 0.07 96.7 ± 2.3 9.28 ± 0.07 97.9 ± 2.7

Quinpirole 7.81 ± 0.10 119.3 ± 4.6 8.93 ± 0.05 97.4 ± 1.5 8.98 ± 0.05 104.9 ± 2.1

Ropinirole 7.33 ± 0.13 98.01 ± 5.2 8.55 ± 0.13 93.9 ± 3.7 8.23 ± 0.07 94.4 ± 3.4

Roxindole 8.19 ± 0.12 86.6 ± 4.2 9.04 ± 0.04 90.7 ± 1.1 9.26 ± 0.06 89.7 ± 2.2

Terguride 7.76 ± 0.18 66.2 ± 4.6 8.36 ± 0.05 100.1 ± 1.6 8.05 ± 0.08 53.3 ± 2.1

UNC9994 5.74 ± 0.21 81.6 ± 13.4 6.55 ± 0.08 98.0 ± 4.1 ND ND



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8288  | https://doi.org/10.1038/s41598-021-87417-2

www.nature.com/scientificreports/

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1
∆L

og
[τ
/K

A]

apomorphine

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

MLS1547

ξξξ

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

roxindole
* *

ξ

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

aripiprazole

ξξξ

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

pergolide

* *

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A]

terguride

* *
ξ

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

bromocriptine

*

* * *

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

quinpirole

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A
]

UNC9994

ξξξ

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A]

cabergoline

* *

Gα
i1
Gα
oA
GI
RK
GR

K2

pS
31
7/p

T3
18

β-a
rr-
2

-3

-2

-1

0

1

∆L
og

[τ
/K

A]

ropinirole

A B C D

E F G H

I J K

Figure 6.   Relative transduction coefficients (ΔLog(τ/KA)) for agonists to activate D2R pathways. 
Concentration–response curves for each endpoint were fit to an operational model of agonism to determine 
(Log(τ/KA)), this was normalized relative to dopamine to determine the relative transduction coefficient at each 
pathway (ΔLog(τ/KA), Supp. Table. 1). Analysis of ΔLog(τ/KA) values using a one-way ANOVA with Dunnet’s 
post hoc test revealed significant differences determined for each agonist in the Gαo assay as compared to that 
obtained in the other signaling and regulatory endpoints. * = P < 0.05. Data presented represents the mean ± 
S.E.M of at least 3 independent experiments (Supp. Table. 1). ξ denotes instances where agonist responses were 
not sufficiently robust to allow fitting of the operational model.
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relative to DA, for example the maximal effect of terguride in the GRK2 recruitment assay is only 7% that of DA. 
However, while they might produce small responses at these regulatory endpoints, they display greater activity 
than predicted by their relative ability to activate GαoA.

Two agonists previously described as arrestin- (UNC9994) or G protein-biased (MLS1547) did not display 
these profiles in our hands. MLS1547 was able to stimulate robust G protein activation (to the same maximal 
level of DA) and acted as a partial agonist in β-arrestin2 recruitment (Tables 2 and 3). This pattern of activity 
reflects the relative amplification of the two pathways and the normalized transduction coefficients of MLS1547 
at these two pathways are not significantly different (Fig. 6E). UNC9994, previously reported to be a β-arrestin-
biased agonist unable to activate G protein responses or antagonize G protein signaling stimulated by DA7,41, 
acted as an agonist in all measurements of G protein activation. UNC9994 displayed robust agonist action in 
GαoA activation with a maximal effect equivalent to that of DA, weak partial activity in β-arrestin2 recruitment, 
and no detectable effect at GRK2 recruitment or Ser317/Thr318 phosphorylation. This activity is consistent with 
the action of aripiprazole, a low efficacy partial agonist, and comparison of the different normalized transduction 
coefficients revealed no bias between G protein activation and arrestin recruitment (Fig. 6K).

