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Abstract
Ceramides can be delivered to cultured cells without solvents in the form of complexes with

cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled

D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their

metabolism as well as the cell viability. We found that all three ceramides were successfully

taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the

ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the

highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent

effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had

the strongest apoptotic effects. Low-dose (1 μM) treatment with C6-Cer favoured conver-

sion of the precursor to sphingomyelin, whereas higher concentrations (25–100 μM) yielded

increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer.

In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at

high-dose concentrations the precursor remained un-metabolized. Using this method, we

demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellu-

lar uptake. The cellular fate of the externally delivered ceramides are clearly connected to

their rate of incorporation and their subsequent effects on cell viability may be in part deter-

mined by their chain length.

Introduction
Sphingolipids are a major class of lipids that are ubiquitously present in the membranes of
eukaryotes, where they function as important structural components and also exhibit impor-
tant roles as bioactive molecules. Ceramide (Cer) has emerged as a central molecule in the
sphingolipid metabolism, by serving as a precursor for all complex sphingolipids and display-
ing its involvement in a variety of cellular processes, including cell growth, signalling, prolifera-
tion, differentiation and apoptosis [1–5]. De novo synthesis of ceramide begins at the
endoplasmatic reticulum, with a process that yields the long-chain amino-alcohol base, dihy-
drosphingosine. The dihydrosphingosine base is further modified by the addition of an acyl
group by a ceramide synthase, yielding dihydroceramide. Introduction of a trans double bond
between carbons 4 and 5 on the amino-alcohol base gives rise to ceramide [6–8]. Degradation
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of ceramide produces sphingosine, which in turn can be phosphorylated to form sphingosine-
1-phosphate, another sphingolipid implicated in cell proliferation and apoptosis [9, 10]. In
addition to the de novo synthesis pathway, ceramide is produced by the hydrolysis of more
complex sphingolipids, especially sphingomyelin (SM) [11].

The involvement of ceramide in the cellular apoptotic processes is evident. Exogenous, apo-
ptotic stimuli have been found to elevate intracellular ceramide levels [12–15] and external
delivery of ceramide has been shown to induce apoptosis in cultured cells [2]. On a general
level, an increase in intracellular ceramide levels leads to the activation of various protein
kinases and phosphatases, which in turn cause caspase cascade activation, dysfunction of
organelles and ultimately apoptosis [16]. Ceramide has been implicated in several different cel-
lular functions, and sometimes the implications seem contradictory [17]. This is presumably
due to the existence of a multitude of structurally distinct ceramide species. Emerging evidence
suggests that different ceramides, in terms of the length of their N-acyl chains, may be destined
for different cellular functions in different cell types. In humans, six distinct ceramide synthases
(CerS 1 to 6) produce ceramide species of particular chain lengths [18–20]. In addition, the
existence of five ceramidases [21], acylsphingosine deacylase, sphingomyelin phosphodiester-
ase and at least four sphingomyelinases (SMases) [22–24], as well as several other enzymes that
use ceramide as a substrate, all add to the complexity of the issue [25, 26]. The task of elucidat-
ing the precise roles of the many differing ceramides is therefore particularly challenging.

Ceramide is a highly hydrophobic molecule and exhibits very poor solubility in water. As a
result, studies done on ceramide bioactivity have been methodologically limited, due to the dif-
ficulty of exogenous delivery to cultured cells. The role of endogenous ceramide has been inves-
tigated through the manipulation of various enzymes involved in ceramide metabolism, such
as the endogenous SMases [27, 28], or with the help of purified, bacterial SMases [29, 30]. In
addition, the external delivery of the more water-soluble and non-physiological short-chain
C2-Cer and C6-Cer to cells, is achievable with the help of organic solvents [31, 32].

C6-Cer loading of human A549 adenocarcinoma epithelial cells generate higher endoge-
nous ceramide (C16:0 and C24:1) levels due to biochemical recycling of the sphingosine back-
bone into long-chain ceramides, and not due to elongation of the short acyl acid chain [33]. It
is still not known which of the five different human ceramidases that are involved in this pro-
cess, the acidic or neutral or the three alkaline. Neutral ceramidase activity has been found at
the outer leaflet of the plasma membrane, however it appears not to act on short ceramides
[34]. The acidic form is localized to the lysosomes, and the three alkaline in the ER-Golgi com-
partments. The alkaline isoforms favour long or very long ceramides [35, 36]. It is likely that
the remodelling of short-chain ceramides takes place in the lysosomes by the acidic ceramidase,
the dysfunctional enzyme in Farber disease [37].

