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Abstract: Lubricants are materials able to reduce friction and/or wear of any type of moving
surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks
of failures while contributing to energy savings. At present, most worldwide used lubricants are
derived from crude oil. However, production, usage and disposal of these lubricants have significant
impact on environment and health. Hence, there is a growing pressure to reduce demand of this
sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-
based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants,
availability of the required raw materials and agricultural land to create a reliable chain supply
is still far from being established. Recently, biomass from some microalgae species has attracted
attention due to their capacity to produce high-value lipids/oils for potential lubricants production.
Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants
and the main attempts and progress on microalgae biomass production for developing oils with
pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications
to their oils to produce lubricants for different industrial applications are identified. Finally, a guide
for microalgae oil selection based on its chemical composition for specific lubricant applications
is provided.

Keywords: microalgae biomass; lipids; green lubricants; biolubricants; sustainability; lubrication

1. Introduction

Lubricants are materials, either in solid, semi-solid, liquid or gaseous state, able to
reduce friction and/or wear of any type of moving surfaces. In essence, lubricants are used
to form a layer between two rubbing surfaces to separate and protect the surfaces to some
extent. Lubricants facilitate smooth operations, maintain reliable machine functions, and
reduce the risks of failures while contributing to energy savings. Moreover, the performance
and energy consumption of mechanical elements in modern industrial processes, machinery
and vehicles depend greatly on the lubricant quality. The service-life of machinery and its
components can be increased and energy consumption reduced if the appropriate lubricant
is selected for each specific application [1]. According to recent reports [2–5], significant
global economic and energy savings, and CO2 reduction can be achieved in different
industrial sectors (see Figure 1) by reducing friction losses as well as by using advanced
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lubricants and tribologically enhanced technology. At present, the increasing prices of
crude oil (from around $50 in January 2017 to about $85 in January 2022 for the west
Texas intermediate (WTI) crude [6]), the depletion of crude oil reserves and global concern
about environmental protection have fostered renewed interest in developing and using
lubricants that are renewable, biodegradable, non-toxic, and emit net zero greenhouse gas,
i.e., green lubricants.
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In general, the requirements of a high-performance lubricant include good tribological
properties, high thermal, hydrolytic and oxidation stabilities, high viscosity index and
boiling point, low pour point, good corrosion inhibiting properties, etc., which depend on
each specific industrial application. Up-to-date, conventional and high-performance lubri-
cants used in industry and vehicles are produced from fossil mineral or synthetic sources
blended with additives at different concentrations to attain and modify specific properties.
Mineral oils (MOs) are combinations of hydrocarbons in liquid state derived from crude oil
through different distillation and refining processes [7], meanwhile synthetic oils (SOs) are
obtained by chemical modification of crude oil [8]. Overall, SOs exhibit enhanced thermal
and chemical properties as compared to MOs [9]. Then, synthetic lubricants are preferred
in contemporary and demanding applications. However, production, usage and disposal
of these lubricants have significant impact on environment and health of those who handle
them. Hence, there is a growing pressure to reduce demand of non-renewable energy
resources and lubricants. In fact, different environmental agencies around the world have
introduced restrictions regarding human and environmental toxicity, safety, handling, and
disposal of lubricants, which has led scientists to develop upgraded and novel lubricant
formulations with higher biodegradation rates than MOs and SOs [10].

According to Willing [11] and Rudnick [12] about 50% of the total amount of lubri-
cants used in the world is incorporated into environment via spillages and evaporation.
Besides the difficulties for formal disposal of lubricants, this way of involuntary pollution
results in increasing the atmospheric CO2 that leads to anthropogenic (i.e., human-induced)
global warming. Among the different solutions proposed to overcome this problem, a new
generation of biodegradable lubricants produced from renewable vegetable sources is the
most promising alternative. Akin to MOs, oleochemicals from vegetable oils (VOs) are
disintegrated into CO2 and water when disposed into the environment. Nonetheless, the
carbon cycle of vegetable oleochemicals is closed, i.e., the amount of CO2 released to the
environment is equal to the CO2 consumed by the crops from the atmosphere, keeping
the CO2 balance of the atmosphere [13]. Currently, numerous VOs are being explored
extensively to produce ecofriendly biolubricants for different industrial applications, since
this sort of oils comply with several technical specifications of standard lubricants. In
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addition, in contrast to petroleum-based lubricants, bio-oils are nontoxic and present vari-
ous economic benefits such as reduction in energy consumption and labor cost, increased
employee safety and improved environmental conditions [14].

Various widespread data compilations about VOs as biolubricants have been recently
published [13,15–25], which cover a significant amount of research work addressing this
initiative in the last decades. The great acceptability of VOs for producing alternative
biolubricants is reflected on the fact that global companies such as BP PLC, Chevron Corp,
ExxonMobil, Repsol, Royal Dutch Shell PLC, Total and FUCHS, among others, have recently
produced and marketed some of these lubricants. Moreover, it is expected that the market
for biolubricants increases at an annual growth rate (CAGR) of 4.25% during the period
between 2019 and 2024 [13,14]. Thus, many more entities are investing in the development
of new and more advanced biolubricants for different sectors in industry.

The most promising and explored VOs for biolubricants are obtained from edible
crops as sunflower, rapeseed, soybean, palm, palm kernel, coconut, canola, olive, castor and
mustard, as well as from some inedible crops as Jatropha, Callophyllum inophyllum and
neem [13]; being these last preferred because they do not compete with production of food
crops [26]. However, even using inedible bio-oils for lubricants production is auspicious
only if there is enough land area for cultivating edible and inedible crops to satisfy the food
market demand. Furthermore, considering that also biofuels are being produced using
VOs [27], conflict of arable lands will still persist [28]. To tackle this problem, researchers
have proposed the use of neat VOs not as full biolubricants, but in blends at low proportions
(≤20%) with MOs or SOs [29–34]. This strategy has been partly fruitful and has resulted
in improved lubricating properties of MOs while keeping biodegradable a significant
proportion of the lubricant; but poor cold flow properties and oxidation stability of VOs are
still limiting factors to achieve high-performance [35–40]. Despite these limitations, the use
of neat VOs to produce biolubricants is acceptable for applications where high-performance
is not demanded or when the lubricant is used only for short periods and/or at room
temperature (20–35 ◦C). Chainsaw oils, drilling muds, bicycle chain mechanism, etc., are
some examples of this kind of short-term applications.

An emerging alternative to limited arable land and to achieve a sustainable production
of biofuels and biolubricants is based on microalgae biomass production and exploitation.
Microalgae are microscopic unicellular microorganisms that grow in marine and freshwater
environments. They can convert nutrients, either in an artificial medium or wastewater,
into biomass with a wide range of possible high-value cellular constituents [41]. Among
the most potential uses and products of microalgae biomass are CO2 mitigation [42,43],
agro-industrial and wastewater treatment [44,45], biogas upgrading [46–49], animal and
human food supplements [50–52], pharmaceutical products [53], cosmetics [54], pigments
and carbohydrates [55,56], proteins [57], vitamins [52], fertilizers [58], and biofuels [59–62].
The last, which are the most related product to biolubricants, have received a great attention
and have reached significant progress in the last decades, demonstrating its reliability and
acceptability in the industrial sector. A similar future trend is expected for microalgae-
based biolubricants.

Biofuels and biolubricans share a common origin, that is, they are both derived from
fatty acid esters found in vegetable oils or animal fats. So, existing studies on microalgae-
based biofuel production may shed some light into the less explored field of biolubricants.
However, considering that biofuels are substances expected to release energy in a controlled
manner to generate mechanical work in engines and biolubricants are intended to reduce
friction at sliding interfaces, different properties must be procured for each product by
chemical treatments. In the case of biofuels, certain cetane number (typically higher than
No. 2 in diesel) and low viscosity (similar to conventional diesel at most) are some of
the most important properties, which are basically induced by a single transesterification
reaction [63]. On the other hand, different properties such as lubricity, low pour point, high
thermal stability, particular viscosities, etc., are expected for biolubricants. Hence, a variety
of chemical treatments of the fatty acid esters are needed to obtain good performance
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biolubricants. The main biolubricant properties can be attained by conducting a second
transesterification, or by other conversion techniques, namely, epoxidation, hydrogenation,
etc., including a further formulation with additives [13]. These techniques are discussed in
Section 4.2.