Discussion
Phosphorylation is a key process to regulate GPCR signaling by promoting β-arrestin binding to inhibit G pro-
tein-mediated signaling. GPCR phospho-site specific antibodies have been useful tools with which to understand 
the hierarchical and sequential pattern of multisite phosphorylation upon agonist stimulation23,35. In this study, 
we developed and characterized phosphosite-specific antibodies for the D2R against predicted phosphorylation 
sites within ICL3 and used them to provide an insight into the role GRK phosphorylation plays in D2R regulatory 
processes and how it is controlled by distinct agonists, including those thought to have pathway-biased actions. 
One of these antibodies enabled detection of Ser317 and/or Thr318 phosphorylation upon agonist activation medi-
ated by GRK2/3. Comparison of these data with measurements of GRK2 and β-arrestin recruitment revealed 
that the relative efficacy of all tested agonists at the level pSer317/pThr318 is consistent with their relative efficacy 
at these other regulatory processes. Measurements of regulatory processes often entail the overexpression of one 
or more regulatory proteins that are often modified, for example through fusion to a fluorescent protein. The 
measurement of Ser317/Thr318 phosphorylation can be used in both heterologous expression systems and native 
tissue without the need for the overexpression of modified proteins. Relative levels of GRK2 expression have 
been shown to influence the action of agonists at cortical versus striatal D2Rs41. Phospho-site specific antibodies 
will allow us to understand the role of D2R phosphorylation in such observations.

Overexpression of GRK2 enhanced arrestin recruitment and this enhancement was inhibited by a concen-
tration of GRK2/3 inhibitor that prevented Ser317/Thr318 phosphorylation. However, we also observed residual 
β-arrestin recruitment in the presence of this inhibitor, suggesting that β-arrestin can be recruited to activated 
D2Rs independently of Ser317/Thr318 phosphorylation, consistent with previous findings that a ‘phospho-null’ 
mutant rat D2R in which all putative phosphorylation sites were removed was still able to recruit arrestin8. Two 
other antibodies developed in this study recognized two additional sites, pThr287/pSer288 and pThr293/pSer296, 
that appear to be constitutively phosphorylated. The role of this constitutive phosphorylation is unclear, and 
we did not determine the kinases responsible for it. GRK2/3 phosphorylation has been shown to play a role in 
post-endocytic trafficking and re-sensitisation5,8,42. Thr287, Ser288, and Thr293 have been identified as GRK2 phos-
phorylation sites important for post-endocytic D2R trafficking8. Interestingly, while Ser317 is conserved in humans 
and rodents, Thr318 is absent in both mice and rats suggesting there may be species differences in the patterns of 
GRK phosphorylation. Other kinases are known to regulate D2Rs43,44, for example PKC can phosphorylate the 
D2R and regulate function through heterologous desensitization44,45. An antibody that recognizes a PKC phos-
phosite in ICL3 of the D2R has previously been described and reveals differences in phosphorylation between 
D2SR and D2LR46. In this study, we used double phosphorylated peptides to generate the antibodies in order to 
achieve a broad understanding of GRK mediated phosphorylation of the D2R ICL3. Future efforts to develop 
phospho-antibodies targeting other GRK and PKC sites, in combination with receptor mutants in which such 
phosphorylation sites are removed, will allow us to understand the roles of the individual phosphosites and the 
temporal pattern of this D2R phosphorylation in the modulation of D2R signaling. The antibodies described in 
the present study recognize phosphosites present in both D2SR and D2LR, although our study was limited to their 
action at the D2LR. Future work should confirm their activity at phosphosites in the D2SR. This is particularly 
relevant for the use of these antibodies in tissue or primary neuronal cultures as it will allow the detection of 
phosphorylation of both pre- and post-synaptic D2Rs.

Recent interest in understanding GPCR regulatory processes such as β-arrestin recruitment has been driven, 
to some extent, by the appreciation that β-arrestin-mediated signaling may drive distinct physiological pro-
cesses to those mediated by G protein signaling, and that one can selectively modulate these processes with 
biased agonists. GRK phosphorylation has been proposed to a key process that controls the balance between 
G protein- and β-arrestin-mediated signaling47. There has been a surge of interest in D2R biased agonists over 
the last decade driven by their potential as safer treatments for schizophrenia and Parkinson’s disease7,19,48–53. 
In this study, we compared the relative ability of twelve agonists to stimulate Ser317/Thr318 phosphorylation to 
other measures of D2R activation including two ligands that have been described as biased agonists; MLS1547 (G 
protein-biased) agonist19 and UNC9994 (arrestin-biased)7. UNC9994 was shown to display differential activity 
at cortical and striatal D2Rs and that this was dependent on the level of GRK2 and βarrestin expression in these 
different neuronal populations41. We hypothesized that these two ligands may display differential activity at the 
level of Ser317/Thr318 phosphorylation.