Lönnfors et al. previously demonstrated that C6-Cer and C16-Cer can form stable bilayers
with cholesteryl phosphocholine (CholPC) in a 1:1 molar ratio [38]. Ceramide and cholesterol
interact unfavourably in the absence of large polar headgroup phospholipids (such as SM). The
phosphocholine headgroup on the CholPC molecule acts to protect the ceramide from the
aqueous environment and allows for the formation of bilayers (umbrella effect) [39]. Similarly,
CholPC can form bilayers together with dimyristoglycerol and free cholesterol [40]. In another
study, Sukumaran and co-workers demonstrated that complexes formed by short-chain
C6-Cer and CholPC can be used to deliver ceramide to cells in culture [41]. The observed inhi-
bition of cell growth and the apoptotic effects were significantly more drastic in the Cer/
CholPC treated cells when compared to C6-Cer that was solvent-dissolved. This data suggest
that complexing C6-Cer with CholPC offers a higher bioavailability of ceramide to cells, when
compared to C6-Cer/DMSO formulations.
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Here we have analysed the uptake of radiolabeled C6-Cer, C10-Cer and C16-Cer in complex
with CholPC by HeLa cells. In addition, we analysed the cellular metabolism of the incorpo-
rated ceramides and assessed how the different Cer/CholPC formulations affect cell viability.
We found that long-chain ceramides can be introduced to cells when complexed to CholPC.
We demonstrate that ceramides with different chain lengths exhibit different rates of cellular
uptake. The cellular fate of the delivered ceramides, and their subsequent effects on cell viabil-
ity, strongly correlates with their rate of incorporation.

Materials and Methods

Material
All chemical reagents were of analytical grade or higher. Lipid standards where from Avanti
Polar Lipids (Alabaster, USA) or Matreya LLC (Pleasant Gap, USA). Cholesteryl phosphocho-
line (CholPC) was synthesized as described by Lönnfors et al. [38], or obtained from Avanti
Polar Lipids. D-erythro-sphingosine and hexanoic acid were purchased from Larodan (Malmö,
Sweden). [3-3H]D-erythro-sphingosine (15–30 Ci/mmol) and [9–10,3H]hexadecanoic acid
(30–60 Ci/mmol) were obtained from PerkinElmer (Waltham, MA, USA). Decanoic and hexa-
decanoic acids were obtained from Sigma-Aldrich (St. Louis, MO, USA). Organic solvents
were from Rathburn Chemicals Ltd (Walkerburn Scotland). HeLa cells (ATCC CCL-2, LGC
Standards) were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, Sigma-Aldrich)
supplemented with penicillin (50 U/ml), streptomycin (50 U/ml), 4 mM L-glutamine and 10%
fetal calf serum (FCS, all from Sigma-Aldrich) prior to the experiments. Chloroquine and cera-
nib-2 were purchased from Sigma-Aldrich and fumonisin B1 was purchased from Enzo Life
Sciences (Farmingdale, NY, USA).

Synthesis of [3H]-labeled ceramides
C6-[3H]Cer, C10-[3H]Cer, and C16-[3H]Cer were prepared from [3-3H]D-erythro-sphingo-
sine and hexanoic, decanoic and hexadecanoic acids, respectively, using N,N'-dicyclohexylcar-
bodiimide and triethylamine as catalysts [42]. [3H]palmitoyl ceramide (C16-Cer) was prepared
from sphingosine and [9–10,3H]hexadecanoic acid, using N,N'-dicyclohexylcarbodiimide and
triethylamine as catalysts [42]. The products were purified by preparative HPLC on a C18
phase, using methanol as solvent. Purity was assessed by analytical HPLC, and molecular iden-
tity by ESI-MS.

Preparation of ceramide-cholesterol phosphocholine bilayers
CholPC and ceramide were kept in hexane-isopropanol (3:2 by volume) solutions and stored
at -20°C until used. Cer/CholPC complexes of desired concentration were prepared from the
stock solutions. The appropriate amount of each lipid was dried under nitrogen in a glass tube,
redissolved in chloroform to ensure proper lipid mixing and dried again. The dehydrated lipid
film was then hydrated in PBS, pH 7.4, at 55°C for 20 minutes and then sonicated for 5 minutes
in a FinnSonic M3 bath sonicator (FinnSonic Oy, Lahti, Finland) at the same temperature. The
solution was further sonicated for 10 minutes using a Branson 250 probe sonifier at room tem-
perature (Emerson Industrial Automation, St. Louis, MO, USA). The resulting clear solution
was then immediately centrifuged at 12 000 rpm for 10 minutes using a table top microfuge, to
remove titanium probe particles and any undispersed lipids. The solution was transferred to a
glass tube and kept at RT and used within 1 h. Prior to use, the ceramide concentration in the
solution was re-calculated based on the specific activity of the radiolabeled ceramide.
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Labeling of cells, lipid and protein extraction
HeLa cells were cultured until 90% confluence before the start of each treatment. The previ-
ously prepared Cer/CholPC stock solution was added to DMEM supplemented with L-gluta-
mine, antibiotics and 10% FCS, to achieve the desired concentration of ceramide. The
ceramide concentration in the growth medium was verified by measuring the total radioactivity
in solution. HeLa cells were washed twice in PBS, pH 7.4, and then exposed to the growth
medium containing the Cer/CholPC complex. After treatment, the cells were washed twice in
PBS and the cell dishes were dried to completion in a fume hood. The total lipids were
extracted directly from the cell dishes using hexane-isopropanol (3:2 by volume). The extracted
lipids were transferred to glass tubes and dried under a stream of nitrogen. The dried lipids
were stored at -20°C until analysed. After lipid extraction, the cellular proteins were extracted
with 0.1 M NaOH and the protein content was analysed by the Lowry method [43]. All cellular
treatments were done in the presence of 10% FCS.

