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Allergic diseases are associated with central and peripheral nervous system diseases

such as autism spectrum disorders and eosinophilic granulomatosis with polyangiitis,

which frequently causes mononeuritis multiplex. Thus, it is possible that patients with

an atopic constitution might develop multifocal inflammation in central and peripheral

nervous system tissues. In a previous study in Japan, we reported a rare form

of myelitis with persistent neuropathic pain (NeP) in patients with allergic disorders.

However, the underlying mechanism of allergic inflammation-related NeP remains to

be elucidated. First, we analyzed the effect of allergic inflammation on the nociceptive

system in the spinal cord. Mice with atopy showed microglial and astroglial activation

in the spinal cord and tactile allodynia. In a microarray analysis of isolated microglia

from the spinal cord, endothelin receptor type B (EDNRB) was the most upregulated

cell surface receptor in mice with atopy. Immunohistochemical analysis demonstrated

EDNRB expression was upregulated in microglia and astroglia. The EDNRB antagonist

BQ788 abolished glial activation and allodynia. These findings indicated that allergic

inflammation induced widespread glial activation through the EDNRB pathway and NeP.

Second, we investigated whether autoantibody-mediated pathogenesis underlies allergic

inflammation-related NeP. We detected specific autoantibodies to small dorsal root

ganglion (DRG) neurons and their nerve terminals in the dorsal horns of NeP patients

with allergic disorders. An analysis of IgG subclasses revealed a predominance of IgG2.

These autoantibodies were mostly colocalized with isolectin B4- and P2X3-positive

unmyelinated C-fiber type small DRG neurons. By contrast, immunostaining for

S100β, a myelinated DRG neuron marker, showed no colocalization with patient IgG.

Immunoprecipitation and liquid chromatography-tandem mass spectrometry identified

plexin D1 as a target autoantigen. Patients with anti-plexin D1 antibodies often

present with burning pain and thermal hyperalgesia. Immunotherapies, including plasma

exchange, are effective for NeP management. Therefore, anti-plexin D1 antibodies

may be pathogenic for immune-mediated NeP, especially under allergic inflammation

conditions. Thus, allergic inflammation may induce NeP through glial inflammation in the

spinal cord and the anti-plexin D1 antibody-mediated impairment of small DRG neurons.
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INTRODUCTION

Allergic diseases are associated with central and peripheral
nervous system diseases such as autism spectrum disorders
(1–3) and eosinophilic granulomatosis with polyangiitis,
which frequently causes mononeuritis multiplex (4, 5). These
observations indicate that patients with an atopic constitution
develop multifocal inflammation in central nervous system
(CNS) and peripheral nervous system (PNS) tissues (6).

We previously reported a rare form of myelitis with persistent
neuropathic pain (NeP) in Japanese patients with allergic diseases
(7, 8). Nationwide surveys have found that this form of myelitis
is widely distributed in Japan (6, 9). Similar cases have also
been reported in Western countries (10, 11). Patients with
this form of myelitis as well as atopy often showed cervical
cord involvement, mainly in the posterior lesion, and exhibited
sensory impairment including NeP in all four limbs (6, 9). We
found a loss of myelin and axon and eosinophil infiltration in
biopsied spinal cord lesions from these patients (12, 13). Thus,
we designated this form of myelitis “atopic myelitis (AM)” and
established diagnostic criteria (14). Definite AM is defined as:
(1) patients meeting the absolute criteria [myelitis with unknown
etiology; positivity for allergen-specific IgE; and absence of brain
MRI lesions fulfilling the Barkhof criteria for MS (15)] plus
the pathological criteria (spinal cord biopsy samples showing
existence of perivascular lymphocyte cuffings with various
degrees of eosinophil infiltration, sometimes accompanied by
granuloma); or (2) patients meeting the absolute criteria plus at
least two of the three supporting positive criteria [present or past
history of atopic disease; serum hyperIgEemia; increased level of
interleukin (IL)-9 or eotaxin in cerebrospinal fluid (CSF)] plus
one supporting negative criterion (no oligoclonal bands in CSF).
Probable cases of AM are defined as: (1) patients meeting the
absolute criteria plus one of the supporting positive criteria plus
the one supporting negative criterion; or (2) patients meeting
the absolute criteria plus at least two of the supporting positive
criteria. In patients with AM, there were significant positive
correlations between disease duration and Kurtzke Expanded
Disability Status Scale score (16) and Sensory Functional scale
score (17). However, the underlying mechanism of allergic
inflammation-related NeP remains to be elucidated.