The advantages for production of some species of microalgae over land crops are
their easy growth in a variety of environments with different photosynthetic efficiency,
the fact that they require smaller lands and lower water consumption for cultivation, as
well as their ability to produce substantial amounts of lipids [59–61]. These advantages
can be exploited in lubricants production if microalgae oils with appropriate tribological
and physicochemical properties are identified. It is noteworthy, however, that the use
of microalgae to produce oils with high-valuable fatty acids for lubricants is inevitably
linked to the concept of algal biorefinery as a sustainable approach to valorize algal-based
biomass towards multiple product recovery [64,65]. Therefore, this review paper has four
main purposes, the first is to outline and discuss the attempts and progress on microalgae
bioproduction technologies and methods for developing potential bio-oils as lubricants for
different applications. The second is to identify the most suitable prospective microalgae
strains for production of biolubricants according to their lipids accumulation ability, fatty
acids profiles and large-scale production feasibility. The third is to review the main chemical
modifications required to enhance lubricant properties. The fourth and final is to provide
the reader with a guide to select microalgae oils and their chemical modifications for
producing biolubricants with specific industrial purposes.

2. State-of-the-Art of Microalgae-Based Biolubricants

In contrast to the significant development and research on microalgae biomass for
biofuels production [59–62], its application in biolubricants have received limited attention.
To our knowledge, few works have been published about the production, exploration and
enhancement of the performance of some microalgae oils as biolubricants for industrial
applications, but its number is expected to grow in the near future due to the green
advantages of microalgae over other sources. Xu et al., [66] and Xu et al., [67] evaluated
and improved the tribological performance of a bio-oil from Spirulina microalgae. These
authors prepared the bio-oils by hydrothermal liquefaction followed by an esterification
process to decrease corrosiveness of the sliding metals and improve lubricity. The authors
reported acceptable tribological behavior for the crude bio-oil, which was enhanced in the
esterified microalgae oils. Dziosa and Makawska [68] proposed a method for preparing a
lubricant from the biomass of single-cell green algae Chlorella sp. grown in laboratory. The
method was based on dehydration of the biomass obtained from the culture, followed by
freeze-drying and solvent extraction to obtain the lipids. The resulting lubricant exhibited
similar chemical structure and viscosity-temperature properties to rapeseed oil. So, the
authors proposed this microalgae oil as a suitable replacement for rapeseed oil biolubricants.
Xu et la., [69] evaluated the tribological behavior of steel/steel pairs under lubrication
with suspensions of graphene/MoS2 in esterified bio-oil with different mass ratios, loads
and rotating speeds. The bio-oil was made from crude Spirulina microalgae via catalytic
esterification. The authors reported a synergistic lubricating effect of graphene and MoS2 at
contents of 0.5 wt%, which resulted in a reduction of CoF and wear of the steel specimens
under boundary lubrication conditions. Later, Xu et al., [70] evaluated the lubrication effect
of an esterified Spirulina microalgae bio-oil with dispersed graphite on steel/gray cast iron
friction pairs. They found that high loads and low sliding velocities contributed to good
tribological performance of the friction pairs. On the other hand, Xu et al., [71] prepared
Chlorella and Spirulina microalgae oils via co-liquefaction under sub- and supercritical
ethanol conditions, which were used as partial substitutes for a CD SAE 15W-40 engine
oil. The friction and wear behavior of the oils were tested in a four-ball tribometer and
the best lubricating behavior was observed when the weight contents of the bio-oils in
the engine oil was 10%. Recently, Cheah et al., [72] produced an oil derived from dried
Chlorella biomass and modified it chemically as biolubricant via catalytic esterification.
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They evaluated the tribological behavior of the modified microalgae-based bio-lubricant
in hydrogen-powered engine applications and compared it with the performance of a SO
(poly-alpha-olefin oil (PAO)) and different blends of PAO with the biolubricant (1, 2, 5, 10,
and 20 (v/v%)). All the blends generated better lubricity than neat PAO, which proved these
modified microalgae oils as potential biolubricants for this application. Finally, the growing
interest on developing microalgae-based lubricants at a commercial scale is reflected on a
recently patented method for manufacturing algal oils [73].

The aforementioned research reports demonstrate that microalgae oils obtained from
different strains and with appropriate chemical modifications can exhibit suitable prop-
erties as lubricants for some industrial applications. However, considering the numerous
available microalgae strains and their variations in terms of cellular constituents, extensive
research is required to identify the more promising microalgae strains and cultivation con-
ditions, their harvesting and oil extraction conditions and further chemical modifications
leading to the production of oils with suitable chemical composition and physicochemical
properties as lubricants. In the following, the main steps in microalgae oil production are
described.

3. Microalgae Oil Production

Although microalgae lubricants are potential green substitutes for MOs, SOs, and
other VOs, microalgae oil production is still not feasible at a commercial level due to the
low biomass concentration achieved by most production methods. Nevertheless, these can
become viable by designing efficient photobioreactors, low-cost and effective techniques
and technologies for biomass cultivation, harvesting and oil extraction/purification. Fur-
thermore, the enhancement in obtaining precursors of biolubricants can be also realized
by genetic engineering tools to direct the metabolic pathways of microalgae to the desired
high lipid production [74]. In general, the microalgae oil production process involves
four steps: cultivation, biomass growth/lipids accumulation, biomass harvesting and oil
extraction/purification, which are discussed next.

3.1. Cultivation (Photobioreactors and Growth Conditions)

In microalgae cultivation is important to consider and control different variables,
namely, light supply, photobioreactor type, dissolved oxygen concentration, culture media,
etc., to optimize their growth and byproducts accumulation. Microalgae metabolism is
versatile since they are able to grow under heterotrophic, autotrophic and mixotrophic
conditions, as well as to tolerate a broad range of pH, salinity and temperatures [75–78],
among other conditions. Large amounts of microalgae can be produced through various
configurations of photobioreactors (either close or open), under different environmental
conditions (outdoors or indoors) and light regimes (light/dark cycles). Figure 2 shows a
classification of the most common photobioreactors according to their configuration. In
close photobioreactors are usually made up of glass or plastic tubes which allow the control
of water evaporation and minimize contamination risks. These photobioreactors can be
placed under outdoors or indoors conditions depending on the product of interest. The
surface/volume ratio of a closed photobioreactor is up to 80 m−1, which promote significant
biomass concentrations [79]. The microalgae growth in closed photobioreactors is limited
by accumulation of O2 and the proper supply of CO2. Therefore, it is necessary to determine
the appropriate length of the tubes since it determines the residence and mixing times of the
culture broth inside of the photobioreactor [80,81]. Mixing is necessary to homogenize the
culture and distribute all the nutrients, as well as to avoid light limitation. In close systems,
mixing is attained by air/CO2 supplying [82]. On the other hand, open systems can be
natural lakes and ponds, artificial circular and raceway ponds, etc. [83]. Open ponds or
high-rate algal ponds (HRAP) have been widely used for growing microalgae at full-scale
due to higher technical and economic feasibility as compared to closed photobioreactor
configurations [84]. The main variable in HRAP systems is the total area employed for their
installation. They consist of a pond divided into two or four channels with depth in the
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range from 0.2 to 0.4 m, which promotes penetration of light inside the photobioreactor [85].
In contrast to closed systems, mixing in open systems is achieved by mechanical arms
or paddle wheels. The CO2 supply is vital to promote growth of biomass and to foster
O2 desorption, which may affect the productivity of the biomass and the product of
interest [86,87]. Unfortunately, the risk of contamination by other microorganisms increases
in open ponds due to exposure to environmental conditions, meanwhile significant water
losses due to evaporation are generated.
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To enhance the growth of microalgae biomass is necessary to supply all the macro-
nutrients (C, N, P, K, etc.) and light together in an appropriate mixing to the culture
broth [88–91]. Biomass productivity is also function of light intensity and its wavelength.
The increase in light intensity helps to improve biomass growth until light saturation is
reached, which afterwards, causes negative effects on growth rates (photoinhibition) [89,90].
Overall, the main variables to consider for cultivation of microalgae biomass are represented
in Figure 3. Changes in some of them induce different conditions or stress factors that
determinate the rate of growth, biochemical reactions, and hence, different byproducts
accumulation, such as proteins, carbohydrates, pigments and lipids [91]. Thus, changes
in culture conditions, nutrients deficiency and physical conditions are the most important
strategies deployed in microalgae cultures to promote the production of certain valuable
compounds, as high-value lipids/oils for biolubricants.
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A outstanding characteristic of microalgae biomass is that they can grow in undefined
and atypical culture media, namely, freshwater, brackish water, seawater, and wastewater
due to their ability to metabolize both organic and inorganic nutrients. The use of these kind
of culture media, wastewater in particular, has been successfully applied to meet a circular
economy and reduce cost of microalgae cultivation [92]. The use of digestate from anaerobic
digestion process [47,93], brewery wastewater [94], agroindustrial wastewater [95], etc., are
examples of sources of culture media alternatives for microalgae production under circular
economy schemes.