In this present study we found that in the absence of GRK2 overexpression, UNC9994 did not stimulate 
β-arrestin2 recruitment or phosphorylation of Ser317/Thr318. In the presence of overexpressed GRK2, UNC9994 
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did not stimulate phosphorylation of Ser317/Thr318 and promoted submaximal recruitment of β-arrestin2. 
Together these data suggest that UNC9994 has low efficacy for GRK2 phosphorylation, GRK2 recruitment and 
β-arrestin2 recruitment. We found that UNC9994 also acted as a partial agonist in our measurements of G pro-
tein activation in agreement with previous experiments measuring GIRK channel opening in frog oocytes54. The 
atypical antipsychotic aripiprazole was initially described as a D2R partial agonist, but subsequent studies suggest 
it may act as a G protein biased agonist36,55. Analysis of our data using an operational model of agonism revealed 
that aripiprazole and UNC9994 do not display bias between G protein and β-arrestin recruitment relative to 
DA. Rather, they behaved in a manner consistent with that of low efficacy agonists. Stimulation with MLS1547 
caused recruitment of β-arrestin2 as well as GRK2 recruitment and our analysis revealed no bias between G 
protein activation and β-arrestin2 recruitment. Previous studies have shown that MLS1547 can induce recruit-
ment of β-arrestin256, and cause D2R internalization in striatal neurons suggesting that this ligand can activate 
these pathways57.

In the original studies that identified MLS1547 and UNC9994 as biased agonists7,19, no agonism was detected 
in the unfavoured pathway and, thus, no quantitative measurement of bias could be made. In our studies, we 
observed sufficient effect in measurements of both G protein activation and β-arrestin recruitment to enable this 
quantification. The difference between these observations may stem from differences in assay sensitivity, receptor 
expression levels and/or signal amplification associated with the different studies. In the initial description of 
UNC9994 it was found to elicit no activity in a used as a measurement of Gi/o/z signalling. However, quinpirole 
is threefold more potent in the GαoA assay used in the present study, and aripiprazole displays an effect equivalent 
to that of quinpirole rather than the submaximal effect observed in the cAMP assay. This suggests that the GαoA 
assay is associated with a greater level of amplification and/or coupling efficiency than the cAMP assay. This can 
explain the observation that UNC9994 acts as an agonist in our GαoA assay but has no effect in the cAMP assay, 
as our data shows that UNC9994 is a lower efficacy agonist than aripiprazole. Gαo is proposed to be the primary 
G protein that the D2R is coupled to in the brain, suggesting that measuring the action of D2R agonists to activate 
this G protein in particular might be useful in order to understand their physiological effect58.

Our results, then, are not contradictory with previous studies, but instead illustrate how experimental con-
ditions and cellular context can greatly influence measurements of agonist action, particularly for low efficacy 
agonists. Measurement of the action of putative biased agonists at multiple differently amplified steps of a signal-
ing cascade can provide further insight into their mechanism of action. Phosphorylation-site-specific antibodies 
may be useful tools as part of such characterizations. Biased agonists that display a preference for one pathway 
over another can be useful tools with which to interrogate the role of distinct downstream signals in a particular 
physiological process. MLS1547 and UNC9994 have been used to interrogate the contribution of β-arrestins 
and G proteins to D2R-mediated physiological effects7,15,41,59,60. The interpretation of these studies should be 
revisited considering our findings. Bromocriptine, cabergoline, terguride, pergolide and roxindole displayed an 
apparent preference for the regulatory pathways as compared to Gαo activation. These drugs are used to treat 
hyperprolactinaemia and/or Parkinson’s disease and, with the exception of roxindole, have an ergoline scaffold. 
It is not apparent how this bias might influence their therapeutic effect, but this observation warrants further 
investigation.
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