Recent studies have established a crucial role of immune
system activation in modulation of NeP (18, 19). Pro-
inflammatory cytokines, such as tumor necrosis factor (TNF)-α,
interferon gamma (IFNγ), IL-1β, IL-6, and IL-17, were shown
to be elevated in sera and CSF of patients with NeP (20, 21).
Because receptors for these cytokines are expressed on sensory
neurons, pro-inflammatory cytokines may exert direct effects
on nociceptive sensory neurons and induce NeP. Moreover,
treatment with anti-inflammatory cytokines, such as IL-4 and
IL-10, was reported to alleviate NeP in animal models (22, 23).
Moreover, passive transfer of Th1 cells to athymic nude rats
lacking mature T cells enhanced pain hypersensitivity in the
recipient mice (24). In contrast, passive transfer of polarized
Th2 cells attenuated pain hypersensitivity in the recipient mice.
These findings suggest that Th2-dominant allergic inflammation
may be protective for NeP. However, in clinical practice, we

often encounter patients with both allergic disease and severe
NeP (6), suggesting that other NeP mechanisms are operative.
Accumulating evidence indicates that activation of spinal
microglia, resident macrophages in the CNS, is crucial for NeP
generation and modulation (25, 26). Peripheral nerve damage
induces microglial activation in the dorsal horn of the spinal
cord. Activated microglial mediators in the spinal dorsal horn,
such as TNF-α, IL-1β, and brain-derived neurotrophic factor
(BDNF), increase excitatory synaptic transmission and cause
NeP via neuron-glial interactions (27). We further focused on B
cell hyperactivation, which induces NeP through production of
autoantibodies against antigens in the somatosensory pathway in
response to the allergic condition (19, 28). Indeed, autoantibodies
against sensory neurons were detected in autoimmune diseases
associated with pain, such as Guillain–Barré syndrome (29) and
complex regional pain syndrome (CRPS) (30), and depletion of B
cells reduced NeP in CRPS model mice (31).

In this Mini Review, we will discuss the possible NeP
mechanisms associated with allergic inflammation, on the
basis of findings from animal models of allergic disease
and autoantibodies against sensory neurons of patients with
allergic diseases.

ALLERGIC INFLAMMATION INDUCES
NEUROPATHIC PAIN THROUGH THE
ACTIVATION OF GLIAL CELLS

First, we analyzed the effect of allergic inflammation on the
nociceptive system of the spinal cord in an animal model of
allergic disease (32). We induced atopic diathesis, bronchial
asthma, or atopic dermatitis in C57BL/6 mice by intraperitoneal
sensitization with ovalbumin (OVA) (50 µg) and aluminum
hydroxide hydrate (2mg) on days 0, 7, and 14 (atopic diathesis
model), followed by nasal aspiration of OVA solution (2.5
mg/ml) for 4 consecutive days (days 15–18) (bronchial asthma
model) or direct OVA application (100 µg) on tape-stripped skin
(atopic dermatitis model). Mice with atopy showed microglial
and astroglial activation in the dorsal horn of the spinal cord.
A higher expression of FBJ murine osteosarcoma viral oncogene
homolog B (FosB), a neuronal activation marker, was also seen
in the dorsal horn of mice with atopy compared with mice
without atopy. Additionally, we found activated endothelial cells
and extravasation of serum albumin in atopic mice, suggesting
blood–brain barrier (BBB) impairment. There was neither
demyelination nor axonal degeneration in the spinal cord of
mice with atopy. We used von Frey filaments to evaluate tactile
allodynia in mice with atopy (33) and found that atopy model
mice had severe tactile allodynia.