In addition, microalgae have the ability to grow under autotrophic, heterotrophic and
mixotrophic conditions. Heterotrophic and mixotrophic conditions exhibit higher biomass
yield, extended exponential phase of growth, and less biomass loss [96]. Under mixotrophic
conditions, both inorganic and organic carbon can be assimilated under certain operational
conditions to increase biomass productivity and other high-value byproducts [97,98]. For
example, Kujawska et al., 2021 [99], demonstrated waste glycerol as a potential organic
carbon source to reach a Schizochytrium sp. biomass productivity of 48.85 ± 0.81 g/dm3,
producing docosahexaenoic acid at a concentration of 21.98 ± 0.36 g/dm3.

Another strategy to improve biomass productivity and obtain higher concentrations
of byproducts is the immobilization of microalgae biomass. Benasla and Hausler 2021 [100]
demonstrated the effect of immobilized green Raphidocelis subcapitata microalgae in alginate
gel to obtain a high lipid productivity for biodiesel production. In addition, Savvidou
et al., 2021 [101] immobilized Nannochloropsis oceanica and Scenedasmus almeriensis cells by
enzymatic (cellulase) and mechanical (glass beads) treatments, generating protoplasts as a
means of incorporation of magnetic nanoparticles. The magnetic properties supported the
successful immobilization and growth of microalgae cells on a vertical magnetic surface
exposed to light and without any supplement. It allowed a considerable increase of
biomas productivity.

3.2. Lipids (Oil) Accumulation Operational Strategies

The main classes of lipids found in microalgae are membrane lipids (glycosylglyc-
erides, phosphoglycerides and betaine ether lipids) and storage lipids as triacylglyc-
erol [102]. The amount of lipids in a microalgae strain depends on operational conditions
of the culture broth. Triacylglycerids (TAG) are the main lipids in microalgae strains, they
are used for storing energy and are the product of the primary metabolism [103]. Under
light conditions, microalgae fix carbon via Calvin cycle and produce different molecules,
including TAG, and depending on the specie, photobioreactor configuration and stress
operational conditions, TAG contents can be increased in microalgae cells [104]. TAG are
the most common neutral lipids and can be found in cell cytoplasm. They are formed when
three similar fatty acid (FA) molecules are attached to glycerol, which serves as backbone
for the molecule [26]. TAG is the base composition (92–98%) of biolubricants and their
structure characteristics and concentration are known to determine the main lubricant
properties. Therefore, the identification of a strain and growth conditions for accumulating
the largest amount of lipids with triglycerides having certain FAs is the goal.

The concentration of TAG during “normal” microalgae growth (no stress) is usu-
ally small, but this concentration increases remarkably under stress conditions by var-
ious strategies as [105,106]: (1) deprivation of nutrients such as nitrogen and phospho-
rous; (2) oxygen saturation; (3) light intensity and illumination/dark cycles; (4) salinity;
(5) temperature; and (6) mutant genes. Table 1 describes the main stress conditions to
promote TAG accumulation in microalgae cells.
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Table 1. Stress conditions to promote TAG microalgae cell accumulation.

Stress Condition Effect of the Stress Condition on Growth
and Lipids Accumulation References

Deprivation of nutrients
Deprivation of nitrogen and phosphorus

promote larger lipid accumulation in
microalgae cells.

[107–110]

Oxygen saturation

Higher accumulation of dissolved oxygen
in the culture broth promotes lipid
degradation and decreases biomass

productivity. So, it is important to regulate
oxygen accumulation to enhance

lipids increase.

[87,111]

Light intensity,
illuminated/dark cycles

and CO2 supply

Supply of appropriate light intensity and
illuminated/dark cycles improves growth
of different species of microalgae and lipid

accumulation concomitant with CO2
supply at different concentrations.

[110,112–114]

Salinity
Salinity stimulates the accumulation of

lipids in microalgae and avoids
cell damage.

[115–118]

Temperature

Temperature changes promote
enhancement in biomass productivity and

carbon precursors for lipid hyper
accumulation.

[119]

Mutant genes
Application of mutant genes increases lipid

accumulation in microalgae cells due to
changes in its metabolism.

[120]

3.3. Microalgae Biomass Harvesting

Harvesting consists of separating microalgae from its growing medium. Large-scale
production of microalgae biomass and its ulterior extraction is the main challenge to develop
cost-effective technologies for efficient harvesting and byproduct extraction [121]. In this
sense, different harvesting technologies have been assessed to enhance the productivity of
byproducts and, especially in this case, lipids content.

Before applying a harvesting method, it is necessary to consider the type of microalgae
strain and the operational conditions of their growth, as well as the density, size and the
physicochemical characteristics of the byproducts [122]. Harvesting of microalgae can
be divided into two step processes. The first consists in separating microalgae biomass
from the culture broth (2–7% dw), the second step is the thickening to promote more
concentrated biomass than in the first step [121]. All harvesting processes may include
thickening, dewatering and drying. Figure 4 shows a representation of a green harvesting
method based on sedimentation. It is one of the simplest and cheapest green techniques
to separate the microalgae from culture media. However, harvesting can be also based on
chemical, physical, biological and magnetic methods. Table 2 summarizes the characteristics
of the different methods used to harvest microalgae biomass.
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Table 2. Description, advantages and disadvantages of methods used for harvesting microalgae biomass.

Type Method Description Examples Advantage Disadvantage References

Chemical Flocculation/
Coagulation

Separation by interaction
between negative
charged cells and

flocculant ions
producing scattered

units that settling down.

- Inorganic flocculants: metallic salts
(Fe2(SO4)3, FeCl3, Al2(SO4)3, AlCl3.

- Inorganic polymers: polyelectrolyte,
polyaluminum.

- Fast and highly
efficient separation.

- No green.
- Contamination of

downstream
process.

[123–125]

Physical

Centrifugation Separation by centrifugal
force.

- Solid bowl decanter.
- Solid ejecting disc.
- Hydro-cyclone.
- Solid bowl decanter.
- Nozzle type.

- Efficient for
microalgal size
cells around

- 3–30 µm.
- Green

- Significant energy
consumption.

- Possible cell
disruption by shear
stresses.

[123,126,127]

Filtration

Separation by using a
filter medium through

which only the fluid can
pass.

- Microfiltration.
- Macrofiltration.
- Ultrafiltration.
- Vacuum filtration.
- Pressure filtration.
- Tangential flow filtration.

- Green.
- Efficient for large

microalgae sizes.

- Not suitable for
microalgae with
size as Chlorella

- Dunaliella
- Sncenedesmus.
- Fouling/clogging

phenomenon.
- High operational

cost.

[124,127,128]

Sedimentation
Separation by the action

of gravity leaving a
supernatant.

- The sedimentation rate depends on
the algae genera. For example:

- 0.2 m d−1 for diatoms.
- 0.0–0.5 m d−1 for Cyanobacteria.
- 0.1 m d−1 for green algae.

- Green.
- Cost-effective due

to low energy
consumption.

- Depends on
concentration of
microalgae.

- Low microalgae
mass cannot not be
effectively
harvested.

[123,129]
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Table 2. Cont.

Type Method Description Examples Advantage Disadvantage References

Flotation

Separation by using a
thick foamed bed from

which the solids are
recovered by skimming.

- Dissolved air flotation.
- Dispersed air floatation.
- Electric flotation.
- Ozonation dispersed flotation.