Identification and quantification of lipid species with HPTLC
The dried lipids were redissolved in hexane-isopropanol (3:2 by volume) and analysed on
HPTLC plates using a solvent system consisting of chloroform:methanol:acetone:acetic acid:
water (10:2:4:2:1). The different lipids were identified by standards, run in parallel with the
samples. Glycosphingolipid (GSL) migration was visualized using orcinol spray (0.2% orcinol
in a 20% H2SO4 solution) and heating the plate on 120°C for 5 minutes. For the other lipids,
subsequent iodine or cupric-acid staining was used for visualization. The marked silica spots
were scraped into Optiphase ‘Hi phase’ scintillation fluid (PerkinElmer-Wallac, Turku, Fin-
land) and the radioactivity was measured using a liquid scintillation counter (PerkinElmer-
Wallac, Turku, Finland). The counts per minute (cpm) obtained were either normalized to the
total protein content for each respective sample, or presented as a percentage of the total signal
per sample.

Cell viability assay
A resazurin reduction assay (alarmaBlue, Life Technologies) was used to investigate cytotoxic-
ity of C6-Cer, C10-Cer, and C16-Cer towards HeLa cells. The assay is based on the reduction
of resazurin to the fluorescent molecule resorufin by viable cells. Nonviable cells lose their met-
abolic capability to reduce resazurin and no fluorescent resorufin is formed. HeLa cells were
seeded to 50000 cells per well in a 24-well plate and were allowed to adhere and grow for 24h to
a confluence of about 50%. The cells were treated for 22 hours with the different ceramides,
cholesterol or PBS-vehicle. After the 22-hour incubation, the reazurin conversion assay was
performed according to the manufacturer's instruction. The fluorescence was measured by a
Varioskan Flash Multimode Reader (Thermo Scientific) using an excitation wavelength of 560
nm and an emission wavelength of 590 nm. Each experiment was performed at least 3 times,
with 4 replicates each.

Dot blot analysis of C6- and C10-GlcCer
High-dose C6- and C10-GlcCer (50 μM and 100 μM, respectively) treated samples were ana-
lysed by HPTLC as described above. The HPTLC plate was stained by iodine vapour, and the
lipid spots corresponding C6- and C10-GlcCer were scraped into glass tubes. The lipids were
extracted from the scraped silica using chloroform-methanol (2:1 by volume) and dried under
a nitrogen stream. The dried lipids were redissolved in hexane-isopropanol (3:2 by volume)
and appropriate amounts were dotted onto a nitrocellulose membrane, alongside GlcCer and

Ceramide Loaded HeLa Cells

PLOS ONE | DOI:10.1371/journal.pone.0143385 November 24, 2015 4 / 19



GalCer standards (2 nmol/dot). The lipids were visualized by immunoblotting, using commer-
cial rabbit anti-GlcCer and rabbit anti-GalCer antibodies (Glycobiotech GmbH), a HRP-conju-
gated anti-rabbit secondary antibody (Thermo Scientific) and enhanced chemiluminescence
detection (SuperSignal West Femto Maximum Sensitivity Substrate, Thermo Scientific).

Statistical Analysis
Conventional statistical analysis was performed to calculate mean values and standard errors
of the mean. Differences between data points were tested for significance using Student’s t-test
for unpaired observations. Results are presented as means of at least three individual measure-
ments with SEM.

Results

Cellular uptake and fate of [3H]C6-Cer, [3H]C10-Cer and [3H]C16-Cer
Previously, Sukumaran and co-workers analysed whether C6-Cer could be introduced into
cells in a solvent-free manner, by complexation with CholPC in vesicles [41]. They showed that
C6-Cer in complex with CholPC resulted in a more dramatic apoptotic effect, compared to
C6-Cer that was dissolved in DMSO and introduced by dispersion into the growth medium,
demonstrating that the Cer/CholPC formulation appears to be superior to previous solvent
delivery approaches. Here, we expand upon the methodology, and analyse the incorporation of
longer-chain ceramides (C10-Cer and C16-Cer) into HeLa cells, using the same complexation
approach (Fig 1).

To measure the cellular uptake of the different ceramides, HeLa cells were subjected to
50 μM of the various chain length, [3H]sphingosine labeled ceramides, complexed with
CholPC in a 1:1 molar ratio. The total radiolabel uptake was analysed after 1, 3, 6 and 24 hours
(Fig 2A). [3H]C6-Cer uptake was the most rapid of the three ceramides, reaching a plateau
within 6 hours from the start of the experiment, Fig 2A. The rate of incorporation for [3H]
C10-Cer and [3H]C16-Cer at 1 and 3 h were roughly 50% and 5%, respectively, when com-
pared to [3H]C6-Cer. Interestingly, both [3H]C10-Cer and [3H]C16-Cer uptake seemed to pla-
teau at around 50% of the maximum incorporation rate of [3H]C6-Cer. It is worth noting that
cell detachment at 24 hours in the [3H]C6-Cer samples was significantly higher when com-
pared to the [3H]C10-Cer and [3H]C16-Cer treated cells (data not shown). We also analysed
the amount of ceramide precursor incorporation into HeLa cells at two different concentra-
tions of ceramides after a 3-hour incubation (Fig 2B). The cells did not take up the longer [3H]
C16-Cer to the same extent as [3H]C6-Cer, or [3H]C10-Cer, not even at higher concentrations.