In a microarray analysis of isolated microglia from the spinal
cord of mice with atopy, microglia showed an augmented
pro-inflammatory signature, including IL-1β, CD38, and
prostaglandin-endoperoxide synthase 2, which are known to be
upregulated in activated microglia (34, 35). Endothelin receptor
type B (EDNRB) was the most upregulated cell surface microglial
receptor in mice with atopy. Immunohistochemical analysis
confirmed that EDNRB expression was upregulated in microglia
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and astroglia, and that spinal cord neurons did not express
EDNRB. Meanwhile, endothelin receptor type A (EDNRA),
another main receptor for endothelin, was not detected in
microglia, astroglia, and neurons of the spinal cord of atopic
mice. We further found increased levels of endothelin-1 (ET-1),
an EDNRB ligand, in serum by ELISA, and observed marked
up-regulation of ET-1 in alveolar epithelial cells and epidermis
of atopic mice by immunohistochemistry. We then analyzed
whether a selective EDNRB antagonist, BQ-788, would affect glial
activation and tactile allodynia in atopic mice. BQ-788 treatment
abolished microglial, astroglial, and neuronal activation and
allodynia. Because the neuronal expression of EDNRB was not
detected in atopic mice, the EDNRB antagonist primarily acted
on microglia and astroglia rather than neurons. Thus, microglia
and astroglia are important for the emergence of allergic
inflammation-related NeP via the ET-1/EDNRB pathway.

We also conducted a neuropathological examination of
autopsied spinal cord lesions from a patient with AM. We found
microglial and astroglial activation in the dorsal horn of the
spinal cord and the loss of myelin and axons, as seen in previously
biopsied AM cases (12, 13). EDNRB expression was upregulated
in microglia and astroglia, similar to in our atopy model mice.
Moreover, we found elevated serum ET-1 levels in AM patients
compared with healthy controls without atopy. Together, these
findings indicate that allergic inflammation induces widespread
glial activation, which persistently activates the nociceptive
system in the spinal cord via the ET-1/EDNRB pathway.

ANTI-PLEXIN D1 ANTIBODY-RELATED
NEUROPATHIC PAIN IN PATIENTS WITH
ALLERGIC DISEASES

Allergic inflammation can enhance autoantibody production
(28) and plasma exchange has been reported to improve
NeP in patients with AM (6, 36). Therefore, we investigated
whether an autoantibody-mediated mechanism underlies allergic
inflammation-related NeP.

We screened novel autoantibodies against dorsal root
ganglion (DRG) neurons and the dorsal horn, which are involved
in generating NeP, in patients with various neurologic diseases
including AM, using a tissue-based indirect immunofluorescence
assay (IFA) (37). We found specific autoantibodies against small
DRG neurons and their nerve terminals in the dorsal horn of the
spinal cord (37), and these autoantibodies were more frequently
detected in patients with NeP than subjects without NeP (10% vs.
0%; p < 0.05). IgG subclass analysis revealed a predominance of
IgG2, which weakly activates complement. These autoantibodies
mostly colocalized with isolectin B4 (IB4)- and P2X3-positive
unmyelinated C-fiber type small DRG neurons. By contrast,
immunostaining for S100β, a myelinated DRG neuron marker,
showed no colocalization with patient IgG. These findings
showed that NeP patients’ IgG binding was restricted to
unmyelinated DRG neurons. In the dorsal horn of the spinal
cord, patient IgG axonal staining colocalized with a lamina
I marker calcitonin gene-related peptide (CGRP) and lamina

II marker IB4. Therefore, IgG binding in patients with anti-
small DRG neuron antibodies was restricted to the superficial
dorsal horn (laminae I and II). These autoantibodies also bound
to vasoactive intestinal peptide (VIP)-positive postganglionic
parasympathetic nerve fibers in the skin. In western blotting
(WB) using mouse DRG, these autoantibodies recognized a
common 220 kDa band. Liquid chromatography-tandem mass
spectrometry with immunoprecipitates revealed plexin D1 was
the autoantigen.