- Green.
- Efficient for small

size microalgae.
- Small space

required.

- Not appropriate
for full-scale
application.

[123,128]

Electrical methods

Separation by
application of an electric
field to the microalgae

cells with metallic
electrodes.

- Electrophoresis.
- Electroflotation.
- Electroflocculation.

- Green.
- Low toxicity

compared to
flocculation.

- Low energy
consumption
compared to
centrifugation.

- Low current
density decreases
flocculation.

[123,128]

Biological Bioflocculation
Autobioflocculation

Separation by the
addition of micro- or
macro-organisms to
induce extra cellular

polymer substances that
promote flocculation

through changes in pH,
carbon sources supply,

etc.

- Bacterial flocculation.
- Fungal flocculation.
- Actinomycetes flocculation.
- Plant-based flocculation.
- Algal-bacterial.

- Green.
- Low-cost.

- Complex control of
the procedure. [123,128,130,131]
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3.4. Microalgae Oil Extraction

The next step after biomass harvesting is the application of an efficient lipids/oil
extraction technique. This may be carried out by different physical and chemical methods,
as represented schematically in Figure 5. The selected method should be fast, easily
scalable and effective without causing chemical changes to the extracted lipids [132]. Prior
to oil extraction is necessary to apply a pre-treatment method in the cell biomass. Cell
disruption is the most common pre-treatment method and depends on the characteristics
of the biomass [132]. Bead beating, autoclaving, grinding, osmotic shock, homogenization,
freeze drying and the addition of ≥10% (w/v) NaCl are other methodologies for cell
disruption [121,122,132]. Table 3 summarizes the characteristics of the most common oil
extraction methods from microalgae biomass. Residues generated after oil extraction
are rich in different byproducts, such as carbohydrates and proteins, that may be used
to make other different products as biogas or biohydrogen, food additives, pigments,
fertilizers, etc. [121,133]. Considerations of microalgae oils as lubricants are provided in the
next section.
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Table 3. Oil extraction methods from microalgae biomass.

Oil Extraction
Technique Description Advantages Disadvantage References

Organic Solvents

Use of non-polar
solvents to disrupt

interactions between
non-polar/neutral

lipids.

- Inexpensive.
- Solvent choice

depends on the
microalgae strain.

- Specific for neutral
lipids.

- No green.
- Health and

environmental risks.
- Incompatibility of

some solvents are
with wet biomass.

[121,132]

Soxhlet
extraction/Bligh and

Dyer’s method

Use of hexane/mixture
of chloroform and

methanol as solvent to
disrupt interactions

between
non-polar/neutral

lipids.

- No solvent wastes.
- Bligh and Dyer

method yield
extraction ≥95%.

- No green.
- Health and

environmental risks.
- Incompatible with

wet biomass.

[121]

Ionic liquids
Use of ionic solvents to
disrupt microalgae cells

and extract lipids.

- Low volatility.
- Disrupt wet biomass

under mild
conditions.

- No green.
- Changes in viscosity

at low temperatures
could affect lipid
yield.

[134]
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Table 3. Cont.

Oil Extraction
Technique Description Advantages Disadvantage References

Supercritical fluids
Use of supercritical
fluids as solvents to

extract lipids.

- Green.
- Safe for the

environment.
- Avoid flammable

organic solvents.

- High operational
cost.

- Excess of water in
biomass avoid
diffusion transfer of
the fluid.

[135]

Mechanical process

Use of mechanical
methods as bead
beating, pressing,

ultrasonic-assisted
extraction,

electroporation, etc. for
cell disruption and

simultaneous oil
extraction

- Green.
- Applicable for wet

biomass avoiding
draying techniques.

- Efficient lipid
extraction.

- Effective for
pilot-scale and
commercial levels.

- Less dependence on
the type of
microalgae species to
be processed.

- Possible
contamination of
lipids with cell
debris.

- Usually require
higher energy inputs
than the chemical or
enzymatic methods.

- Heat generation
during mechanical
disruptions may
damage the final
products.

[136]

4. Considerations of Microalgae Oils as Lubricants

To identify a microalgae oil as a potential lubricant, it is important to know its chemical
characteristics, the lubricating properties required for the specific applications and strategies
to enhance those properties. Most of studies regarding the relationship between chemical
structure of oil and lubricating properties, and the strategies for lubricant properties
enhancement have been focused on edible and non-edible VOs. However, considering
the similarities in chemical composition between microalgae oils and vegetable oils, the
knowledge previously gained in the study of VOs can be also applied to microalgae ones.

4.1. Relation of Oil Chemical Structure with Its Lubricating Properties

In general, any neat bio-oil, including microalgae oils, is composed by 92–98% of TAG
in combination with a variety of FA molecules attached to a single glycerol structure [12].
Depending on the triglyceride structure and FAs contained, different lubricating properties,
namely, lubricity, viscosity, pour point and oxidation stability can be expected. The key
chemical factors influencing the aforementioned lubricant properties of VOs are: (1) the
carbon chain length; (2) the type of FAs (saturated fatty acids (SFA), monounsaturated
fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs)); and (3) polarity [13,137].
The corresponding characteristics of the chemical factors influencing the main lubricating
properties of bio-oils are compiled in Table 4.

4.1.1. Lubricity

Lubricity of bio-oils is principally influenced by FAs unsaturation, chain length, branch-
ing, and polarity. The CoF is expected to decrease with increasing the carbon chain length
since longer hydrocarbon chains of FAs produce stronger molecular linkages. In addition,
longer FA chains form thicker adsorbed films on surfaces. On the other hand, decreasing
the degree of branching in the base oil enhances lubricity. So, branched-chain acids are
more prone to produce wear than linear-chain acids with the same carbon number [139].
Different FAs in bio-oils have significant impact on the lubrication efficiency. It has been
demonstrated that increasing the degree of unsaturation of FAs diminishes wear perfor-
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mance [140,141]. Thus, PUFAs promote weak protective tribo-films. Polar structures are
also believed to provide good boundary tribo-films. The straight physical contact be-
tween oil molecules and metal surfaces is created by the chemical interaction between
the non-polar end of metals with the polar functional groups from the oil producing a
layer that separates the rubbing surfaces [143]. So, microalgae oils with increased polar
functionality could exhibit superior boundary lubrication (BL) properties than MOs due to
stronger adsorption on the metal surfaces. Then, microalgae oils may be useful in applica-
tions involving BL such as in engines, power transmissions, metal working/machining,
gas/petroleum drilling, compressors, turbines, etc.

Table 4. Chemical characteristics of bio-oil factors affecting main lubrication properties.

Property Requirement Chemical Factor Characteristics References

Lubricity
Low friction and wear

under boundary
lubrication.

Carbon chain length Long (n ≥ 9) and linear
(SFA, MUFA) [138,139]

FAs Low unsaturation degree
(SFA, MUFA) [140,141]

Polarity High [139,142,143]

Viscosity

Low viscosity
Carbon chain length Short (viscosity increases

with chain length) [144,145]

FAs High unsaturation degree
(PUFA) [146]

High viscosity
Carbon chain length Long (viscosity increases

with chain length) [144,145]

FAs Low unsaturation degree
(SFA, MUFA) [146]

Pour point Low pour point FAs High unsaturation degree
(PUFA) [144,147]

Oxidation stability High oxidation stability FAs Low unsaturation degree
(SFA, MUFA) [148]