Next we examined whether ceramides that are introduced to HeLa cells are metabolized to
other sphingolipid classes. Cells were treated as described above (50 μM, 3, 6 and 24 h), where-
after total lipids were extracted and analysed using HPTLC and scintillation counting. S1 Fig
shows a representative HPTLC plate visualized using orcinol spray and subsequent cupric acid
staining. The boxed regions correspond to the different lipids that were scraped off the plate
(dashed lines represent “Other”). Fig 3 shows the quantified radioactivity in the different lipid
species analysed, where each lipid is presented as a percentage of the total radioactivity in the
sample (total in lane). As can be seen, the incorporated ceramide is metabolized and the radio-
active label is distributed into other sphingolipids as a function of time. In the case of [3H]
C6-Cer (Fig 3A), at 24 hours, over 40% of the radioactive signal could be found in the simple
GSLs, i.e. glucosylceramide (GlcCer) and galactosylceramide (GalCer). However, for [3H]
C10-Cer (Fig 3B) and [3H]C16-Cer (Fig 3C), the conversion favoured SM over simple GSLs.
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Metabolic fate of exogenous ceramide is affected by the rate of
incorporation
From the results presented in Fig 2, it is evident that the rate of incorporation was different
between the varying ceramides. The short [3H]C6-Cer had the most rapid uptake and was the
only precursor which resulted in a large portion of the signal to be found in the simple GSLs
after a 24 hour treatment (Fig 3A). Cancerous cells in culture have been shown to rapidly con-
vert C6-Cer to either C6-SM or C6-GlcCer [44]. In some cancer cells the conversion route is
determined by the initial C6-Cer concentration in the culture medium, where lower concentra-
tions facilitate conversion to SM and higher concentrations result in conversion to GlcCer [44].
We therefore decided to analyse whether treating HeLa cells with different concentrations of
[3H]C6-Cer, [3H]C10-Cer and [3H]C16-Cer would yield similar metabolic effects.

HeLa cells were treated with varying concentrations of the respective ceramides for 24
hours, as indicated in Figs 4 and 5. For [3H]C6-Cer and [3H]C10-Cer, the radiolabel resided
on the sphingosine base (Fig 4A and 4B). For [3H]C16-Cer, both a sphingosine and a palmitic
acid labeled ceramide was used, in separate experiments (Fig 5A and 5B). Suitable ceramide
concentrations were estimated based on the incorporation rates in Fig 2, and from previous
works in the literature [44]. As expected, a low-dose treatment with [3H]C6-Cer favoured con-
version to SM (Fig 4A, grey bars), whereas a higher concentrations yielded increasing signals
in C6-GlcCer (Fig 4A, red, green and yellow bars). Similar results were obtained for [3H]

Fig 1. Ceramides with different amide-linked acyl chains and cholesteryl phosphocholine used in this study.

doi:10.1371/journal.pone.0143385.g001
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C10-Cer (Fig 4B). Interestingly, a higher-dose treatment with [3H]C16-Cer, did not result in a
marked increase of signal to be found in the simple GSLs (Fig 5A). Instead, the majority of the

Fig 2. Ceramide precursor uptake. (A) The amounts of radiolabeled C6-, C10- and C16-Cer uptake as nmol ceramide per mg total protein as a function of
time. HeLa cells were labeled with [3H]Cer (50 μM), with the radionuclide in positions 4 and 5 of the sphingosine backbone. The uptake of ceramide by HeLa
cells was analysed by HPTLC and scintillation counting. (B) Amount of ceramide precursor incorporation into HeLa cells at different loading concentrations of
ceramides after a 3-hour incubation. The data for the incorporation of the radiolabeled [3H]Cers are from at least three different experiments.

doi:10.1371/journal.pone.0143385.g002
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signal remained in ceramide. This was evident for both the sphingosine (Fig 5A) and the pal-
mitic acid (Fig 5B) labeled [3H]C16-ceramide. In the [3H]C16-Cer treated cells, where the
radiolabel resided on the acyl chain of the ceramide, a significant portion of the radioactivity
could be found in the glycerophospholipids (Fig 5B). This suggests that [3H]C16-Cer is subject
to significant degradation when delivered from Cer/CholPC complexes. This issue was further
addressed by using the ceramidase inhibitor ceranib-2 and the lysosome inhibitor chloroquine.
We found that when HeLa cells were treated with ceranib-2 (20 μM) or chloroquine (20 μM)
and subsequently loaded with [3H]C16-Cer ([3H]palmitic acid labeled [3H-PA], 50 μM, 8 h), a
decrease in the ceramide degradation occurred (higher content of ceramide remained in the
cells, black bars S2 Fig). In the chloroquine treated cells, in addition to an increase in the cer-
amide content, the metabolic conversion of [3H]C16-Cer shifted towards that of SM (right
graph, red bars, S2 Fig). In the ceranib-2 treated cells, no shift in SM content was observable,
but instead an overall increase in ceramide was seen (middle graph, S2 Fig). When the cer-
amide degradation in the lysosomes was inhibited by ceranib-2 or chloroquine, a much lower
incorporation of [3H]palmitic acid could be seen in glycerophospholipids as well (green bars,
S2 Fig). Additionally, fumonisin B1 (FB1) was used to test whether the inhibition of ceramide
synthesis would subsequently inhibit the putatively liberated [3H]sphingosine from being re-
introduced into ceramide and SM (3). S3A Fig shows that FB1 treatment (200 μM FB1, 50 μM
[3H]C16-Cer, 24 h) decreased radioactivity in SM by roughly 50%, when the radionuclide
resided on the sphingosine base. When the radionuclide resided in the palmitic acid, FB1 treat-
ment did not yield drastic changes in the signal distribution, however, radioactivity in the gly-
cerophospholipids did increase slightly (S3B Fig). The inhibitory effectivity of FB1 at 200 μM
was verified by analysing [3H]sphingosine incorporation into HeLa cells, in the presence and
absence of FB1 (data not shown).