Plexin D1 is a receptor for semaphorin 3E, an axon
guidance factor and immune regulator (38) expressed in the
nervous system, B cells, macrophages, endothelial cells, and
skin (38). Given that the presence of plexin D1 in DRG
sensory neurons has not been investigated, we assessed the
expression of plexin D1 in human DRG sensory neurons
(37). Immunohistochemical analysis of human DRG and spinal
cord tissues with an anti-human plexin D1 antibody revealed
that plexin D1 was expressed in small DRG neurons and the
superficial dorsal horn. The immunostaining of small DRG
neurons and spinal dorsal horn by IgG from all anti-small
DRG neuron antibody-positive patients was removed by pre-
incubation with recombinant human plexin D1 extracellular
domain in a concentration-dependent manner (37). Therefore,
we confirmed plexin D1 is a relevant autoantigen. Additionally,
plexin D1 extracellular domain contains antigenic epitopes for
autoantibody recognition. Then, we performed a propidium
iodide (PI) assay to assess plasma membrane permeability using
dissociated mouse DRG neurons and heat-inactivated sera from
NeP patients with anti-plexin D1 antibodies. Heat-inactivated
sera from NeP patients with anti-plexin D1 antibodies showed
a significant increase in the percentage of PI-positive cells
compared with those without anti-plexin D1 antibodies (37).
These findings suggest that anti-plexin D1 IgG2 antibodies may
invade the DRG where the BBB and blood–nerve barrier are
absent, bind to plexin D1 on the surface of unmyelinated C-fiber
type DRG neurons, and impair the plasma membranes of small
pain-conveying neurons, resulting in their dysfunction.

In Table 1, we have summarized the clinical features of
patients with anti-plexin D1 antibodies based on our previous
study (37). The patients with anti-plexin D1 antibodies were
predominantly female, although the difference in anti-plexin
D1 antibody positivity rates between female and male patients
with NeP was not significant (12.3 vs. 5.4%; p = 0.33). The
age at onset was relatively young. The clinical courses were
relapsing or fluctuating. The underlying neurological diseases
of 11 patients with anti-plexin D1 antibodies included atopic
myelitis, neuromyelitis optica spectrum disorders, multiple
sclerosis, neurosarcoidosis, and erythromelalgia. The common
comorbidities in patients with anti-plexin D1 antibodies were
allergic diseases and collagen diseases. The patients commonly
developed burning pain, thermal hyperalgesia, and peripheral
vascular dysfunction symptoms. The current perception
threshold test showed abnormalities of C-fibers. Plasma exchange
and intravenous methylprednisolone pulse therapy were effective
for NeP management. These findings suggest that anti-plexin
D1 antibodies may be pathogenic in immune-mediated NeP,
especially under allergic inflammation conditions.
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TABLE 1 | Clinical findings for 11 patients with anti-plexin D1 antibodies.

Characteristic Summary

Female sex, number (%) 9 (81.8)

Age at onset, mean ± SD

(range), years

26.3 ± 13.3 (12–53)

Underlying diseases,

number (%)

AM 6 (54.5), NMOSD 2 (18.2),

RRMS 1 (9.1), neurosarcoidosis 1 (9.1),

erythromelalgia 1 (9.1)

Coexisting disorders,

number (%)

Allergic diseases 10 (90.9), collagen-vascular

diseases 4 (36.4), malignant neoplasms 1 (9.1)

Clinical course, number (%) Relapsing 9 (81.8), fluctuating 2 (18.2)

Neurological manifestations,

number (%)

NeP 11 (100), sensory impairment 11 (100), motor

weakness 10 (90.9), hyperreflexia 10 (90.9),

peripheral vascular autonomic dysfunction

symptoms 5 (45.5), hand muscle atrophy 2 (18.2),

visual impairment 2 (18.2)

Quality of NeP, number (%) Burning 6 (54.5), tingling 6 (54.5), thermal

hyperalgesia 5 (45.5), allodynia 2 (18.2), pinprick

hyperalgesia 2 (18.2), squeezing 2 (18.2)

Electrophysiological

findings, number (%)a
MEP abnormality of CNS 8 (72.7), CPT abnormality

of C-fiber 6 (100), SEP abnormality of CNS 4 (36.4),

SEP abnormality of PNS 3 (27.3), NCS abnormality

3 (33.3), QSART abnormality 1 (100)

Immunotherapy response

for NeP, number (%)b
Improved 7 [mPSL pulse 4 and mPSL pulse plus PE

3] (100)

aPercentage among tested patients who underwent each electrophysiological

examination. bPercentage among patients treated with various immunotherapies.

CNS, central nervous system; CPT, current perception threshold; MEP, motor-evoked

potentials; mPSL, methylprednisolone; NCS, nerve conduction study; NeP, neuropathic

pain; NMOSD, neuromyelitis optica spectrum disorders; PE, plasma exchange; PNS,

peripheral nervous system; QSART, quantitative sudomotor axon reflex test; RRMS,

relapsing-remitting multiple sclerosis; SEP, somatosensory-evoked potentials.