4.1.2. Viscosity

Viscosity is a measure of the resistance to flow or internal friction when a fluid is sub-
jected to shear stresses. The fluid viscosity depends on its composition, shear deformation,
temperature and pressure. Based on the flow and viscosity curves (rheograms) reported in
the literature, bio-oils behave mainly as Newtonian fluids [149–151]. Viscosity of bio-oils
is also influenced by carbon chain length and FAs type. High viscosity promotes high
resistance to flow, thicker lubricant films and increased power consumption, while low vis-
cosity means low flow resistance, thinner lubricant films and reduced power consumption.
Depending upon each specific application, a certain lubricant viscosity grade is required.
For example, high-viscosity oils are demanded for gears operating under high loads for
achieving stronger and larger lubricant films, meanwhile low-viscosity oils are needed for
modern engines to reduce fuel consumption [152,153]. In addition, high viscosity is appro-
priate to reduce wear in machinery, but it is negative for friction and power saving. Thus,
both low and high-viscosity bio-oils can be useful. Viscosity of bio-oils increases with the
length of the FA chain, which is due to the growth of the degree of random intermolecular
interactions [145]. Hence, oils with long chain FAs usually have high viscosity while oils
with short chain FAs poses low viscosity. Furthermore, the degree of unsaturation is also
an important factor contributing to oil viscosity; a single double bond increases viscosity,
whereas two or three double bonds decrease viscosity [146]. On the other hand, it is well
known that viscosity decreases with temperature (at a constant pressure) and increases as a
function of pressure for a given temperature. This dependence on pressure is a necessary
characteristic of lubricants to achieve effective elastohydrodynamic lubrication, but its
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effect in sliding frictional zones and hydraulic systems is to increase energy consumption
due to high viscous dissipation. If the temperature dependence of viscosity is investigated,
keeping shear deformation and pressure constant, the temperature-viscosity coefficient
may be obtained and related with thermal stability. If bio-oils are exposed to heat or high
temperatures (thermal oxidation process), their physicochemical properties are modified by
alteration of FA chains, which may produce deposits in the form of varnish, carbons, or par-
ticulates [150,151,154,155]. In addition, the viscosity-pressure relationship behavior must be
considered if the oil will be used for low or high load applications. This relationship can be
fitted to some empirical models, from which the pressure-viscosity dependence coefficient
is obtained, this parameter usually decreases with increasing pressure but increases with
increasing pressure above an inflection value [149–151,155]. Finally, when bio-oils are used
as matrixes for dispersed micro or nanoparticles, the viscosity of the lubricant may become
shear dependent (non-Newtonian behavior) with increasing particle concentration, then
shear stability, namely, viscosity reduction as a function of shear or shear-thinning, should
be investigated [152,154,156]. When flowing, non-Newtonian shear-thinning lubricants can
decrease power consumption.

4.1.3. Pour Point

Pour point refers to the lowest temperature at which the lubricant loses flow ca-
pability and becomes semi-solid matter. Pour point (to be low) is the most important
low-temperature property wanted in lubricants employed at extremely low temperatures.
It is known that the pour point of bio-oils decreases as the number of double bonds in the
molecules increases. Oils with high content of unsaturated FAs chains will exhibit lower
pour points because the FAs chains bent in a molecular arrangement that prevents their
close packing when cooling [147]. Then, a higher degree of unsaturation is positive for
low-temperature properties.

4.1.4. Oxidation Stability

Oxidation of lubricants occurs by a chemical reaction with oxygen. It is facilitated
by high temperatures, high pressures and exposure to water and other contaminants
(i.e., debris and soot). Thus, the oxidation stability of a lubricant refers to its capacity to
withstand oxidation. High oxidation stability is demanded for lubricants, mainly for those
exposed to harsh operating environments at high temperatures for prolonged periods
(i.e., engines, turbines, compressors, etc.). The principal consequences of thermo-oxidation
in bio-oils are polymerization with further increase in viscosity, reduction of viscosity index
and alteration of lubricity [29,150,151,154,155]. Oxidation stability is determined by the
dominant FAs contained in the oils. The presence of PUFAs, namely, linoleic and linolenic
acids, in large proportions leads to high rates of oxidation because double bonds in the
alkenyl chains react easily with oxygen to form free radicals that lead to polymerization
of oil and further disintegration [148]. Hence, a lower unsaturation degree is good for
achieving higher oxidation stability, but it is negative for low-temperature properties, in
particular, for the pour point.

4.2. Chemical Processes for Improving Lubricant Properties of Microalgae Oil

The production of fatty esters [157,158] and estolides [23,157,159] from neat VOs by
chemical conversion processes has gained great attention because these enhance lubricity
and thermal stability properties significantly. Basically, fatty esters are produced from the
combination of a FA with an alcohol-like by transesterification processes. Mostly, they have
a concentration of 98% of methyl esters of long chain FAs and the rest comprising free
glycerin; mono-, di-, and triglycerides; antioxidants; sterols; phospholipids; and water [160].
Methyl and ethyl esters of FAs are the most popular biolubricants (oils and greases) for
automotive applications, marine engines, compressors, hydraulic systems and gears [158].

Estolides are a developing class of natural and synthetic compounds synthesized
from hydroxy oils or by the condensation of FAs through the olefin of a second FA. Es-
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tolides exhibit good oxidation resistance, which is a common drawback of VOs [23,161,162].
In addition, oleic acid-based backbone estolides present the best-performing properties
for lubricant applications [23,157]. In addition, other chemical conversion processes for
achieving these improved VO derivatives are transesterification, partial hydrogenation and
epoxidation [13,163].

Transesterification is a reaction catalyzed generally by acids or bases. It is produced
between an ester and an alcohol where the alkoxy group of the ester is replaced by alcohol
and vice versa [27]. It can be classified into acid-catalyzed or base-catalyzed transesterifi-
cation according to the type of catalyst employed. In addition, the complexity of the final
ester contributing to some properties of the biolubricant is dependent on the alcohol used
for the alkyl interchange. The catalyst removal from the final product is easier if alternative
heterogeneous catalysts are used [63].

Hydrogenation is a chemical process involving the addition of hydrogen to the C=C
bonds in the triglycerides of an oil molecule [164]. The process generates the simultaneous
saturation of double bonds, positional isomerization and geometric (cis-trans) isomerization.
It is commonly carried out in the presence of a support or Raney Ni catalyst at temperatures
from 150 to 225 ◦C and pressure from 69 to 413 kPa, which generates undesirable toxic Ni
traces in the oil [165,166]. So, partial hydrogenation can be a more suitable alternative. It is
attained by selecting an appropriate catalyst to reduce linolenic acid before linoleic and
oleic acids. This process has been demonstrated to prevent deterioration of the pour point
of biolubricants [164,167].

Epoxidation occurs by the reaction of double bonds by peroxy acids and removal
of the C=C bonds using conventionally acid ion exchange resins, enzymes and metal
catalysts [168]. In industry, the most common epoxidation technique for the production
of improved VOs is the Prilezhaev process, in which double bonds are modified to obtain
new value-added chemicals or monomers for polymers [169]. Considering the inherent
drawbacks of this process, namely, low epoxide selectivity due to oxirane ring opening and
corrosion issues, many efforts have accordingly been made for developing new catalytic
systems to produce epoxidized VOs in a more selective and efficient manner [170].

Apart from chemical conversions, microalgae oils may be improved for lubrication
purposes by incorporating chemical or physical additives. Additive technology has been
extensively studied for conditioning different lubricant properties of VOs and their deriva-
tives (esters and estolides) for meeting specific demands. Additives are classified according
to the property to be improved in the oil. Commonly, a formulated oil consists of an oil
base stock blended with different additives at a concentration around 5%wt. Different an-
tioxidants, detergents and dispersants, viscosity modifiers, corrosion inhibitors, pour point
depressants, extreme pressure and anti-wear additives, including nanoparticles, are the
most used to condition diverse VOs [13]. The main effective additives used and reported for
producing biolubricants are shown in Table 5. It is important to highlight that biolubricants
based on esters or estolides formulated with additives have demonstrated superior lubricity
as compared to neat VOs or blends with MOs or SOs [157,171]. In addition, since VOs have
high solubilizing power for polar contaminants and additive molecules, the formulation
can be relatively easy. However, it should be noted that inclusion of additives that contain
oxygen and nitrogen, which are the majority, in VOs could interfere with the capability
of the esters to adhere to the metallic surfaces promoting negative influence on lubricity.
It is because the additives having its own polarity will contend with the surface-active
compounds [172]. Thus, additives should be selected and incorporated carefully based on
chemical compatibility and synergistic effects.
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Table 5. Chemical additives for biolubricants formulation.

Additive Function Reported Effective Chemical
Additives for Bio-Lubricants References

Antioxidants

Interrupt or prevent the oxidation
process without modifying other
lubricant properties required. The
process occurs in different ways
depending on the structure and

antioxidant mechanism.