In the higher-dose experiments, both C6-GlcCer and C10-GlcCer were clearly distinguish-
able from the longer-chain GlcCer- and GalCer-standards on the HPTLC plate, as indicated by
orcinol staining (S4A Fig). The C6-GlcCer and C10-GlcCer lipid spots were experimentally
validated by immunodetection using rabbit anti-GlcCer and rabbit anti-GalCer antibodies
(S4B Fig).

Cell viability in response to increasing concentration of C6-, C10- and
C16-Cer/CholPC formulations
As was previously reported, complexation of C6-Cer with CholPC gave rise to higher apoptotic
effects and more drastic inhibition of cell growth in HeLa and FRTL-5 cells, when compared to
DMSO-solubilised C6-Cer treatment [41]. Lower-dose treatments using the various ceramides
did not result in noticeable cell detachment or morphological changes (visual observation, data
not shown), whereas respective high-dose treatments did. We therefore investigated what
effects the treatments had on cell viability, using a commercial reazurin-conversion assay.

Cells were treated with varying doses of cholesterol (as a control), C6-Cer, C10-Cer or
C16-Cer (25–200 μM) in complex with CholPC (Fig 6). The cell viability of each sample was
normalized to respective vehicle (PBS) treated controls. The treatments were carried out for 22
hours, where after cell viability was assayed. The results show that all ceramide treatments had

Fig 3. Radiolabeled ceramides with different acyl chain lengthsmetabolize into sphingolipids as a
function of time. HeLa cells were loaded with C6-Cer (A), C10-Cer (B) and C16-Cer (C) in CholPC
complexes. The [3H]sphingosine labeled ceramides (50 μM) were allowed to be taken up by HeLa cells for 3,
6 and 24 hours, and the incorporation was followed by HPTLC analysis. The amount of each lipid is
presented as a percentage of the total radioactivity in the sample. GSLs = GlcCer, GalCer, GlcCer-OH and
GalCer-OH. Other = the remaining lane. The data is from at least three different experiments.

doi:10.1371/journal.pone.0143385.g003
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a dose-dependent effect on cell viability, where the C6-Cer/CholPC formulation was the most
effective at decreasing viability. The cholesterol/CholPC vesicles, even at higher doses
(200 μM), did not significantly affect cell proliferation. As shown previously, the incorporation
speed of the three different ceramide species varied significantly (Fig 2). C16-Cer, despite
exhibiting an incorporation rate of only 5% when compared to C6-Cer, was still able to induce
a marked reduction in cell viability at a concentration of 200 μM

Discussion
Ceramides are important bioactive molecules that are implicated in many cellular processes,
including cell growth, senescence, necrosis, differentiation, proliferation and apoptosis [1–5].
The study of ceramides and their function has been hampered by the molecule's inherent phys-
ical attributes. Ceramide is highly hydrophobic and therefore does not efficiently transfer to
cells when dispersed in aqueous growth medium. Instead, non-physiological short-chain cer-
amides have been used extensively to study the effects of ceramide in cells, due to their water-
soluble nature. Cyclodextrins have been utilized for both the loading and the depletion of cho-
lesterol in cellular studies [45, 46]. However, ceramides do not seem to favour the formation of
water-soluble complexes with cyclodextrins, and therefore cyclodextrins offer only a limited
solution for ceramide delivery [47]. Liposomal complexes of ceramides have been previously
used to deliver C16-Cer into cells [48]. While high ceramide content liposomes (up to 50 mol%
ceramide) were successfully produced, cells with enhanced liposome endocytosis had to be uti-
lized for efficient uptake and maximal cellular response.

We have previously shown that C6-Cer and C16-Cer can form apparently stable, fluid bilayers
with CholPC in a 1:1 molar ratio [38]. We previously also demonstrated that C6-Cer can be
introduced to cells efficiently when complexed with CholPC and that the C6-Cer/CholPC formu-
lation was superior to the C6-Cer/DMSO formulation in all cellular responses studied [41]. In
the present study, we demonstrate that the same methodology of complexation can be utilized
for introducing longer-chain C10-Cer and C16-Cer into cells. In addition, we show that the rate
of the uptake seems to be a defining factor in how the cells metabolize the introduced ceramide.