HYPOTHETICAL MECHANISMS
UNDERLYING ALLERGIC
INFLAMMATION-RELATED NEUROPATHIC
PAIN

Glial Activation in Allergic Inflammation
Allergic diseases are associated with a risk for autism spectrum
disorders (ASD) and attention-deficit and hyperactivity disorder
(ADHD) (1, 2, 39). Moreover, microglia and autoantibodies
against brain proteins are also associated with the pathogenesis
of ASD (40–42). A recent transcriptome study using cortical
tissue samples from patients with ASD showed microglial
activation in cortical tissues of ASD patients (43). In an animal
model of ASD, microglia from the offspring of mothers with
allergic asthma exhibited epigenomic alterations in dysregulated
genes (44). Therefore, allergic inflammation may contribute
to the pathogenesis of ASD through microglial activation.
However, it is unknown how allergic inflammation causes
microglial activation. ASD children had significantly higher
serum levels of anti-myelin basic protein (MBP) and anti-
myelin-associated glycoprotein (MAG) antibodies than healthy
children and the levels of autoantibodies against MBP and
MAG were significantly correlated with the presence of allergic
symptoms (45). Therefore, allergic inflammation might induce

the production of autoantibodies against neurons and glial cells,
which leads to CNS damage. However, no specific autoantibodies
produced by allergic inflammation have been identified.

In our previous study (32), expression of EDNRB was
upregulated in spinal microglia and astroglia from atopic
mice and an autopsied AM case. By contrast, expression of
EDNRA was not detected in microglia and astroglia of atopic
mice. In the normal condition, expression of EDNRA in the
spinal cord is observed in vascular smooth muscle cells and
the superficial dorsal horn (primary afferent nerve fibers),
while expression of EDNRB in the spinal cord is observed in
radial glia, a small population of astroglia, ependymal cells,
and vascular endothelial cells (46) (Supplementary Table 1).
Therefore, allergic inflammation can induce overexpression of
EDNRB in microglia and astroglia in the spinal cord.

We also found an overproduction of ET-1 in sera, alveolar
epithelial cells, and skin tissues from atopic mice and elevated
serum ET-1 in patients with AM. Previous studies reported
increased ET-1 expression in the epidermis of atopic dermatitis
patients (47) and the bronchial epithelium of asthma patients
(48). Additionally, several studies reported that ET-1 attenuated
BBB permeability (49). Therefore, the overproduction of ET-1 in
inflamed tissues may induce BBB hyperpermeability and activate
microglia and astroglia via the ET-1/EDNRB pathway in allergic
inflammation. Then, glial activation might activate second-order
sensory neurons in the dorsal horn of the spinal cord, causing
NeP (Figure 1).

A previous study showed that the ET-1/EDNRB pathway has
dual effects on the nociceptive system in response to pathological
conditions (50). The ET-1/EDNRB pathway exhibited pro-
nociceptive effects in inflammatory pain models (51, 52).
Furthermore, because ET-1 enhances capsaicin-induced release
of substance P and CGRP, as nociceptive mediators, from isolated
sensory neurons without EDNRB expression, ET-1 induced pro-
nociceptive effects independently of EDNRB (53). In contrast,
the ET-1/EDNRB pathway exerted anti-nociceptive effects in a
subcutaneous hindpaw ET-1 injection model (54) and a bone
cancer model (55). In our atopic mice, the ET-1/EDNRB pathway
exhibited pro-nociceptive effects. Although EDNRA is normally
expressed in small DRG neurons while EDNRB is expressed in
satellite glial cells and myelinating Schwann cells surrounding
axons (56) (Supplementary Table 1), we have not investigated
the PNS expression of EDNRA and EDNRB in our atopic mice.
Further studies are required to achieve a deeper understanding of
the nociceptive effects of ET-1 in allergic inflammation.