Tocopherol, propyl gallate, l-ascorbic
acid 6-palmitate, synthetic antioxidants

(4,4′-methylenebis
(2,6-di-tert-butylphenol), zinc diamyl
dithiocarbamate, butylated hydroxy

toluene, alkylated
phenol/dithiophosphoric acid

ester/diphenylamine and acylated
chitosan schiff

[173–175]

Detergents and dispersants

Prevent the accumulation of
sludge particles or other

oil-insoluble substances. by
dispersing and keeping them

suspended in the oil.

Metal sulfonate, ash-less sulfonate, over
based sulfonate, salicylates, alkyl

phenolates, overbased carboxylate,
polyisobu-tylene succinimides,
glycidol modified succinimides,

Mannich adducts, polyethylene glycol
esters, polyol poly- (12-hydroxy stearic

acid), piperazine derivatives, butyl
citrate and ethyl oleate.

[176,177]

Viscosity modifiers

Provide the bio-lubricant with the
viscosity magnitude required for
both low and high temperatures

keeping appropriate lubricity.

Olefin copolymer, ethylene-vinyl
acetate

(EVA) copolymer, olymethacrylates,
styrene-diene copolymers and

styrene-ester copolymers.

[178–181]

Pour point depressants

Limit the formation of large
crystals during solidification

process to provide oil flow at low
temperatures.

Polymethacrylate backbone with a
certain type of branching, 2-ethylhexyl

oleate, isobutyl oleate,
trimethylolpropane trioleate,

pentaerythritol tetraoleate, diisodecyl
adipate and Mannosylerythritol lipid.

[182–184]

Biodegradability is the most important characteristic regarding the environmental
fate of any substance and product. In general, bio-oils are more readily biodegradable
than MOs and SOs, as reported by various research groups that have investigated the
biodegradability of sunflower oil, colza oil, castor oil, and oleic esters either in water
or soil [185–190]. Nonetheless, it is important to note that any chemical conversion and
additives inclusion to oils may modify its biodegradability as compared to neat oils. Al-
though these chemical modifications help to improve lubricant properties, they may reduce
biodegradability to some extent. For example, Luna et al., 2015 [188], performed a com-
parative study of biodegradability of neat castor oil, esterified castor oil and MO in an
aqueous environment by aerobic microorganisms. They found that esterification caused an
alteration of the half-life time of castor oil. Neat castor oil had a half-life time of 12 days
meanwhile esterified castor oil was increased to 20–30 days. Despite the increased half-life
time of castor oil due to esterification, biodegradability remained significantly lower than
that of MO (200 days half-life time). As for the effect of additives in bio-oils on their
biodegradability, there is a lack of research studies. Eisentraeger et al., [185] and Hahn
et al., [186] compared the biodegradability of different neat ester-based lubricants with and
without additives (unknown concentrations and compositions). Both groups found that
biodegradability was similar with and without additives. Considering the very particular
conditions and formulations evaluated in these reports, an overview about the effects of
additives on biodegradability of bio-oils is still not available. So, upgraded and certified
modern biolubricants based on microalgae oil should comply with biodegradability studies
regarding the specific formulation (neat or modified base oil + additives).



Molecules 2022, 27, 1205 17 of 33

5. A Guide for Selection of Microalgae Oils for Producing Biolubricants for
Different Applications

Overall, considering the above compilated information about the characteristics and
production of microalgae oils and their possible optimization through chemical treatments,
a general procedure is suggested to select suitable microalgae oils to produce biolubricants
for different applications. The procedure is illustrated in the flow chart of Figure 6. The first
step is to select a microalgae oil from a strain able to produce a significant amount of lipids
containing a high concentration of FAs under feasible conditions. In addition, it must be
considered that the selected microalgae strain has the required biomass productivity and
growth conditions for full-scale production. Otherwise, the microalgae biomass production
process must be conditioned, or another strain selected. Depending on the FAs type and
concentration documented in the microalgae oil, the most important lubricant properties
(lubricity, viscosity, pour point and oxidation stability) can be qualitatively predicted. These
properties should be promising to meet the requirements of the desired specific application
and then the oil must be fully characterized to determine the lubricant properties precisely.
If the oil properties comply with the requirements for the target application, the oil can
be used as biolubricant as it is produced. Should the application requirements be more
demanding, the microalgae oil must be improved by chemical conversion and/or aggregat-
ing additives. In case modifications are not effective, other application should be sought
for the biolubricant.
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There are numerous reports in literature about different microalgae strains producing
lipids/oils containing significant amounts of FAs, which can be suitable for biolubricants.
A compendium of the most significant and well-documented information of microalgae
strains with potential to produce biolubricants is summarized and provided in Table 6; it
includes biomass productivity, lipids, FAs concentrations, and production parameters.
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Table 6. Compilation of data from prospect microalgae strains producing oils for lubricants.

Strain
Biomass

Productivity
(g L−1 h−1)

g Lipids/100 g
DW

g Fatty Acid/100 g
Lipids

Fatty Acids Profileg
x-Fatty Acid/100 g Lipids

Photobioreactor/
Illumination

Operational
Conditions Medium Oil Extraction

Method References

B. braunii (UTEX
LB 572) 0.18–0.22 14.72–15.64

7.26–11.69 SFA
63.10–82.9 MUFA
9.45–25.21 PUFA

(C4:0) 0.37–0.46
(C12:0) 0.20

(C14:0) 0.20–0.68
(C16:0) 6.40–9.36

(C16:1w7) 0.17–0.32
(C17:1w5) 1.22–2.68

(C18:0) 0.56–1.27
(C18:1w9c) 59.55–81.79
(C18:2w6c) 2.26–7.00
(C18:3w3) 5.27–11.20
(C20:1w9) 0.45–0.55

(C20:3w3) 1.21
(C20:4w6) 0.71–0.92
(C20:5w3) 1.56–2.23

(C22:1w9) 0.28
(C22:6w3) 3.87–3.88

Erlenmeyer flasks
170 µEm−2 s−1.

12 h light:12 h
dark.
25 ◦C

CHU-medium, (g
L−1)

(0.2 KNO3; 0.04
K2HPO4; 0.08

CaCl2·2H2O; 0.1
MgSO4·7H2O; 0.1
C6H8O7·H2O; 0.1
C6H5FeO7·xH2O)

Chloroform-
methanol

(1:2)

[191]

B. braunii
(IBL-C117) 0.10–0.15 7.037–7.822

17.30–20.46 SFA
21.95–65.60 MUFA
15.01–60.75 PUFA

(C4:0) 1.28–4.01
(C8:0) 0.47

(C12:0) 0.66
(C14:0) 0.61–1.26

(C16:0) 12.02–17.15
(C16:1w7) 0.52–1.13

(C17:0) 0.32
(C18:0) 0.74–1.26

(C18:1w9c) 14.78–24.60
(C18:2w6c) 4.63–9.36

(C18:3w3) 10.38–19.54
(C20:1w9) 0.90–1.30

(C20:5w3) 2.46
(C22:1w9) 23.34–49.35

(C22:6w3) 34.78

Erlenmeyer flasks
170 µEm−2 s−1.

12 h light:12 h
dark.
25 ◦C

[191]

B. terribilis
(IBL-C115) 0.10–0.18 15.33–16.79

9.91–10.60 SFA
71.66–83.56 MUFA
6.53–17.85 PUFA

(C4:0) 0.49–2.98
(C14:0) 0.34–0.64
(C16:0) 5.71–8.25
(C16:1w7) 0.23

(C17:0) 0.27
(C17:1w5) 0.70–2.35

(C18:0) 0.87–1.28
(C18:1w9c) 69.31–81.77

(C18:2w6c)1.92–5.84
(C18:3w3) 3.49–9.66
(C20:1w9) 0.66–0.69
(C20:4w6) 0.28–0.59
(C20:5w3) 0.84–1.77

(C22:1w9) 0.41
(C22:6w3) 2.26

Erlenmeyer flasks
170 µEm−2 s−1.

12 h light:12 h
dark.
25 ◦C

[191]
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Table 6. Cont.

Strain
Biomass

Productivity
(g L−1 h−1)

g Lipids/100
g DW

g Fatty
Acid/100 g

Lipids

Fatty Acids Profileg
x-Fatty Acid/100 g

Lipids

Photobioreactor/
Illumination

Operational
Conditions Medium

Oil
Extraction
Method

References

Chlorella sp. 800 0.020 25.20
2.46 SFA

2.64 MUFA
2.64 PUFA

(C16:0) 1.86
(C16:1) 0.055
(C18:0) 0.60

(C18:1ω9) 2.59
(C18:2ω6) 1.97
(C18:3ω3) 0.67

2 L glass cylinder
photobioreactors

200 µmol E m−2 s−1.