Our results indicate that all three ceramides could successfully be delivered to cells by virtue
of their CholPC formulations. The short-chain C6-Cer had the highest incorporation rate, fol-
lowed by the C10-Cer and the C16-Cer, respectively. Sukumaran and co-workers previously
suggested that the method of C6-ceramide uptake mainly takes place through monomeric
exchange between the ceramide/CholPC bilayer and the plasma membrane [41]. This sugges-
tion is supported by the results presented in this study. The acyl chain length of lipids correlate
with their transfer efficiency between membrane structures [49, 50]. Longer-chain ceramides
should therefore transfer between membrane structures more slowly than shorter-chain ones.
However, fusion of Cer/CholPC vesicles with the plasma membrane, and subsequent internali-
zation, cannot be completely ruled out as an uptake method, since it was previously reported
that CholPC also was internalized by the cells [41].

The metabolism of the externally delivered ceramide was not studied previously [41]. We
therefore decided to analyse and compare the cellular fates of the different ceramides. At con-
centrations of 50 μM, there were marked differences in how the different ceramides ([3H]
sphingosine labeled), as a function of time, were metabolized by the cells. At the 24 hour mark,

Fig 4. HeLa cells C6- and C10-Cer precursor uptake. Analysis of (A) C6-Cer and (B) C10-Cer incorporation at different concentrations. The ceramides
were [3H]-labeled in the sphingosine part. After 24 h of ceramide uptake the total lipids were extracted and analysed by HPTLC. “Start” and “Front” refer to the
labeled lipids remaining on the application spot, or that were eluted along with the solvent front, “Other” refers to the traces of radiolabeled lipids between the
identified spots (see S1 Fig). The data is from at least three different experiments.

doi:10.1371/journal.pone.0143385.g004
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Fig 5. Analysis of C16-Cer precursor incorporation at different concentrations. The ceramide was either (A) [3H]-labeled in the sphingosine backbone
or in the (B) palmitic acid portion. After 24 h of ceramide uptake the total lipids were extracted and analysed by HPTLC. “Start” and “Front” refer to the labeled
lipids remaining on the application spot, or that were eluted along the solvent front, “Other” refers to the traces of radiolabeled lipids between the identified
spots (see S1 Fig). The data is from at least three different experiments.

doi:10.1371/journal.pone.0143385.g005
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in the samples that had been treated with [3H]C6-Cer, more than 40% of the radioactive signal
could be found in the simple GSL (Glc/GalCer & Glc/GalCer-OH) spots. In the comparable
[3H]C10-Cer and the [3H]C16-Cer treated samples, SM has the strongest radiolabel incorpo-
ration of the analysed lipids.

In some cancer cells, C6-Cer metabolism has been shown to be subject to the initial C6-Cer
concentrations the cells are exposed to [44]. Lower concentrations seem to facilitate conversion
of C6-Cer to C6-SM, whereas higher concentrations favour conversion to C6-GlcCer. Since the
longer-chain [3H]C10-Cer and [3H]C16-Cers had markedly lower incorporation rates, when
compared to [3H]C6-Cer, we decided to analyse whether increased concentrations of [3H]
C10-Cer and [3H]C16-Cer would cause a change in how the ceramides were metabolized. In
addition, a more in-depth analysis of the precursor distribution was performed. The results for
[3H]C6-Cer were in accordance with previously published data, where a lower-dose treatment
(1 μM) yielded the largest incorporation into SM and higher doses (25–100 μM) yielded high

Fig 6. Cytotoxic effect of ceramides. HeLa cells were treated with increasing concentrations of C6-, C10-, C16-Cer or cholesterol, complexed with CholPC,
for 22 h and compared to vehicle (PBS) treated cells. Subsequently, a resazurin reduction assay was performed. Viability of the HeLa cells is represented by
mean ± SEM of at least 3 independent experiments and is expressed as percentage survival of PBS control.

doi:10.1371/journal.pone.0143385.g006
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incorporation in C6-GlcCer. At concentrations exceeding 100 μM [3H]C6-Cer, analysis was
hindered due to nearly complete cell detachment and death. The [3H]C10-Cer treated samples
gave similar results. At 200 μM [3H]C10-Cer, however, the precursor distribution shifted from
C10-GlcCer towards ceramide. For the [3H]C16-Cer experiments, in addition to using a [3H]
sphingosine labeled ceramide, a [3H]palmitic acid labeled ceramide was used. For the 25–
50 μM [3H]C16-Cer experiments, most of the signal was found in either SM ([3H]sphingosine
labeled ceramide) or the glycerophospholipids ([3H]palmitic acid labeled ceramide). As con-
centrations were increased, the precursor remained un-metabolized. The high incorporation of
precursor in the glycerophospholipids in the lower-dose [3H]palmitic acid labeled C16-Cer
samples strongly suggests that [3H]C16-Cer was subjected to degradation. This is supported by
results form experiments where ceramide degradation was inhibited using the ceramidase
inhibitor ceranib-2 and the lysosomal inhibitor chloroquine. Additionally, the ceramide
synthase inhibitor FB1 was able to decrease SM radioactivity in cells treated with [3H]sphingo-
sine labeled C16-Cer, whereas when [3H]palmitic acid labeled C16-Cer was used, no significant
changes were observed. Seemingly, [3H]-sphingosine labeled C16-Cer is degraded in a similar
fashion to that of [3H]palmitic acid labeled C16-Cer. The radioactivity observed in SM in these
experiments most likely comes from recycled [3H]sphingosine, at least to a significant degree.
Whether the same phenomenon can be observed in the lower-dose [3H]C6-Cer and [3H]
C10-Cer samples is not discernible from these experiments.