Mechanism of Anti-plexin D1 Antibody
Production in Allergic Inflammation
Although NeP patients with anti-plexin D1 antibodies have
various underlying neurological diseases, they have common
coexisting comorbidities, mainly allergic diseases (37), that
enhance the production of autoantibodies (28). Therefore, the
production of anti-plexin D1 antibodies is considered to be
associated with allergic inflammation. Interestingly, the anti-
plexin D1 IgG main subclass was IgG2, which predominantly
recognizes carbohydrate epitopes (57). Plexin D1 is heavily

Frontiers in Neurology | www.frontiersin.org 4 December 2019 | Volume 10 | Article 1337

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fujii et al. Allergy-Related Neuropathic Pain

FIGURE 1 | Schematic overview of our hypothesis that allergic inflammation induces immune-mediated neuropathic pain. Anti-plexin D1 antibodies invade the dorsal

root ganglia (DRG) where the blood–brain barrier (BBB) and blood–nerve barrier are absent, bind to unmyelinated small DRG neurons (primary sensory neurons), and

cause neuropathic pain. Moreover, the overproduction of ET-1 (endothelin-1) in inflamed tissues induces BBB hyperpermeability and activates microglia and astroglia

via the ET-1/EDNRB (endothelin receptor type B) pathway in allergic inflammation. Glial activation leads to the activation of second-order sensory neurons in the dorsal

horn of the spinal cord and, ultimately, neuropathic pain.

glycosylated, especially at the extracellular IPT/TIG3 domain,
which is the same region that immunoprecipitates as identified
by mass spectrometry (37). IgG2 is preferentially produced
against polysaccharides of environmental microorganisms. AM
patients frequently have high levels of IgE antibodies to mite
antigens, such as Dermatophagoides pteronyssinus (Dpt) and
Dermatophagoides farinae, which are also heavily glycosylated
(6, 9). Of note, IgG2 antibodies were reported to comprise
up to 50% of antibodies against Dpt in atopic patients with
high levels of anti-Dpt IgE antibodies (58). Thus, allergic
inflammation may facilitate anti-plexin D1 antibodies through
the molecular mimicry of carbohydrates such as plexin D1
and environmental allergens, including Dpt. IgG2 is a low
inducer of complement activation and antibody-dependent cell-
mediated cytotoxicity compared with IgG1 (57, 59), which might
explain the observation that anti-plexin D1 antibody-positive

NeP patients, especially AM patients, experience only minor
disabilities other than NeP (6).

Action of Anti-plexin D1 Antibodies
Neurological manifestations of NeP patients with anti-plexin
D1 antibodies commonly include burning pain and thermal
hyperalgesia (37). These symptoms reflect C-fiber type DRG
neuron impairment (60). Because anti-plexin D1 antibodies
specifically bind to C-fiber DRG neurons, anti-plexin D1
antibodies might be the cause of C-fiber type DRG neuron
impairment and NeP. Indeed, in our in vitro study, anti-plexin
D1 antibodies inducedmembrane hyperpermeability and cellular
swelling of DRG neurons independent of complement activation.
Because plexin D1 regulates cytoskeleton stability through actin
polymerization (61), anti-plexin D1 antibodies may induce
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complement-independent cytotoxicity to DRG neurons through
the dysregulation of cytoskeleton stability.

CONCLUSION

On the basis of the above-mentioned findings, we propose
that increased humoral immunity in allergic individuals may
cause anti-plexin D1 antibody production through molecular
mimicry with environmental allergens (Figure 1). Anti-plexin
D1 antibodies can invade the DRG where the blood–nerve
barrier is absent and damage primary pain-conducting neurons,
triggering NeP. In addition, allergy may induce the activation
of spinal microglia and astroglia via the ET1/EDNRB pathway,
which might activate second-order sensory neurons and
predispose allergic individuals to NeP. Although there is no
evidence of a direct interaction between the ET-1/EDNRB and
semaphorin/plexin D1 pathways, activation of the ET-1/EDNRB
pathway may allow anti-plexin D1 antibodies to invade the
CNS via the hyperpermeable BBB. Plasma exchange can remove
circulating serum ET-1 and anti-plexin D1 antibodies, and
ameliorate NeP associated with allergic inflammation.

Given that the prevalence of allergic diseases has been
increasing over recent decades (62), we predict that allergic
inflammation-related neurological diseases will also increase.
Therefore, a better understanding of the neuro-immune

interactions in allergic diseases might lead to novel therapeutic
approaches to treat allergy-related neurological diseases.
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