25 ◦C
air enriched

with 2% (v/v)
CO2

Modified Tamiya
medium (g L−1)

(KNO3, 2.5;
KH2PO4, 0.625;
MgSO4·7H2O,

1.25; FeSO4·7H2O,
0.0045; Na2EDTA,
0.0186; and trace

elements solution,
0.5 mL L−1).

The trace elements
solution

(g L−1): H3BO3,
2.86;

MnCl2·4H2O,
1.81; ZnSO4·7H2O,

0.222; NH4VO3,
0.023; and MoO3,

0.018.

Chloroform/
methanol

(2:1)
and ball mill

[192]

Chlorella
saccharophila 477 0.008 27.6

1.91 SFA
1.905 MUFA
4.23 PUFA

(C16:0) 1.56
(C16:1) 0.045
(C18:0) 0.35

(C18:1ω9) 1.86
(C18:2ω6) 4.04
(C18:3ω3) 0.19

2 L glass cylinder
photobioreactors

containing
200 µmol E m−2 s−1.

25 ◦C
air enriched

with 2% (v/v)
CO2

[192]

Chlorella
minutissima 494 0.016 NR

1.216 SFA
0.217 MUFA

2.3 PUFA

(C16:0) 1.18
(C16:1) 0.037
(C18:0) 0.036

(C18:1ω9) 0.18
(C18:2ω6) 2.05
(C18:3ω3) 0.25

2 L glass cylinder
photobioreactors

containing
200 µmol photons

m−2 s−1.

25 ◦C
air enriched

with 2% (v/v)
CO2

[192]

Chlorella sp. 313 0.018 NR
1.12 SFA

0.192 MUFA
1.6 PUFA

(C16:0) 1.08
(C16:1) 0.032
(C18:0) 0.04

(C18:1ω9) 0.16
(C18:2ω6) 1.41
(C18:3ω3) 0.19

2 L glass cylinder
photobioreactors

containing
200 µmol photons

m−2 s−1.

25 ◦C
air enriched

with 2% (v/v)
CO2

[192]

Chlorella
minutissima 444 0.016 NR

1.04 SFA
0.18 MUFA
2.18 PUFA

(C16:0) 1.00
(C16:1) 0.04
(C18:0) 0.04

(C18:1ω9) 0.14
(C18:2ω6)1.95
(C18:3ω3) 0.23

2 L glass cylinder
photobioreactors

containing
200 µmol E m−2s−1.

25 ◦C
air enriched

with 2% (v/v)
CO2

[192]
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Table 6. Cont.

Strain
Biomass

Productivity
(g L−1 h−1)

g Lipids/
100 g DW

g Fatty
Acid/100 g

Lipids

Fatty Acids
Profileg x-Fatty

Acid/100 g
Lipids

Photobioreactor/
Illumination

Operational
Conditions Medium Oil Extraction

Method References

Schizochytrium
sp. 0.537 49.53 44.81 PUFA (C22:6) 100 1.500-L

fermenter.

Control aeration
24 and

36 m3 h−1

40 g L−1 glucose and 0.4 g
L-1 yeast extract dissolved

in artificial sea water.

High-pressure
homogenizer

and
n-hexane/ethanol

(2:1).

[193]

Schizochytrium
sp. HX-308 0.479 69.98 32.5 SFA

59.58 PUFA

(C14:0) 9.35
(C16:0) 23.15
(C22:5) 17.94
(C22:6) 41.64

10 L fermenter.
25 ◦C

fed-batch
cultivation.

Artificial sea water.
(g/L): Na2SO4 10;

(NH4)2SO4 0.8; KH2PO4 4;
KCl 0.2; MgSO4 2;

Monosodium glutamate 20
(g L−1); CaCl2 0.1 (g L−1)
and the trance elements

(g/L): Na2EDTA 6, FeSO4
0.29, MnCl2. 4H2O 0.86,
ZnSO4 0.8, CoCl2.6H2O

0.01, Na2MoO4.2H2O 0.01,
NiSO4.6H2O 0.06 and

CuSO4 5H2O 0.6.

[193,194]

Phaeodactylum
tricornutum 0.043 NR

4.9 SFA
2 MUFA
5.6 PUFA

(C14:0) 0.7
(C16:0) 2.7
(C16:1) 2

(C16:3) 0.6
(C18:0) 1.5

(C20:5 n-3) 5

Flat panel airlift
200–1000 µmol

E m−2 s−1).

1.25% (v/v) CO2
16 h light per

day
20 ◦C during the
light period and
12–14 ◦C during
the dark period.

Modified Mann and Myers
medium
(g L−1)

10 NaCl, 1.8 KCl, 2.4
MgSO4·7 H2O, and

different N source urea,
KNO3, NH4Cl,

NR [195]

Schizochytrium
sp. 1.25 68.6

20.69-34.32 SFA
0.43-1.88 MUFA

53.23-64.54
PUFA

(C14:0) 5.24–9.96
(C14:1) 0.43–1.88

(C16:0)
14.94–22.85

(C18:0) 0.51–1.51
(C22:5, n-6)
15.2–20.96
(C22:6, n-3)
38.03–43.58

50 L porous
membrane-

impeller
bioreactor.

30 ◦C

Glucose (70 g L−1) and
yeast extract.

(8 g L−1) in artificial
seawater.

Petroleum
ether/diethyl
ether (9:1) and

methanol.

[196]
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Table 6. Cont.

Strain
Biomass

Productivity
(g L−1 h−1)

g Lipids/
100 g DW

g Fatty
Acid/100 g

Lipids

Fatty Acids
Profileg x-Fatty

Acid/100 g Lipids

Photobioreactor/
Illumination

Operational
Conditions Medium Oil Extraction

Method References

Chlorella vulgaris 0.005 30
38.8 SFA

45.4 MUFA
13.3 PUFA

(C16:0) 32.3
(C16:1) 17.7
(C18:0) 6.5
(C18:1) 27.7
(C18:2) 10.2
(C18:3) 3.1

5 L cylindrical
algal

photobioreactor
8-28 µmol

photons m−2 s−1.

air sparger
30 ◦C

light/dark period
was 16/8 h

Waste industrial
cane molasses.

Gloucosan corn
industry.

Bligh and Dyer
method [197]

Dunaliella salina 0.068 19.04
37.8 SFA

41.2 MUFA
20.9 PUFA

(C16:0) 15.37
(C16:1) 3.80
(C18:0) 7.15
(C18:1) 37.48
(C18:2)15.40
(C18:3) 2.31

10 L working
bubble column

photobioreactors
150 klux light

intensity.

25 ◦C

Modified Guillard
f/2 medium

(without silica).
Supplemented with

NaNO3 (225 mg
L−1) and sodium
acetate (4 g L−1).

Ultrasound bath [198]

Nannochloropsis
gaditana 0.0036–0.0078 14.72–11.66

31.17 SFA
30.27 MUFA
20.79 PUFA

(C18:3ω) 3.72
(C18:2) 17.07
(C18:1) 23.24
(C18:0) 8.99
(C16:1) 7.03
(C16:0) 22.18

4 L tank photo
bioreactors

150 klux light
intensity for

7 days.

24 ◦C
sterile air at 1.4

L.min−1

Modified Guillard
f/2 medium

(without silica). 6 g
L−1 of acetate and

225 mg L−1 of
nitrate.

Modified Folch
method and
ultrasound,

with a mixture
of chloroform:
methanol (3:1).

[199]



Molecules 2022, 27, 1205 22 of 33

According to the data reported in Table 6, the oils from microalgae were classified in
terms of their FAs composition to suggest potential biolubricant applications, as given in
Table 7. The qualitative relationship between saturation or unsaturation level and chain
length given in Table 4 was used for making the classification and ranking. The ranking
of the properties was established only according to the comparison between the reported
microalgae oils presented in Table 6. In addition, the possible applications suggested
were considered from available commercial biolubricants. The selection of the possible
applications for microalgae oils was based on the main qualitative requirements of lubricity
(low/regular performance or high-performance), viscosity (low or high), pour point (low
temperature operation) and oxidation stability (high temperature operation) of each specific
application.