In the [3H]C6-Cer and [3H]C10-Cer higher-dose samples, both C6-GlcCer and
C10-GlcCer, respectively, were clearly observable on the HPTLC plates (iodine or orcinol
staining). In addition, they were also clearly distinguishable from the long-chain GlcCer and
GalCer standards that were run in parallel with the samples. Therefore, we assume that the
radioactivity found in C6-GlcCer and C10-GlcCer accurately represents [3H]C6-Cer and [3H]
C10-Cer that has been directly glycosylated to GlcCer. Interestingly, for both [3H]C6-Cer and
[3H]C10-Cer, higher-dose treated samples showed a relatively high signal in the endogenous
simple GLSs. This would suggest that even when exposed to high concentrations of [3H]
C6-Cer or [3H]C10-Cer, some degradation of the ceramide, and subsequent recycling of the
[3H]sphingosine base occurs. It is interesting to note that a high-dose treatment with [3H]
C6-Cer or [3H]C10-Cer results in an accumulation of precursor in C6-GlcCer and C10-GlcCer,
respectively. A significantly weaker signal could be found in the more complex GSLs (“Start”
spot on the HPTLC plate) and in lactosylceramide (“Other” spot), to which GlcCer is an imme-
diate precursor. This suggests that, at least under these conditions, C6-GlcCer and C10-GlcCer
are not used as precursors for higher GSLs. This clearly warrants further investigations.

The anti-proliferative and pro-apoptotic effects that ceramides have on cultured cells are
evident. Apoptotic stimuli have been found to increase the levels of intracellular ceramide [12–
14] and exogenous treatment with short-chain ceramides cause cells to undergo apoptosis [2].
Ceramide takes part in signalling events, both in the extrinsic and intrinsic apoptotic pathways
[12, 16, 51]. The methods of action include inhibition of survival pathways, such as pAkt inhi-
bition [52, 53], and permabilization of the mitochondrial outer membranes. Ceramide has the
ability to form pores in membrane bilayers, which in the case of the mitochondria results in
disruption of its function and release of apoptogenic factors [54–57]. Previously, a dramatic
increase in the anti-proliferative and proapoptotic effects in HeLa and FRTL-5 cells was
observed, when exposed to C6-Cer/CholPC formulations [41]. In the present study we have
investigated what effects C10-Cer and C16-Cer/CholPC formulations have on the viability of
HeLa cells, and compared them to C6-Cer. From our results, it is evident that the rate of cer-
amide incorporation is a major determinant for its effect on cell viability. C6-Cer has the fastest
incorporation rate and exhibits the strongest anti-proliferative effects, followed by C10-Cer
and C16-Cer, respectively. It would also seem that C6-Cer intrinsically has stronger anti-
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proliferative effects on HeLa cells, when compared to C10-Cer. This is evident when comparing
the effects the two ceramides has on cell viability, when the rate of incorporation (based on
total uptake after 3 h) has been accounted for. C6-Cer has a stronger effect on HeLa cell viabil-
ity, even when C10-Cer has a higher incorporation level (25 μMC6-Cer versus 100 μM
C10-Cer). It is also interesting to note that the effects that a 200 μMC16-Cer treatment had on
the cell viability were comparable to that of a 100 μM of C10-Cer, even when C10-Cer uptake
was higher than that of C16-Cer. One explanation for the observed phenomenon may lie in
how the metabolism of C16-Cer (or rather, the lack thereof) in HeLa cells occurs. In high-dose
treatments with [3H]C16-Cer (200 μM), most of the signal remained as ceramide after 24
hours. In the comparable C6-Cer and C10-Cer experiments, the cells converted the ceramide
to GlcCer. Glycosylation of ceramide may be a method by which the cell is able to suppress the
anti-proliferative effects of high doses of externally introduced ceramides. Both GlcCer-
synthase inhibitors, as well as P-gp antagonists, have been shown to enhance the ceramide-
induced apoptotic effects when co-administered with short-chain ceramides [44, 58, 59]. Pre-
sumably, when the synthesis of GlcCer is blocked, the higher accumulation of ceramides also
leads to higher apoptotic effects. Why we, in this study, see a glycosylation of the shorter-chain
C6-Cer and C10-Cer, but not of C16-Cer, is an interesting question. Based on the incorpo-
ration rates, it is possible that the rate of C16-Cer uptake simply is not fast enough for the gly-
cosylation response to occur. Another possibility that cannot be ruled out is that CholPC may
affect how the cells metabolize ceramide. The fact that cholesterol/CholPC vesicles did not
have a significant effect on cell viability, even at high concentrations (200 μM), does not
exclude the possibility of combinational effects from high levels of ceramide and CholPC. At
high concentrations, CholPC may interfere with how the cells process ceramide, inhibiting
their glycosylation, and subsequently leading to higher apoptotic effects. This would also
explain the lower rates of glycosylation observed in the 200 μMC10-Cer incorporation experi-
ments, when comparing to the corresponding 100 μMC10-Cer experiments.

Conclusions
The ceramides are a varied molecular species. Distinct enzymes control the chain lengths and
saturation of the ceramides, as well as the introduction of functional groups [18, 60–64]. More
than 100 distinct mammalian ceramides are detectable using current LC-MS/MS technologies
[65]. Because ceramides also exhibit high degrees of compartmentalization in cells, it is plausi-
ble that different ceramides may influence different signalling pathways [17–20, 66]. In the
present study, we have shown that C6-Cer, C10-Cer and C16-Cer can be introduced into cells
by complexation with CholPC. Using this method, we demonstrate that ceramides with differ-
ent chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the exter-
nally delivered ceramides, and their subsequent effects on cell viability, may be in part
determined by their chain length. Our results suggest that C6-Cer displays an intrinsically
stronger anti-proliferative effect when compared to C10-Cer, even when C10-Cer incorpo-
ration is equal to, or greater than that of C6-Cer. As the ceramide concentration is increased,
the cellular fate of the different ceramides is clearly altered. Both C6-Cer and C10-Cer are gly-
cosylated in HeLa cells at high degrees of cellular uptake. Due to its much slower incorporation
rate compared to C6-Cer and C10-Cer, we were unable to determine whether C16-Cer also
undergoes such glycosylation. Glycosylation is perhaps a general mechanism by which cells
dispose of high amounts of ceramide. A further metabolism of the exogenously added cer-
amides into GlcCer may obviously also plays a role in the cell viability. While CholPC and cho-
lesterol did not by themselves result in any significant alteration of cell viability, it cannot be
excluded that there may be combinational effects between high levels of ceramide and CholPC,

Ceramide Loaded HeLa Cells

PLOS ONE | DOI:10.1371/journal.pone.0143385 November 24, 2015 15 / 19



affecting cell viability as well as altering how externally delivered ceramide is metabolized. It is
also important to note that externally administered ceramides may give rise to significantly dif-
ferent cellular effects, when compared to their endogenously generated counterparts.

Supporting Information
S1 Fig. A representative HPTLC plate of a typical lipid analysis. The HPTLC plate was devel-
oped using the solvent system chloroform:methanol:acetone:acetic acid:H2O, 10:2:4:2:1 w/w
and visualized using orcinol spray and subsequent cupric acid staining. The boxed regions cor-
respond to the different lipids analyzed. The dashed lines represent “Other”, i.e. the traces of
radiolabeled lipids between the identified spots.
(TIF)

S2 Fig. Inhibition of ceramidase or lysosomal activity.HeLa cells were treated for 45 minutes
prior to [3H]C16-Cer ([3H]palmitic acid labeled) loading (8 hour total ceramide treatment),
with ceranib-2 (C2, 20 μM) or chloroquine (CQ, 20 μM). Radiolabel distribution was analysed
by HPTLC. The statistical significance compared to the respective controls is indicated with an
asterisk (�) p = 0.05.
(TIF)

S3 Fig. Inhibition of ceramide synthesis by fumonisin B1.HeLa cells were treated with
fumonisin B1 (FB1, 200 μM) for 45 minutes prior to addition of [3H]C16-Cer. The ceramide
was either (A) [3H]-labeled in the sphingosine backbone or in the (B) palmitic acid portion.
Radiolabel distribution was analysed by HPTLC. Total ceramide exposure time was 24 hours.
(TIF)

S4 Fig. A representative HPTLC plate of high-dose ceramide treated samples. (A) A repre-
sentative HPTLC plate of the high-dose ceramide treatments (50 μMC6-Cer, 100 μM
C10-Cer, 200 μMC16-Cer), illustrating the separation of GlcCer with incorporated chain spe-
cific ceramides, from endogenous GSLs. Lane 1, total lipid extract from C6-Cer loaded HeLa
cell, lane 2, C10-Cer loaded cells and lane 3, C16-Cer loaded cells. No C16-GlcCer could be
detected in total lipid extracts from C16-Cer loaded cells. The plate was developed using the
solvent system chloroform:methanol:acetone:acetic acid:H2O, 10:2:4:2:1 w/w and stained with
orcinol. (B) The dot blot was performed to verify that the lipid spots observed in the high-dose
C6- and C10-Cer treatments were GlcCer. The HPTLC plate was stained using iodine, and the
spots corresponding to C6- and C10-GlcCer were scraped into glass tubes. Lipids were
extracted from the silica and absorbed onto a nitrocellulose membrane. Rabbit anti-GlcCer
and rabbit anti-GalCer antibodies were used to detect and verify the lipids on the membrane.
Commercial standards of GlcCer and GalCer were used as positive and negative controls. The
dot blot analysis was repeated twice with identical results.
(TIF)
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