Table 7. Possible biolubricant applications of microalgae oils.

Microalgae
Strain

Main Fatty
Acids

Main Lubricant Properties *
Possible Applications

Lubricity Viscosity Pour Point Oxidation
Stability

B. braunii
(UTEX LB 572) MUFA (C:18) XXX XX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

B. braunii
(IBL-C117) MUFA (C:22) XXX XXX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

B. terribilis
(IBL-C115) MUFA (C:18) XXX XX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

Chlorella sp. 800 MUFA PUFA
(C:18) XX XX XX XX

Concrete demolding oil,
chainsaw oil, gear oil, grease,
metalworking fluid, air mist
lubricant, rock drill oil, etc.

Chlorella
saccharophila 477 PUFA (C:18) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.

Chlorella
minutissima 494 PUFA (C:18) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.

Chlorella sp. 313 PUFA (C:18) X X XXX X
Concrete demolding oil,

hydraulic fluid, chainsaw oil,
air mist lubricant, etc.

Chlorella
minutissima 444 PUFA (C:18) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.

Schizochytrium
sp. PUFA (C:22) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.

Schizochytrium
sp. HX-308 PUFA (C:22) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.
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Table 7. Cont.

Microalgae
Strain

Main Fatty
Acids

Main Lubricant Properties *
Possible Applications

Lubricity Viscosity Pour Point Oxidation
Stability

Phaeodactylum
tricornutum PUFA (C:20) X X XXX X

Concrete demolding oil,
hydraulic fluid, chainsaw oil,

air mist lubricant, etc.

Chlorella
vulgaris MUFA (C:16) XXX XX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

Dunaliella salina MUFA (C:18) XXX XX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

Nannochloropsis
gaditana SFA (C:18) XXX XX X XXX

Engine oil, gear oil, grease,
metalworking fluid, insulating
oil, refrigeration compressor
oil, air mist lubricant, rock

drill oil, vacuum pump oil, etc.

* XLow; XXRegular; XXXHigh.

6. Challenges in the Microalgae-to-Biolubricant Production and Use

In general, the main strengths of the lubricants production from microalgae biomass
are the sustainability and eco-friendly characteristics of microalgae production and the
feasibility to control the amount and type of favorable fatty acids in the oil through con-
trolling microalgae growth operational parameters. Meanwhile, its main weakness so far
are production scalability issues. Once promising microalgae oils have been selected for
a specific application, the next step is the full-scale production of the strains (preferably
using waste sources). Here, it should be considered that the efficiency of microalgae and
biolubricant production comprises various challenges. In general, lipids (7–23%), proteins
(6–71%), and carbohydrates (5–64%) compose the microalgae biomass with proportions
that depend on the specific algal species and growth conditions. Some microalgae strains
can accumulate more than 50% lipids by dry weight, but special stress conditions must
be applied for effectively producing TAG with certain FAs at high concentrations. This
requires extensive research in laboratory and even more in field. In the case of microalgae
biomass production, some requirements should be faced, as the use of sanitary raw materi-
als for cultivation and growth, and assurance of unialgal culture (no-contaminants/other
cultures) in photobioreactors. To produce biolubricants, clean lipids/oils extracted from
the microalgae biomass are needed. Then, efficient harvesting and oil extraction techniques
must be applied according to the species, growth stage and lipid content in the biomass.
These requirements make production scalability problematic, since harvesting and oil
extraction methods are still expensive and not applicable for large-scale production. Up
to date, the large-scale commercialization of microalgae biolubricants is limited by the
lack of research on production of specific microalgae biomass with high-value lipids for
biolubricants, which opens a research gap for the coming years. According to da Silva and
Reis [200], other open problems for the commercial large-scale microalgae production are:

- Design and construction of photobioreactors (open and close). Deviations from design
specifications of photobioreactors due to little experience of construction companies
and biologists on these new facilities cause substantial delays to the inception of
microalgae biomass production projects.
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- Harvesting, seed culture preparation and inoculation for scales up to 300,000 L of
microalgae. Lack of skills in handling microalgal cultivation, harvesting and oil
extraction operations in large scales is a considerable obstacle for efficient operations.

- Climate changes and environmental and land use regulations. Site specific problems
such as unexpected power and water outages, seepages, contamination, water evapo-
ration, drastic weather variations and requirement of special land use permissions can
cause production stops, or even, death of the culture broth.

- Assuring product quality and consistency by using green processes. Daily culture
sampling and analyses is required to assure consistency and quality of the product.
Reaching an acceptable quality and consistency of the product by incorporating green
processes for harvesting and oil extraction is currently a research challenge.

- On the other hand, akin to other VOs considered as potential candidates for biolu-
bricants production [24], some challenges must be overcome to use confidently and
extensively microalgae biolubricants for industry and vehicle applications. The main
challenges are:

- Guaranty homogeneity and continuous availability of the product. It depends on the
supplier, feed stocks, and production methods, which is line with the microalgae-based
oil production challenges.

- Guaranty of proper compatibility with machine materials [201–203], acceptable ther-
mal oxidation stability and cold weather operation. These properties must be further
evaluated and improved for each oil/lubricant meeting with stringent specifications
before marketing.

- Guaranty of acceptable biodegradability and low toxicity of microalgae biolubricants
in case of chemical modification of the base stock oils. Biodegradability of the biolubri-
cants can be worsened by chemical modification and additivation. It must be further
evaluated and treated to guaranty the eco-friendly characteristics.

- Acceptance by machine manufacturers. Machine performance, emissions, durability,
and biolubricant oxidation in a wide range of machines and sizes need to be demon-
strated feasibly and widespread to increase consumer and manufacturer confidence.
In addition, the environmental benefits offered by microalgae oil over petroleum
lubricating oil, or even VOs, need to be popularized.

Finally, should the above challenges be overcome, microalgae oils can emerge as the
most sustainable and eco-friendly sources to produce advanced biolubricants for different
industrial applications.

7. Conclusions

Microalgae oils are more sustainable candidates for production of biolubricants than
other already used edible or non-edible VOs. In comparison to conventional petroleum-
derived lubricants, VOs and microalgae oils lubricants are cleaner, renewable and non-toxic,
which make them ecofriendly. Nonetheless, VOs production competes for the utilization
of arable land used for cultivation of edible feedstocks, which can affect the food supply
chain when full-scale production of biolubricants is required. In contrast, microalgae can
be growth in different environments with different photosynthetic efficiency and require
smaller lands and lower water consumption for cultivation and production of considerable
oil contents while addressing other environmental benefits. Various microalgae oils have
similar chemical composition to VOs in terms of different fatty acids, which evidences their
potential as biolubricants. In contrast to VOs, FAs and oil accumulation in microalgae can
be readily conditioned through the variation of cultivation and growing parameters such
as photobioreactor type (close or open), salinity, temperature, nutrients, dissolved oxygen,
illumination, light/dark cycles and agitation.

The main strengths of the lubricants production from microalgae biomass are the
sustainability and eco-friendly characteristics of microalgae production and the feasibility
to control the amount and type of favorable fatty acids in the oil. The main weakness so far
relies on production scalability issues.
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Considering microalgae biomass and lipids accumulation, the relationship between
lubricant properties, chemical structure (FAs type) and application, a general guide for
determining prospective microalgae oils for lubricants is suggested. The guide is based
on the following steps: microalgae oil selection, qualitative prediction of main lubricant
properties, precise characterization of lubricant properties and determination of the biol-
ubricant applicability, respectively. If the oil properties satisfy the requirements for the
target application, this can be used as biolubricant as it is produced; if not, the oil must be
improved by chemical conversion and/or aggregating additives.

Several microalgae strains and parameters to produce oils with appropriate FAs for
biolubricants were successfully identified from literature, and through the guide proposed,
different applications are suggested for each oil. Microalgae oils appear to be promising
alternatives to replace both petroleum- and VOs-derived lubricants in the future. Nonethe-
less, some challenges for production and use must be faced to guaranty a reliable supply
chain. Among the most important challenges are the scalability of microalgae biomass
production and oil extraction processes, continuous availability of the product with the
required lubricant properties for the specific application without loss of the biodegradabil-
ity rates.
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